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The description of heterogeneous catalysis is challenged by the intricacy of numerous multi-scale
processes that govern the performance of catalyst materials. The chemical environment of the cat-
alytic process and the kinetics of structural changes create configurations of typically unknown local
geometries and chemistry. These may result in significant changes in activity or selectivity within
minutes, hours, or longer, during the so-called induction period. Here, we use experimental data
together with a focused artificial-intelligence (AI) approach based on subgroup discovery and sym-
bolic regression to model the evolution of the catalyst reactivity with time on stream. We consider
palladium-based alloys synthesized mechanochemically and applied in the selective hydrogenation
of concentrated acetylene streams resulting from a hypothetical electric plasma-assisted methane-
to-ethylene process. Our AI approach starts with the identification of descriptions of materials and
reaction conditions relevant to acetylene conversion. Then, a model for time-on-stream-dependent
selectivity focused on situations associated to noticeable acetylene conversion is obtained by the
sure-independence-screening-and-sparsifying-operator (SISSO) approach. Our AI approach identi-
fies relationships between the measured catalyst reactivity and only few, key parameters, from 21
measured and calculated bulk, surface, and mesoscopic materials’ properties and reaction parame-
ters offered as candidate descriptive parameters. These identified parameters highlight the crucial
influence of surface and subsurface carbon and hydrogen on the selectivity towards ethylene forma-
tion. Guided by the AI models, new, highly selective bimetallic and trimetallic systems are designed
and tested experimentally.

I. INTRODUCTION

Heterogeneous catalysis is governed by a concerted and
intricate interplay of several processes that take place at
multiple time and length scales.[1–4] The chemical envi-
ronment that exists during catalyst operation as well as
the kinetics of structural changes create configurations of
typically unknown local geometries and chemistry. While
surface reactions that break and make chemical bonds
occur at time scales of picoseconds, they produce species
such as carbon, hydrogen, or oxygen, that interact with
the material initially placed in the reactor and may in-
duce its local restructuring along with changes in the
reactivity in the scale of hours, days, or even longer. In-
deed, the catalytic performance of a material, i.e., its
ability to more or less selectively convert reactants, typi-
cally changes in the beginning of the reaction during the
so called induction period. During this induction period,
the activity and/or the selectivity can drastically change
until the surface chemistry reaches a steady state under
the applied reaction conditions. At the steady state, a
constant catalytic performance is observed with respect
to time. At longer reaction times, the catalytic perfor-
mance might change again, e.g., the activity might de-
crease. This latter process is known as deactivation. The
period of time during which the catalytic process is op-
erated is referred to as time on stream (tOS).

Modelling the evolution of the reactivity with tOS is
crucial for the design of catalytic materials and processes,
as it describes the time span during which the mate-

rial can effectively perform the desired chemical trans-
formation. However, modelling the full catalytic pro-
gression at realistic temperatures, pressures and at the
long time scales required to capture the tOS evolution
of the reactivity from first principles is an inappropriate
concept. Thus, systematic approaches for modelling the
tOS-dependent catalytic behavior and for the design of
improved materials are not well established.

To address the intricacy of heterogeneous catalysis, we
put forward a data-centric modelling approach based on
consistent experimental data and artificial intelligence
(AI).[5, 6] This strategy may capture the multidimen-
sional catalytic progression better than previous compu-
tational methods because it targets correlations and does
not assume a single underlying physical model. The goal
of our approach is to identify the key experimental or
calculated physical descriptive parameters that correlate
with the reactivity rather than explicitly describe all the
underlying physical processes that trigger, just facilitate,
or hinder the activity or selectivity. Crucially, the key
descriptive parameters are identified from many offered
candidate descriptive parameters, also called primary fea-
tures. In analogy to genes in biology, the selected key
parameters are called ”materials genes” of catalysis,[6]
since they correlate with the catalytic function of inter-
est. The concept has been previously applied to model
the steady-state reactivity in alkane oxidation[6–8], CO
oxidation [9], and CO2 hydrogenation.[10] We note that
the relevance and weights of the different processes may
be very different for different materials. This questions
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FIG. 1. Focused AI approach for modelling the time-dependent reactivity of metal alloy catalysts for the selective hydrogenation
of concentrated acetylene streams. By using systematic experiments (Exp.) and theoretical calculations (Theo.), a consistent
dataset containing the measured reactivity and many candidate descriptive parameters (primary features) is created. To this
dataset, the subgroup-discovery (SGD) and the sure-independence-screening-and-sparsifying-operator (SISSO) approaches are
applied. SGD and SISSO identify the key parameters correlated with activity and selectivity.

