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Abstract. 12 
 13 
In recent years, artificial intelligence (AI) has emerged as a transformative tool for addressing 14 

scientific and technical challenges across various disciplines. AI enables data-driven 15 

predictions, uncovers hidden patterns, and automates labor-intensive tasks, offering 16 

unprecedented opportunities for innovation. However, its rapid rise has been disruptive, and 17 

many scientific fields—including polymer science—were not fully prepared for its integration. 18 

The complexity of polymer systems, coupled with the traditionally empirical nature of the field, 19 

has made AI adoption particularly challenging. Many polymer scientists still face significant 20 

barriers, including technical complexity, and a lack of interdisciplinary training. 21 

This perspective serves as an entry point for researchers seeking to integrate AI into polymer 22 

science by presenting real-world applications, practical tools, and key challenges. Rather than 23 

providing an exhaustive review for specialists, it aims to familiarize polymer scientists with 24 

AI’s capabilities and encourage further exploration. By lowering entry barriers and fostering 25 

interdisciplinary dialogue, this work bridges the gap between conventional polymer research 26 

and data-driven innovation, paving the way for future advancements. 27 

  28 
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1. Introduction. 29 

Since their discovery over a century ago,1 polymers have predominantly relied on trial-and-30 

error experimentation—a painstaking process of designing monomers, refining 31 

macromolecular architectures, and fine-tuning synthesis parameters to achieve the ideal 32 

combination for a specific application. While this approach has undeniably driven significant 33 

advancements, it remains fundamentally incremental. The vast combinatorial explosion of 34 

polymer design possibilities, coupled with the complex and nonlinear relationships between 35 

structure and properties, leaves an overwhelming number of opportunities unexplored.2, 3 What 36 

groundbreaking materials might still be hidden within this immense, uncharted design space? 37 

How can we accelerate the discovery of new materials in such a vast and complex landscape? 38 

Such a monumental task lies beyond the limits of human capacity, no matter how ambitious. 39 

This is where non-human intelligence, commonly known as artificial intelligence (AI),4, 5 steps 40 

in—not as a magic bullet, but as an assistant and transformative tool that redefines how we 41 

approach scientific research.6-8 In fields like biology, AI has already unlocked opportunities.9, 42 
10 For example, DeepMind’s AlphaFold,11 which solved a decades-old challenge in protein 43 

folding. This breakthrough highlights AI’s exceptional ability to detect hidden patterns, and 44 

make predictions that surpass human intuition. 45 

Could polymer science be the next frontier for AI’s transformative impact? Imagine an artificial 46 

assistant working tirelessly, 24/7, to identify critical gaps in the literature, analyze vast amounts 47 

of knowledge to uncover overlooked opportunities, and pinpoint pressing industrial and societal 48 

needs. Building on these insights, the same assistant could propose a new polymer perfectly 49 

tailored to a specific application, recommend an efficient and cost-effective synthesis pathway, 50 

and account for the polymer’s desired lifespan. It could also predict its degradation and suggest 51 

strategies to enhance its recyclability and sustainability. But this assistant wouldn’t stop at 52 

theoretical suggestions. It could seamlessly interact with an automated system to execute the 53 

proposed synthesis. By analyzing real-time experimental data, it could iteratively optimize the 54 

process—dynamically adjusting reaction parameters to achieve predefined objectives, all while 55 

ensuring complete safety. Practical tasks such as sourcing and purchasing necessary reagents 56 

and solvents would also be handled, ensuring a smooth integration between planning and 57 

execution. Furthermore, this system could structure, store, and organize data at every step, 58 

generating comprehensive reports that track progress and provide actionable insights to guide 59 

researchers. 60 
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While this might sound like an ambitious vision for "today," it is closer to reality than we might 61 

think. As highlighted recently by Martin and collaborators12 describing the "self-driving labs" 62 

of tomorrow, the technologies needed to enable such seamless integration of AI, automation, 63 

and laboratory workflows are already emerging or actively under development. Rapid 64 

advancements in robotics, and AI are steadily transforming this vision into a tangible reality. 65 

The only true limitation might be the scientist’s imagination and their ability to harness this 66 

technology to its fullest potential. But even in this task, another intelligent assistant might soon 67 

be there to help. 68 

Over the past decade, AI applications in polymer science have witnessed exponential growth, 69 

as reflected in the increasing number of published studies (Figure 1). However, while the 70 

potential of AI in polymer science is now clear— with numerous excellent reviews already 71 

covering this topic,13-18 the path forward remains uncertain. Many scientists, intrigued by AI’s 72 

capabilities, feel overwhelmed by the steep learning curve and the lack of accessible entry 73 

points. How does AI work? Which tools should we learn to begin testing and applying AI in our 74 

research?  75 

 76 

Figure 1. Number of publications related to AI in polymer science, retrieved from Web of Science using 77 
the keywords ('machine learning' AND 'polymer') OR ('artificial intelligence' AND 'polymer') within the 78 
research areas: Materials Science, Polymer Science, and Chemistry. The geographical distribution 79 
highlights the leading contributors to this emerging field. 80 

This perspective aims to provide a starting point for integrating AI into polymer research. By 81 

focusing on key applications, foundational methodologies, and accessible tools, we seek to 82 

demystify the technology and introduce essential AI concepts. Rather than offering mastery, 83 

this document serves to illuminate the first steps of a long learning journey—one that will 84 

require deeper exploration. 85 
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2.  AI as a new scientific paradigm in polymer science 86 