the suitability of a single, global AI model to describe all
situations.[11]

Here, we introduce a focused AI approach to model the
evolution of the catalyst reactivity with tOS (Fig. 1). By
focused, we mean that the AI models describe in greater
detail the situations resulting in noticeable (nonzero)
activity. Starting from data obtained by systematic
experiments and theoretical simulations, the first step
of the focused AI approach uses subgroup discovery
(SGD)[12–17] to identify descriptions of subsets of mate-
rials and applied conditions resulting in noticeable re-
actant conversion. In the second step, the symbolic-
regression sure-independence-screening-and-sparsifying-
operator (SISSO) approach[18–22] is used to model the
tOS-dependent selectivity focused on the subsets of data
identified in the first step. This strategy allows the
symbolic-regression model to focus on the mechanisms
that govern active catalysts of interest.

Let us illustrate the two-step focused AI approach
by modelling the selective hydrogenation of acetylene
to ethylene on oxide-supported metal nanoparticle (NP)
alloys. In particular, we consider the selective hydro-
genation of acetylene in highly concentrated equimolar
acteylene-ethylene streams (ca. 14 vol.-% each in hydro-
gen excess),[23] which would result from a hypothetical
electric plasma-assisted methane-to-ethylene conversion
plant. The mentioned plasma-assisted process can enable
the production of ethylene from natural gas, biogas or hy-
drogenated CO2 using the short-term surpluses in elec-
tricity from renewable sources.[24] However, acetylene is
formed as a by-product in equimolar concentrations to

ethylene and it needs to be selectively converted to ethy-
lene in a dedicated, separate downstream process.[25]
New catalyst materials are required for this purpose,
as the reaction conditions differ significantly from the
processes for selective hydrogenation of acetylene traces
(<2 vol.-%) formed in ethylene streams coming from the
steam-cracking of naphtha.[23] As highly reactive com-
pound, acetylene is prone to poison catalysts in the down-
stream processing of ethylene, e.g., polymerization to
polyethylene. Therefore, acetylene has to be removed
almost completely from the ethylene streams (down to <
5 ppm).[26–28] We note that studying catalyst reactiv-
ity at industrially relevant elevated pressures used for the
hydrogenation of concentrated acetylene streams requires
specific safety measures due to the high exothermicity of
the reaction and the explosive characteristics of the com-
pounds involved. Difficulties to implement those safety
measures into analytical techniques impede the use of in
situ spectroscopy for catalyst characterization under re-
action conditions. This prevents the detailed study of
the catalyst structure and properties during tOS under
realistic conditions.

Recently, we took advantage of a mechanochemical
procedure[29–31] to synthesize palladium-silver alloys
supported on high-surface-area α-Al2O3 (HSA-α-Al2O3)
as catalysts for the selective hydrogenation of such acety-
lene streams.[32] The mechanochemical (dry) synthesis
of catalytic materials[29–31] presents a higher atom ef-
ficiency and lower environmental impact compared to
wet methods.[33] Furthermore, the high-energy condi-
tions provided by the mechanochemical treatment can
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provide materials with improved properties compared to
the materials obtained by traditional methods, e.g., ma-
terials with higher surface area.[34] Thus, mechanochem-
istry is promising for obtaining new, high-performant
catalysts. The synthesized palladium-silver materials
display high selectivity towards ethylene with signifi-
cantly higher stability with tOS under the harsh reac-
tion conditions compared to materials synthesized by
wet impregnation.[32] However, systematic approaches
to navigate the immense space of possible materials that
can be made mechanochemically are not yet available.
Here, we combine the advantages of the mechanochem-
ical synthesis with focused AI in order to efficiently de-
sign improved palladium-based bimetallic and trimetallic
systems for the selective hydrogenation of concentrated
acetylene streams.

II. METHODS

A. Materials Synthesis and Catalytic Testing

The materials were synthesized mechanochemically
via ball milling according to previously published
procedures.[29–31, 35] The synthesis details are avail-
able in the Electronic Supplementary Information (ESI).
Metal-containing compounds in powder were milled in
the presence of γ-AlOOH (bohemite), leading to the for-
mation of metal NPs supported on HSA-α-Al2O3 with
a relative amount of metal with respect to support, in
weight, of ca. 1%, noted 1 wt%. The synthesized ma-
terials were subjected to a thermal activation procedure
consisting of a reduction step with H2 and an annealing
step.

The catalytic tests were performed in a continuous-flow
fixed-bed reactor at 10 bar. The oven containing the reac-
tor was heated to a set temperature (Toven) of 50, 100, or
150 ◦C. The applied feed contains a H2:C2H2:C2H4 ratio
of 5:1:1. The acetylene conversion (XC2H2

) was evaluated
as

XC2H2
= 1− nC2H2,out

nC2H2,in
. (1)

Here, nC2H2,out and nC2H2,in are molar flow rates of acety-
lene leaving and entering the reactor, respectively. The
values of XC2H2 are in the range [0,1]. The values of
zero and one correspond, respectively, to inactive mate-
rials and reaction conditions, and to 100% (or full) acety-
lene conversion. The selectivity towards the formation of
ethylene (SC2H4) was evaluated as

SC2H4 =
nC2H4,out − nC2H4,in

nC2H2,in − nC2H2,out
. (2)

In Eq. 2, nC2H4,out and nC2H4,in are molar flow rates of
ethylene leaving and entering the reactor, respectively.
Note that if XC2H2

= 0, the denominator of Eq. 2 is
equal to zero and SC2H4

= 0 by convention. The val-
ues of SC2H4

are in the range [-1,1]. Ethylene is both a

product of the acetylene selective hydrogenation reaction
and part of the reaction feed. SC2H4

< 0 indicates that
more ethylene (from the feed) was consumed than formed
from acetylene, with SC2H4

= −1 corresponding to the
full consumption of the ethylene of the feed. SC2H4

> 0
indicate selective materials and conditions. The ideal,
desired behavior corresponds to SC2H4 = 1. In addition
to the formation of the desired ethylene, the undesirable
formation of the total-hydrogenation product ethane and
the formation of oligomeric species (e.g., C4) were also
quantified (see ESI for details). The reactivity was mea-
sured at each 13.5 minutes (min) during tOS. Additional
details on the catalytic tests are provided in ESI and
elsewhere.[32, 36–39]

B. Experimental and Calculated Candidate
Descriptive Parameters

In order to model the reactivity via AI, we collected
candidate descriptive physical parameters characterizing
the materials, reaction conditions, and potentially rele-
vant processes governing acetylene hydrogenation. Four
parameters were obtained from the experimental char-
acterization of the materials by energy dispersive X-
ray analysis in a scanning electron microscope (EDX-
SEM), high-resolution transmission-electron microscopy
(TEM), and N2 physisorption, such as the mean particle
diameter (Dµ) and the specific surface area (sBET).
Additionally, we considered elemental properties of

the metals in order to construct candidate descriptive
parameters reflecting the chemistry of the bulk of the
metal NPs. These elemental properties are atomic (free-
atom) properties such as ionization potential (IP ) and
bulk properties of solids such as closest interatomic dis-
tance (dclosest) and cohesive energy (Ecoh). The elemen-
tal properties were converted into materials-specific pa-
rameters by taking the composition average

ϕ =
∑

xiϕi. (3)