At its core, AI refers to the ability of machines to simulate human intelligence—learning from 87 

data, recognizing patterns, and making predictions.19, 20 In chemistry, the term "AI" often 88 

evokes curiosity but also confusion, especially when compared to molecular simulations or 89 

physical modeling approaches. Conventional approaches—such as molecular dynamics (MD)21 90 

simulations and density functional theory (DFT)22—have long been the backbone of polymer 91 

research, relying on physical principles and explicit equations to predict behaviors like phase 92 

transitions, chain conformations, or mechanical properties.  93 

AI, in contrast, offers an entirely new paradigm: instead of relying on explicit equations, it 94 

learns patterns directly from data. This capability enables AI to make accurate predictions even 95 

when the underlying physics is not fully understood.23 Bhattacharya and Patra24 showed that AI 96 

could accurately predict polymer phase transitions, such as the coil-to-globule transition, while 97 

significantly reducing the computational cost compared to MD simulations. This capability to 98 

"shortcut" traditional workflows without sacrificing accuracy has enabled researchers to 99 

explore complex polymer systems more efficiently. This convergence of AI and simulation is 100 

not about replacing one with the other but about enhancing and complementing existing tools.25 101 

3. Key machine learning techniques 102 

Within AI, Machine Learning (ML) is a subset that focuses on building models capable of 103 

learning from data to make predictions or decisions without being explicitly programmed.26-28 104 

ML is increasingly used in polymer science to predict properties,24, 29-41 optimize synthesis,42-48 105 

and guide material discovery.49-54 In this section, we present key ML techniques, explain their 106 

fundamental principles, and illustrate their applications in polymer science through selected 107 

examples. As summarized in Figure 2, ML can be broadly categorized into three main classes: 108 

supervised learning (SL),55 unsupervised learning (UL),56 and reinforcement learning (RL).57 109 

These methods differ in how models learn from data and the types of problems they address. 110 
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 111 
Figure 2. Overview of main machine learning methods and their applications in polymer science. Deep 112 
learning (DL) can be applied across all three categories (supervised, unsupervised, and reinforcement 113 
learning) to analyze complex polymer data, predict properties, and optimize synthesis. 114 

Before introducing each class and providing comprehensive examples, it is important to note 115 

that each class relies on specific algorithms. However, the detailed mathematical foundations 116 

and methodological workflows of these algorithms extend beyond the scope of this prospective 117 

study. Readers interested in further information can refer to various authoritative resources.58, 118 
59 One strategy common to all three classes is deep learning (DL).5, 60 DL, an advanced branch 119 

of machine learning, leverages artificial neural networks to process complex and nonlinear 120 

datasets, making it particularly effective for analyzing unstructured data, such as spectroscopic 121 

signals or microscopy images. This capability is transformative for polymer science, where 122 

characterizing materials and predicting properties often involve large and intricate datasets 123 

3.1.Supervised Learning  124 

In supervised learning (SL), models learn from labeled datasets, where each input is associated 125 

with a correct output. This approach is akin to traditional classroom teaching, where a teacher 126 
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provides both correct and incorrect examples to guide the student's learning. However, unlike 127 

human learning, the model's progress is continuously evaluated during training to adjust its 128 

parameters and improve accuracy. The learning process is repeated iteratively until the model 129 

reaches a high-performance threshold, ensuring reliable predictions.  130 

For example, consider the task of determining whether a polymer is degradable (classification 131 

task). By compiling a dataset containing degradable and non-degradable polymers based on 132 

their chemical structures and origins, an SL algorithm can analyze this dataset, learn from 133 

patterns, and predict the biodegradability of new polymers with high accuracy. Similarly, for 134 

regression tasks, an SL model can predict the Tg of a polymer by identifying relationships 135 

between chemical structure and thermal properties. 136 

SL has been adopted in polymer science29, 30, 33, 36, 37, 39, 42-47, 50, 52, 61, 62 to address complex material 137 

challenges by leveraging large experimental datasets. One such application is in predicting 138 

polymer-solvent compatibility. Chandrasekaran et al.39 demonstrated a powerful application of 139 

SL to enhance polymer-solvent compatibility predictions. Their model was trained on a dataset 140 

of over 4,500 polymers and 24 solvents, using experimental data that classified each polymer-141 

solvent pair as either compatible (good solvent) or incompatible (non-solvent). As summarized 142 

in Figure 3, the neural network model first converts the chemical structures of polymers and 143 

solvents into numerical descriptors that encode key molecular properties such as size, polarity, 144 

and functional groups. These descriptors are then compressed into a simplified mathematical 145 

representation (known as a latent space), where the neural network detects patterns that govern 146 

polymer-solvent interactions. Finally, the trained model predicts whether a new polymer-147 

solvent pair will be compatible. This approach achieved an impressive 93% accuracy—148 

significantly outperforming traditional heuristic methods such as the Hildebrand and Hansen 149 

solubility parameters. Such advancements are particularly valuable for applications in plastics 150 

recycling, membrane science, and drug delivery, where selecting the appropriate solvent is 151 

essential for material processing and performance. 152 
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 153 

Figure 3. Neural network architecture for predicting good solvents and nonsolvents for polymers. The 154 
trained model allows users to input a polymer structure, after which the algorithm iterates over a set of 155 
24 solvents to rank them as good solvents or nonsolvents based on learned compatibility patterns. 156 

Reproduced with permission from ref39 Copyright 2020, American Chemical Society. 157 

 158 

In another application, Lu et al.30 employed SL to predict phase behavior in polymerization 159 

induced self-assembly (PISA) using random forest models, a widely used decision tree-based 160 

algorithm for classification problems. Their model was trained on a dataset of 592 experimental 161 

data points, where each entry was labeled with the experimentally observed morphology (e.g., 162 

spheres, worms, or vesicles). By analyzing features such as monomer composition, 163 

polymerization conditions, and block ratio, the algorithm learned to classify new PISA systems 164 

with high accuracy. A key advantage of this approach is its interpretability, allowing researchers 165 

to identify which molecular parameters most influence phase transitions. Building on this 166 

foundation, Fonseca Parra et al.32 employed DL framework to construct 3D pseudo-phase 167 

diagrams for block copolymers (Figure 4). Their approach utilized a deep neural network 168 

trained on literature data to capture complex morphology transitions. Unlike traditional 2D 169 

phase diagrams that only consider a few experimental variables, their model incorporates 170 

multiple processing parameters simultaneously, offering a predictive understanding of phase 171 

behavior. The neural network learns nonlinear relationships between polymer composition, 172 

concentration, and self-assembly behavior, making it a more powerful tool for predicting 173 

morphologies that may not follow simple heuristic rules. 174 

 175 
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 176 

Figure 4. Overview of the deep learning workflow used to predict 3D Pseudo-Phase Diagrams. 177 
Experimental data were collected from the literature and preprocessed to ensure consistency and 178 
improve model performance. The processed data serve as input for a deep neural network with two 179 
hidden layers, which classifies polymer compositions into different self-assembled morphologies: 180 
spheres (S), worms (W), or vesicles (V). The trained model generates high-resolution 3D pseudo-phase 181 
diagrams, enabling more efficient prediction of polymer self-assembly. Reproduced with permission 182 

from ref32 Copyright 2025, American Chemical Society. 183 

 184 

SL has been used to automate complex data analysis tasks, particularly in microscopy image 185 

processing. A significant challenge in polymer nanocomposite research is the precise 186 

localization and characterization of nanoparticles within polymer matrices, which is 187 

traditionally done manually or with labor-intensive image analysis techniques. To address this, 188 

Qu et al.63 developed a deep learning-based method to detect and quantify nanoparticles in 189 

transmission electron microscopy (TEM) images. Their approach, summarized in Figure 5, 190 

involves a SL pipeline where a Convolutional Neural Networks (CNNs), a specific type of 191 

neural network, model is trained on labeled datasets of nanoparticle positions and sizes. The 192 

dataset consists of 72 TEM images, from which 279,057 labeled sub-images were extracted 193 

using an automated cropping and labeling method (DOPAD). Once trained, the model 194 

accurately predicts the positions and sizes of nanoparticles in new TEM images, significantly 195 

improving the speed and precision of nanoparticle characterization compared to manual 196 

methods. This technique enhances polymer nanocomposite analysis, facilitating research in 197 

advanced materials, coatings, and functional polymer-based nanotechnologies. 198 
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 199 

Figure 5. Workflow of the Convolutional Neural Networks (CNN)-based supervised learning 200 

model for nanoparticle detection in polymer nanocomposites. The training dataset consists of 201 

72 TEM images, processed into 279,057 labeled sub-images. The trained CNN model 202 

automatically detects and localizes nanoparticles in new images, providing accurate position 203 

and size predictions, streamlining the characterization process. Reproduced with permission from 204 

ref63 Copyright 2021, American Chemical Society. 205 

 206 

3.2.Unsupervised Learning 207 

Unsupervised learning (UL) is a powerful approach that identifies patterns in unlabeled data, 208 

meaning that no predefined outputs are available.56 Unlike supervised learning, which relies on 209 

explicit input-output pairs, UL models explore data autonomously to detect hidden structures, 210 

clusters, or relationships. In other words, it is like a student independently analyzing books to 211 

identify common themes without a teacher guiding them. 212 

This makes UL particularly valuable for understanding complex polymer datasets where 213 

experimental labels may be scarce or difficult to define. UL is particularly useful for clustering, 214 

where polymers with similar chemical properties or structural characteristics are grouped 215 

together, and for dimensionality reduction, which simplifies high-dimensional polymer datasets 216 

while preserving essential information.64, 65 217 

UL techniques have been successfully applied in polymer research to extract meaningful 218 

insights from complex datasets. Ziolek et al.53 used UL methods to investigate the nanoscale 219 
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structure of micelles formed by four-arm and linear block copolymers. By clustering molecular 220 

conformations, they identified groups of micelle structures with similar corona arrangements, 221 

while dimensionality reduction helped simplify the complex structural variations. Their 222 

approach provided deeper insights into self-assembly mechanisms, which are crucial for drug 223 

delivery and biomaterials development.  224 

Another interesting example is the work of Sutliff et al.,35 who applied UL to analyze near-225 

infrared (NIR) spectra of polyolefins. NIR spectroscopy generates rich spectral data that contain 226 

valuable chemical information, but interpreting this data manually is challenging due to its 227 

complexity. To simplify the analysis, the researchers used functional principal component 228 

analysis (fPCA), a mathematical technique, that reduces the number of variables while 229 

preserving key spectral trends (Figure 6). This method helped them identify patterns in polymer 230 

properties based on their spectral signatures, without needing prior labeling of the samples. 231 