In Eq. 3, ϕ is an elemental property and xi are the nomi-
nal molar fractions of each metal in the materials’ compo-
sition, e.g., xPd = 1/10 and xAg = 9/10 for the Pd1Ag9
material.
We also constructed candidate descriptive parameters

reflecting the properties of the surfaces of the metal
NPs and their interaction with the reaction environ-
ment. For this purpose, we considered parameters cal-
culated by theory using density functional theory under
the generalized gradient approximation (DFT-GGA) on
low-index model surfaces. These model surfaces are by
no means representative of the complex structural motifs
that might be formed on the catalysts under reaction con-
ditions. However, our AI analysis will combine these ba-
sic parameters with other bulk and mesoscale materials’
parameters according to linear and nonlinear operators
to appropriately describe the reactivity. We included the
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energy of the d-band center (ϵd) as a property of the clean
surface, as it correlates with the adsorption energies.[40]
Besides, we considered eight parameters that describe the
interaction of carbon and hydrogen with the surface and
subsurface, as these species were suggested as crucial in
the selective hydrogenation of diluted acetylene streams
on palladium-based catalysts.[41–43] Examples of such
parameters are the binding energy of subsurface hydro-
gen and carbon (Esub

b,H and Esub
b,C, respectively).[44, 45]

The surface- and metal-dependent properties were also
converted into materials-specific parameters via Eq. 3.
Finally, we included tOS and Toven as parameters related
to the applied reaction conditions. In total, 21 candidate
descriptive parameters were collected (see full list in Ta-
ble S1 as well details on the experimental or theoretical
methods used to obtain them).

C. Focused AI Approach

The two-step focused AI modelling approach takes into
account two different materials design criteria or targets,
(i) the acetylene conversion and (ii) the selectivity, e.g.,
towards the formation of ethylene. In the first step, sub-
group discovery (SGD)[12, 13, 16] is applied to identify
subsets of materials and reaction conditions that exhibit
noticeable acetylene conversion. In the second step, the
symbolic-regression SISSO approach[18] is used to model
the tOS-dependent selectivity towards ethylene, ethane
and C4 products, for the subset of materials and con-
ditions identified in the first step. Therefore, the SGD
model will indicate whether a given material and con-
dition are associated with noticeable conversion. The
SISSO model, in turn, will quantitatively describe the
evolution of the selectivity with tOS for the active ma-
terials and conditions. Thus, the SISSO models for se-
lectivity do not attempt to describe all materials and re-
action conditions simultaneously, but they focus on the
situations that present noticeable acetylene conversion.
The SGD approach could be directly applied to identify
descriptions of materials and reaction conditions result-
ing in the desired selectivity values, e.g., SC2H4

> 0 , in
the first step of the AI approach. However, such strategy
would not provide a detailed description of the change in
of selectivity with tOS, which for some materials is dra-
matic, e.g., SC2H4

< 0 at reaction start and SC2H4
> 0

at long tOS.
The SGD approach[12, 13] identifies partitions of the

data space associated with outstanding distributions of
a given target of interest, here the acetylene conversion.
SGD starts by creating statements about the candidate
descriptive parameters that are only satisfied by a por-
tion of the dataset. Such statements are, for instance,
inequalities constraining the values of the descriptive pa-
rameters to some minimum or maximum thresholds to
be determined during the analysis. Then, SGD identifies
conjunctions of statements that result in subselections of
data (SGs) that maximize an objective function. This

objective function specifies how outstanding the SGs are
with respect to the entire dataset based on their sizes and
on the distributions of the target values in the SG and in
the entire dataset. Here, we use the objective function

Q(SG, P̃ ) =
s(SG)

s(P̃ )
∗ Xσ(SG)−Xσ(P̃ )

Xσ(P̃ )
, (4)

where s(SG) and s(P̃ ) are the sizes of the SG and of the

entire dataset P̃ , respectively, and Xσ(SG) and Xσ(P )
are the standard deviation of the distribution of the tar-
get in the SG and in the entire dataset, respectively.
The so-called standard-deviation-reduction utility func-

tion, Xσ(SG)−Xσ(P̃ )