Their approach revealed distinct clusters of polymer structures based on spectral features, 232 

helping to differentiate between various polyolefin compositions. By simplifying the dataset 233 

while keeping important chemical information, UL allowed the researchers to identify trends 234 

in polymer behavior that would have been difficult to detect using traditional methods. This 235 

method could improve polymer characterization, quality control, and material selection by 236 

providing a data-driven approach to analyzing spectral data. 237 

 238 

 239 

Figure 6. Workflow of the unsupervised learning (UL) approach applied to polyolefins using near-240 
infrared (NIR) spectroscopy. (1) Raw NIR spectra of different polymer types: : polypropylene (PP), low-241 
density polyethylene (LDPE), linear low-density polyethylene (LLDPE), medium-density polyethylene 242 
(MDPE), high-density polyethylene (HDPE), and polypropylene-co-polyethylene (PP-co-PE). (2) 243 
Functional principal component analysis (fPCA) reduces the spectral data into a low-dimensional 244 
space, clustering samples based on spectral similarities. (3) The extracted principal components 245 
correlate with crystallinity, demonstrating how UL can reveal hidden relationships in polymer data 246 

without predefined labels. Reproduced with permission from ref 35 Copyright 2024, American Chemical 247 
Society.  248 

1- Raw NIR spectra 2- Dimensionality reduction 3- Clustering & property prediction
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3.3.Reinforcement Learning 249 

Reinforcement Learning (RL) is a distinct category of machine learning in which models learn 250 

by interacting with an environment and receiving rewards for taking optimal actions.57 Unlike 251 

supervised learning, where models are trained on labeled datasets, RL algorithms discover 252 

optimal strategies through trial and error, making them particularly suited for tasks requiring 253 

sequential decision-making. In other words, it is like a child learning that fire is dangerous only 254 

after touching it—the knowledge is gained through direct experience rather than prior 255 

instruction. 256 

Compared to supervised and unsupervised learning, reinforcement learning is significantly 257 

more complex as it involves sequential decision-making, long-term reward optimization, and 258 

an exploration-exploitation trade-off. Instead of learning from static datasets, RL dynamically 259 

adjusts strategies based on continuous feedback, requiring extensive computational resources 260 

and advanced algorithms. These properties make RL a powerful tool for optimizing 261 

polymerization processes and autonomous experimental control, but they also contribute to its 262 

greater mathematical and implementation complexity.12, 44, 66, 67 Below are some simplified 263 

examples that illustrate how RL can be applied in polymer science. 264 

Warren et al.44 developed an AI-driven closed-loop polymerization system that optimizes 265 

reversible-addition fragmentation chain transfer (RAFT) conditions to achieve targeted 266 

molecular weight and dispersity with minimal experimental trials. Their approach (Figure 7) 267 

integrates RL principles, where the system iteratively tests reaction conditions, evaluates the 268 

results, and refines its strategy based on feedback from real-time analysis techniques, such as 269 

nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Instead of 270 

relying on predefined datasets, the system learns by interacting with the polymerization process, 271 

systematically adjusting temperature and reaction time to maximize monomer conversion while 272 

minimizing dispersity. To make informed decisions, the system builds a predictive model that 273 

estimates the outcome of different reaction conditions based on past experiments. The 274 

Thompson Sampling Efficient Multi-Objective Optimization (TSEMO) algorithm then guides 275 

the experimental choices, balancing exploration (testing new conditions) and exploitation 276 

(refining known optimal conditions). This iterative process mirrors the way RL agents learn 277 

optimal strategies through trial and error, receiving rewards for improved polymerization 278 

outcomes. This study highlights the potential of RL in automated material synthesis, paving the 279 

way for self-learning polymerization platforms that could revolutionize polymer manufacturing 280 

and discovery. 281 
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 282 

Figure 7. AI-guided closed-loop optimization of reversible addition-fragmentation chain transfer (raft) 283 
polymerization via reinforcement learning, integrating real-time feedback from nuclear magnetic 284 
resonance (NMR) and gel permeation chromatography (GPC) to iteratively adjust temperature and 285 
reaction time for enhanced monomer conversion and molar mass dispersity (Đ) control. Reproduced 286 

with permission from ref 44  Copyright 2022, Royal Society of Chemistry.  287 

 288 

In another relevant work, Li et al.67 developed a reinforcement learning (RL)-based approach 289 

to regulate the molecular weight distribution (MWD) in atom transfer radical polymerization 290 

(ATRP). Instead of relying on predefined reaction protocols, their model learns dynamically by 291 

interacting with the polymerization process. As illustrated in Figure 8, the system follows a 292 

classic RL framework, where the reactor acts as the environment, and the AI agent (policy 293 

network and value network) selects reagent addition strategies based on observed reaction states 294 

(e.g., monomer and initiator concentrations). The model continuously compares the current 295 

MWD to the target distribution (e.g., Gaussian or bimodal profiles) and updates its decision-296 

making policy based on rewards received for achieving optimal polymer properties. By 297 

iteratively refining reagent addition, the RL-based system optimizes ATRP conditions in real 298 
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time, improving precision in molecular weight control and enabling the design of custom 299 

polymer architectures with minimal experimental trials. 300 

 301 

Figure 8. Reinforcement Learning Framework for Optimizing Molecular Weight Distribution in Atom 302 
Transfer Radical Polymerization (ATRP) by Iteratively Adjusting Reagent Addition Based on Real-Time 303 

Feedback from Reaction State and Reward Evaluation. Reproduced with permission from ref 67  304 
Copyright 2018, Royal Society of Chemistry. 305 

 306 

Through these concrete and simplified examples, we have demonstrated the vast potential of 307 

ML in polymer science, from predicting key properties to autonomously optimizing synthesis 308 

conditions. Each ML technique—SL, UL and RL—offers unique capabilities, whether for 309 

making accurate property predictions, uncovering hidden patterns in complex datasets, or 310 

enabling self-learning experimental workflows. These methods vary in their learning process, 311 

computational complexity, and scope of application. To provide a structured comparison, Table 312 

1 summarizes the key characteristics of each ML approach, highlighting their differences in 313 

data requirements, optimization strategies, and relevance to polymer research. 314 

 315 

 316 

 317 
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Table. 1. Comparison of Key Machine Learning Approaches. 318 
Feature Supervised Learning 

(SL) 
Unsupervised Learning 
(UL) 

Reinforcement Learning 
(RL) 

Data Type Labeled data  
(input-output pairs) 

Unlabeled data  
(finding patterns) 

No predefined labels, 
learns from interaction 

Goal Predict outputs 
(classification/regression) 

Cluster/group similar data 
or reduce dimensions 

Learn a sequence of 
actions to maximize 
rewards 

Learning Process Learns from explicit 
examples 

Identifies hidden structures 
autonomously 

Learns by trial & error via 
environment feedback 

Optimization 
Focus 

Minimize loss (error) Find clusters, patterns, 
representations 

Maximize long-term 
rewards 

Computational 
Complexity 

Moderate Moderate to High Very High 
(complex decision-making) 

 319 

While we have explored the key ML techniques used in polymer science, successfully 320 

implementing these methods requires accessible tools and platforms. The following section 321 

introduces practical AI tools that researchers can use to integrate ML into their workflows 322 

 323 

4. Real-world AI tools  324 

Table. 2 categorizes platforms, programming libraries, and cheminformatics tools that can aid 325 

researchers in managing, analyzing, and modeling polymer data. Open-source tools are 326 

particularly valuable as they promote transparency, reproducibility, and accessibility in 327 

polymer research, allowing a broader community of scientists to engage in AI-driven materials 328 

discovery.  329 

For users just beginning their AI journey, Python has emerged as the go-to programming 330 

language due to its simplicity, flexibility, and extensive ecosystem of libraries. Platforms like 331 

Google Colab and Jupyter Notebooks provide user-friendly environments to write and execute 332 

Python code, often requiring no installation or advanced computational resources. These tools 333 

allow researchers to load datasets, clean and preprocess data, and apply ML models in a highly 334 

accessible manner. Open-source libraries such as Pandas and Numpy enable efficient 335 

navigation and manipulation of large datasets, such as filtering rows, calculating averages, or 336 

handling missing data. These tools provide advanced visualization capabilities that go beyond 337 

traditional spreadsheet software, allowing researchers to generate complex plots, heatmaps, and 338 

multi-dimensional visualizations that would be nearly impossible to achieve otherwise. 339 

 340 

 341 
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Table. 2. Real-World AI Tools for Polymer Science. OS: open-source, FT: Free-tier, and P: Proprietary. 342 
Category Tool (access 

types) Functionality Access link 

General 
Programming 

Python  
(OS) 

Open-source programming 
language for data science https://www.python.org 

Coding & 
Execution 

Jupyter 
Notebooks 
(OS) 

Interactive coding environment 
for running Python scripts. https://jupyter.org 

Anaconda 
(FT) 

Python distribution that simplifies 
package management and 
deployment for scientific 
computing 

https://www.anaconda.com 

Cloud-Based 
Execution 

Google 
Colab (FT) 

Cloud-based platform for running 
Python code without installation. https://colab.research.google.com 

Data Processing Numpy  
(OS) 

Numerical computing library, 
enabling fast array manipulations  https://numpy.org 

Data Handling Pandas 
(OS) 

Efficient data management tool, 
offering structured data 
operations  

https://pandas.pydata.org 

Data 
Visualization 

Matplotlib 
(OS) 

Graphing library for producing 
publication-quality plots https://matplotlib.org 

Seaborn 
(OS) 

Statistical data visualization with 
built-in theme settings for 
scientific graphs 

https://seaborn.pydata.org 

No-Code ML 
Platforms 

KNIME 
(OS) 

Drag-and-drop ML workflow tool 
for non-coders https://www.knime.com 

Google 
AutoML (P) 

Automated machine learning 
model builder https://cloud.google.com/automl 

Azure ML 
(P) 

Cloud-based machine learning 
service for large-scale AI projects 

https://azure.microsoft.com/en-
us/products/machine-learning 

Teachable 
Machine 
(FT) 

User-friendly AI tool for quick 
classification tasks without 
coding 

https://azure.microsoft.com/en-
us/products/machine-learning 

Cheminformatic 

RDKit  
(OS) 

Converts chemical structures into 
AI-compatible formats https://www.rdkit.org 

BigSMILES 
(OS) 

Standardized representation of 
stochastic polymers 

https://olsenlabmit.github.io/BigS
MILES/ 

Polymer 
Genome 
(FT) 

Pre-trained AI models for 
polymer property prediction https://www.polymergenome.org 

Machine 
Learning 
Libraries 

Scikit-learn 
(OS) 

Classical ML algorithms for 
regression, classification, 
clustering 

https://scikit-learn.org 

TensorFlow 
(OS) Deep learning framework  https://www.tensorflow.org/learn 

PyTorch 
(OS) Deep learning framework  https://pytorch.org 

 343 

For those hesitant to dive into coding, no-code or low-code platforms provide an alternative 344 

entry point. Tools like KNIME offer drag-and-drop interfaces for building ML workflows, 345 

making it possible to preprocess data, train models, and evaluate predictions without writing a 346 
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single line of code. Similarly, Teachable Machine by Google simplifies classification tasks, 347 

while platforms like Google AutoML and Azure ML enable researchers to train custom models 348 

on their datasets through intuitive web interfaces. 349 

One of the most powerful applications of AI in polymer science lies in working with molecular 350 

representations and leveraging cheminformatics tools like RDKit and BigSMILES.68 RDKit 351 

allows researchers to convert chemical structures into machine-readable formats, such as 352 

SMILES strings or molecular fingerprints, which serve as inputs for AI models. BigSMILES 353 

extends this capability by providing a standardized notation for stochastic polymers, enabling 354 

researchers to encode structural variations and randomness in polymer chains. Combined with 355 

specialized databases like Polymer Genome, which offers pre-trained models for property 356 

prediction, researchers can predict characteristics like dielectric constants or biodegradability 357 

with minimal effort. Polymer Genome provides tools for exploring relationships between 358 

molecular descriptors and polymer properties, enabling rapid hypothesis testing. 359 

Navigating large datasets, a common challenge in data science, is made significantly easier with 360 

AI tools. For instance, consider a dataset of polymers containing their molecular weights, 361 

mechanical properties, and thermal stability. Using Python’s Pandas library, a researcher can 362 

filter polymers with Tg above a certain threshold, calculate averages for specific categories, or 363 

visualize correlations between molecular weight and tensile strength—all in a fraction of the 364 

time it would take using traditional tools like Excel. These workflows not only save time but 365 

also open up new possibilities for analyzing data at a scale previously unattainable. 366 

The integration of AI into polymer science is no longer a question of if, but when. With the 367 

accessibility of open-source libraries, user-friendly platforms, and pre-trained models, the 368 

barriers to entry have never been lower. By starting with simple tools, such as Scikit-learn for 369 

building predictive models or KNIME for drag-and-drop workflows, researchers can take their 370 

first steps into this transformative field. For those looking to quickly apply these tools, 371 

numerous detailed and practical resources are available.69-75 Often, users can simply download 372 

and run pre-written code with minimal setup. 373 

 374 

5. Challenges and considerations 375 

While AI holds great promise for transforming polymer science, its integration into the field 376 

requires overcoming several key challenges. The rapid increase in publications related to AI 377 

and polymers, as shown in Figure 1, highlights the growing interest and adoption of machine 378 
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learning techniques. However, despite this surge in research activity, significant barriers remain 379 

that hinder widespread implementation. Addressing these challenges will be critical to ensuring 380 

that AI becomes an accessible and impactful tool for researchers. 381 

These challenges include issues related to data availability and quality, the learning curve for 382 

polymer scientists, computational and infrastructure constraints, and the lack of standardized 383 

frameworks for AI adoption in polymer science. The following sections discuss these obstacles 384 

and explore possible solutions to bridge the gap between AI potential and practical 385 

implementation.  386 

 387 

5.1.Data resources: availability, accessibility, and challenges 388 

The integration of AI into polymer science heavily relies on the availability of structured, high-389 

quality datasets and collaborative coding platforms. Several initiatives (Table 3) have been 390 

developed to support researchers by providing curated databases, machine-readable polymer 391 

representations, and repositories for sharing machine learning models. These resources allow 392 

scientists to train and fine-tune AI models effectively, accelerating discovery and innovation. 393 

Several specialized databases have been created to facilitate the application of AI in polymer 394 

science by offering structured data and pre-trained models. Polymer Genome provides AI-395 

driven polymer property predictions, BigSMILES offers a standardized notation system for 396 

representing stochastic polymers, Materials Project includes computationally derived polymer-397 

related data, and the NIST Polymer Database compiles experimentally validated polymer 398 

properties, serving as a benchmark for AI applications.  399 

Beyond polymer-specific databases, various general platforms support collaborative coding, AI 400 

model sharing, and data accessibility, which can be leveraged by the polymer science 401 

community. These platforms not only facilitate interdisciplinary collaboration but also serve as 402 

a source of inspiration for developing specialized equivalents tailored to polymer research, 403 

enhancing visibility and accessibility.  Hugging Face is widely recognized for its repository of 404 

pre-trained AI models, including polymer-specific tools, while Zenodo serves as an open-access 405 

repository for structured datasets and machine learning models, ensuring proper attribution 406 

through Digital Object Identifiers (DOIs). Meanwhile, GitHub remains an essential platform 407 

for collaborative coding, dataset hosting, and version-controlled AI workflows, enhancing 408 

transparency and reproducibility. A summary of these key polymer databases and data-sharing 409 
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platforms is provided in Table 3 to guide researchers in selecting the most appropriate resources 410 

for their work. 411 

Table. 3. Key data resources and collaborative platforms for ai in polymer science. OS: open-source, 412 
FT: free-tier, and R: restricted. 413 
Platform & Database 
(access types) 

Purpose & Functionality Access link 

Polymer Genome  
(FT) 

Provides AI-driven polymer property 
predictions https://www.polymergenome.org 

BigSMILES 
(OS) 

Standardized notation for stochastic 
polymers 

https://olsenlabmit.github.io/BigS
MILES/ 

Hugging Face  
(OS) 

Repository of pre-trained AI models, 
including polymer-specific tools 

https://huggingface.co 

Zenodo  
(OS) 

Open-access repository for structured 
polymer datasets and ML models 

https://zenodo.org 

GitHub  
(OS) 

Collaborative platform for hosting machine 
learning workflows and datasets 

https://github.com 

Materials Project 
(FT) 

Computationally derived materials 
properties database 

https://next-
gen.materialsproject.org 

NIST Polymer 
Database (R/FT) 

Experimental polymer property database 
curated by NIST 

https://www.nist.gov 

 414 

Despite the increasing availability of these resources, significant challenges remain in data 415 

standardization and accessibility. Many studies still suffer from fragmented, inconsistent, or 416 

inaccessible datasets, often lacking sufficient metadata or omitting critical details about 417 

synthesis conditions, characterization techniques, and experimental outcomes. Without 418 

standardized data-sharing protocols, polymer science risks lagging behind disciplines such as 419 

biology and materials science, where open data practices have already enabled rapid AI 420 

adoption. Scientific journals and funding agencies must take an active role in driving change 421 

by mandating structured dataset publication alongside research articles to enhance 422 

reproducibility and accelerate progress. Establishing community-wide norms for data 423 

collection, annotation, and dissemination is essential for creating interoperable datasets that 424 

serve as a foundation for AI-driven research. 425 

Furthermore, researchers should be encouraged not only to share datasets but also to publish 426 

their code, machine learning workflows, and pre-trained models to foster transparency and 427 

collaboration. Open-source initiatives and collaborative coding environments have the potential 428 

to reduce redundancy, improve model accuracy, and create a shared knowledge base that 429 

benefits the entire field. By moving toward a more open and collaborative research culture, the 430 

polymer community can fully harness AI's potential, ensuring that data is widely available, 431 

standardized, and effectively utilized for accelerating material discovery and polymer 432 

informatics. 433 
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5.2. Educational gaps in polymer science: the need for interdisciplinarity 434 

Adopting AI represents a paradigm shift for many polymer researchers accustomed to empirical 435 

methods or traditional computational techniques. While collaborations between polymer 436 

scientists and AI experts are invaluable in the short term, the long-term solution lies in 437 

integrating AI into the educational framework of polymer science itself. Teaching AI concepts 438 

to polymer scientists is often more practical than teaching polymer science to computer 439 

scientists, given the specialized nature and experimental nuances of the field. 440 

Currently, the presence of structured AI education within polymer science curricula remains 441 

scarce or nonexistent, with very few master's programs offering elected training at the 442 

intersection of polymer science and data science. This lack of interdisciplinary training limits 443 

the number of specialists capable of driving innovation in AI-driven polymer research, thereby 444 

slowing progress in the field. 445 

Beyond academic research, the impact of this educational gap extends to the polymer industry. 446 

Some industrial players are already recognizing the value of AI in polymer research and 447 

manufacturing, but they face a shortage of interdisciplinary experts who can bridge the gap 448 

between machine learning and polymer engineering. Other companies remain uncertain about 449 

how to integrate AI into their operations, largely due to the lack of specialized professionals 450 

capable of leading such transformations. The next generation of polymer engineers and 451 

scientists, if trained in AI methodologies, could drive AI adoption from within companies, 452 

helping industries leverage predictive modeling, automated synthesis optimization, and AI-453 

assisted material discovery more effectively. 454 

Several leading polymer companies have begun integrating AI into their research and 455 

development strategies. For instance, BASF has invested in AI-driven materials discovery, 456 

Dow Chemical is exploring ML for process optimization, Covestro is leveraging AI for 457 

sustainable polymer design, and Arkema has initiated AI-based approaches for material 458 

innovation and performance optimization. Despite these advances, the industry's full potential 459 

remains untapped due to the lack of available talent with dual expertise in AI and polymer 460 

science. 461 

To address this gap, universities should incorporate courses on machine learning, data science, 462 

and AI applications specifically tailored to polymer research. Early exposure to AI tools and 463 

concepts will empower the next generation of polymer scientists to confidently integrate these 464 

techniques into their workflows. In parallel, workshops, summer schools, and online resources 465 
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should be expanded to provide current researchers and industry professionals with foundational 466 

AI skills, ensuring that AI adoption in polymer science is not limited to a select group of 467 

interdisciplinary researchers but becomes a standard component of both academic and industrial 468 

polymer education. 469 

 470 

5.3. Computational costs 471 

Adopting AI requires access to high-performance computing resources, particularly for 472 

computationally demanding techniques such as deep learning. Training large neural networks 473 

or analyzing multidimensional datasets, such as those derived from molecular simulations or 474 

spectroscopy, can be resource-intensive, posing a challenge for many laboratories without 475 

direct access to supercomputing infrastructure. 476 

To address these challenges, several government-led initiatives around the world provide 477 

researchers with access to advanced computing facilities: 478 

France and Europe: In France, the GENCI (Grand Équipement National de Calcul Intensif) 479 

provides state-of-the-art supercomputing resources, such as the Jean Zay supercomputer, which 480 

is optimized for AI applications. At the European level, the EuroHPC (European High-481 

Performance Computing) program offers access to world-class infrastructures like LUMI in 482 

Finland and MeluXina in Luxembourg, designed to support ambitious scientific projects, 483 

including AI-driven research in materials science. 484 

USA: The Department of Energy (DOE) provides access to supercomputers such as Summit 485 

and Frontier, which are among the most powerful in the world. These facilities are made 486 

available to researchers through collaborative programs with universities and national labs, 487 

supporting innovative interdisciplinary research in fields like AI and material modeling. 488 

Asia: In Japan, the RIKEN Center for Computational Science operates the Fugaku 489 

supercomputer, one of the most powerful systems globally, which is accessible to researchers 490 

across multiple disciplines. Similarly, China has invested heavily in AI-focused 491 

supercomputing facilities in cities like Tianjin and Shenzhen, fostering rapid advancements in 492 

computational science. 493 

 494 

 495 

 496 
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6. Future outlook.  497 

The integration of machine learning into polymer science is more than just a technological 498 

advancement—it marks the beginning of a transformative era. ML is poised to redefine how 499 

polymers are designed, synthesized, and optimized, ultimately reshaping both research and 500 

industrial applications. From predictive modeling to autonomous experimentation, ML-driven 501 

approaches are set to accelerate discovery and unlock previously inaccessible materials. 502 

6.1.Expanding the role of machine learning in polymer science 503 

As experimental datasets in polymer science continue to grow in size and complexity, ML 504 

techniques will play an increasingly central role in data-driven material discovery. While 505 

supervised learning has already proven valuable for predicting key polymer properties, the 506 

future will likely see a greater emphasis on reinforcement learning and unsupervised learning 507 

for more autonomous and adaptive research strategies. 508 

Reinforcement learning is expected to become particularly impactful in automated reaction 509 

optimization. Unlike supervised learning, which relies on historical data, Reinforcement 510 

learning enables an AI agent to interact with a polymerization process, iteratively adjusting 511 

reaction parameters to maximize desired outcomes. Such Reinforcement learning-powered 512 

systems could refine reaction conditions, optimize formulation processes, and accelerate 513 

material discovery by continuously learning from real-time experimental feedback. When 514 

integrated with high-throughput experimentation, these ML-driven frameworks could explore 515 

vast chemical spaces with unprecedented efficiency. 516 

Similarly, unsupervised learning—while historically underutilized in polymer science—has the 517 

potential to reveal hidden structure-property relationships in polymer datasets. One of the 518 

primary barriers to its application has been the lack of standardized labeling in polymer 519 

informatics, making supervised learning approaches more immediately practical. However, as 520 

structured polymer informatics frameworks continue to emerge, unsupervised learning will 521 

become an essential tool for clustering molecular datasets, identifying latent patterns, and 522 

guiding material design. This will be particularly valuable for high-dimensional data 523 

management, self-assembly exploration, and nanostructured material analysis, where 524 

uncovering correlations that would otherwise go unnoticed can lead to new discoveries. 525 

6.2. Autonomous Laboratories and AI-Driven Experimentation 526 

The future of polymer science will likely witness the emergence of AI-powered autonomous 527 

laboratories, where AI-guided robotic systems will dramatically accelerate the research cycle 528 
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by handling routine synthesis, characterization, and optimization tasks. These self-operating 529 

labs will enable scientists to focus on higher-level scientific inquiries, shifting from manual 530 

experimentation to AI-assisted hypothesis-driven research. By integrating AI with advanced 531 

characterization techniques and reaction monitoring systems, these laboratories will enable self-532 

optimizing reactors capable of adjusting synthesis conditions in real time to produce polymers 533 

with precise properties. This synergy between AI, automation, and high-throughput 534 

experimentation will allow researchers to efficiently explore new polymer chemistries that are 535 

currently too complex or resource-intensive to study manually. 536 

Self-learning reactors could continuously refine reaction parameters based on real-time 537 

feedback from spectroscopy, chromatography, or other in situ monitoring techniques. Such an 538 

approach would minimize trial-and-error experimentation while ensuring optimal material 539 

properties. In industrial settings, AI-powered formulation models could dynamically adjust 540 

polymer compositions for additive manufacturing, coatings, and biomedical applications, 541 

improving both efficiency and reproducibility. 542 

6.3. Innovation and sustainability in polymer science 543 

The demand for sustainable materials is pushing machine learning into the spotlight as a key 544 

tool for developing environmentally responsible polymers. Machine learning models can help 545 

design biodegradable plastics with tailored degradation profiles, optimize polymer formulations 546 

for recyclability, and revolutionize recycling processes by predicting compatibility in polymer 547 

blends and improving separation strategies. By minimizing energy requirements in 548 

reprocessing, ML-driven innovations will be essential for achieving a circular economy in 549 

polymer science. 550 

7. Conclusion: 551 

The integration of AI into polymer science is no longer a distant possibility—it is a necessary 552 

evolution to accelerate material discovery, optimize workflows, and enable sustainable 553 

innovation. However, the full potential of AI can only be realized if the polymer science 554 

community actively engages in this transformation. The tools and methodologies presented in 555 

this perspective provide a starting point for researchers eager to explore AI’s capabilities. 556 

Moving forward, interdisciplinary collaboration, open-access data sharing, and structured AI 557 

education will be critical in ensuring that polymer scientists—not just AI specialists—drive 558 

innovation in the field. Universities, research institutions, and industries must adapt quickly by 559 

https://doi.org/10.26434/chemrxiv-2025-tk6hx ORCID: https://orcid.org/0000-0003-3073-9722 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2025-tk6hx
https://orcid.org/0000-0003-3073-9722
https://creativecommons.org/licenses/by-nc/4.0/


 24 

fostering AI education, investing in standardized databases, and promoting collaborative coding 560 

practices. 561 

The barriers to AI adoption are real—but they are not insurmountable. Every step taken today 562 

to integrate AI, from running the first machine learning model to contributing to open polymer 563 

databases, will shape the future of polymer science as an AI-augmented discipline. The next 564 

revolution in polymer materials is not just about chemistry—it is about how effectively we 565 

embrace AI to amplify our discoveries. 566 

 567 
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