Xσ(P̃ )
, favors the identification of SGs as-

sociated with narrow distributions of target values. The
outcome of the SGD analysis is the description of the SG
that maximizes the objective function. This description
constrains the values of only few, key parameters, out of
the many initially offered ones and might be referred to
as SG rules. Importantly, the SG description focuses on
the behavior of the data points that belong to the SG. In
this sense, the SG rules are local, not global.
The SISSO approach[18] identifies (nonlinear) analyt-

ical expressions that describe a given data set. Start-
ing from the candidate descriptive parameters, SISSO
builds an immense pool of analytical expressions (e.g.,
containing billions of expressions) by iteratively applying
mathematical operators such as addition, subtraction,
exponential, and more to the primary features and to
previously generated expressions. Then, by compressed
sensing[46, 47] SISSO identifies the few expressions that,
combined by weighting coefficients, best correlate with
a given target of interest, here the selectivity. Typ-
ically, only few key descriptive parameters, out of all
initially offered candidates, appear in the models iden-
tified by SISSO. The predictive performance and opti-
mal complexity of the SISSO models were assessed by
a nested five-fold cross-validation scheme. By determin-
ing SISSO model hyperparameters and thus the model
complexity via cross validation, we prevent the identifi-
cation of models that fit well the training set but which
are not generalizable (overfitting). Additional details on
the SGD and SISSO approaches are described in ESI and
in references[6, 18, 22].

III. RESULTS AND DISCUSSION

A. Synthesized Materials and Their Reactivity in
Acetylene Selective Hydrogenation

Twelve materials constituted of HSA-α-Al2O3-
supported metal NPs were synthesized via the
mechanochemical approach.[29–32] These are three
monometalic systems (Ag, Au, and Cu) and nine
bimetallic alloys with nominal molar ratios 1:1, 1:5,
and 1:9, namely Pd1Ag1, Pd1Ag5, Pd1Ag9, Pd1Au1,

https://doi.org/10.26434/chemrxiv-2025-vf7hd ORCID: https://orcid.org/0000-0003-3002-062X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-vf7hd
https://orcid.org/0000-0003-3002-062X
https://creativecommons.org/licenses/by/4.0/


5

Pd1Au5, Pd1Au9, Pd1Cu1, Pd1Cu5, Pd1Cu9. These
materials were tested in the selective hydrogenation
of concentrated acetylene streams in the presence of
equimolar amounts of ethylene.

The distributions of measured acetylene conversions
(XC2H2) and ethylene selectivities (SC2H4) are shown in
black in Fig. 2A and B, respectively. These distributions
correspond to measurements of the 12 materials under
three Toven and associated to a number of tOS values be-
tween 0 and 405 min. In total, 1,076 measurements were
performed. The distribution of measured XC2H2

values
is highly concentrated around the values of 0.0 and 1.0,
indicating that most of the materials and reaction condi-
tions either result in inactive systems or in full conversion
of acetylene, respectively. The high exothermicity of the
reaction at such harsh reaction conditions impedes active
catalysts to stabilize at acetylene conversion levels below
100 % without sophisticated cooling systems. We refer
at this point to the work from Van Heerden on stationary
states in autothermic processes.[48, 49] For this reason,
we decided to analyze catalyst performance for all cat-
alysts at stable full conversion levels even though this
situation is not ideal in consecutive hydrogenation reac-
tions such as the acetylene hydrogenation reaction. The
distribution of measured SC2H4

values is in the approx-
imate range [-1.0, 0.75], reflecting that the tested mate-
rials and conditions result in diverse behaviors ranging
from totally unselective to highly selective hydrogena-
tion of acetylene. A significant number of measurements
results in SC2H4 close to -1.0, which correspond to to-
tal hydrogenation of both acetylene and co-fed ethylene
to ethane. Additionally, many systems are associated to
SC2H4 = 0, which indicates either equivalent rates of co-
fed ethylene hydrogenation and ethylene formation from
acetylene or no activity (XC2H2 = 0).

B. Identification of Subgroups of Materials and
Reaction Conditions Resulting in Noticeable

Acetylene Conversion

In order to identify descriptions of materials and re-
action conditions that provide noticeable acetylene con-
version, we applied SGD. We searched for SGs of cata-
lysts and conditions that present a narrow distribution of
XC2H2 . In the present dataset, the majority of situations
associated with noticeable activity correspond to XC2H2

values close to 1.0 (Fig. 2A). Removing data points with
XC2H2 = 0 and S = 0 from the SISSO modelling pre-
vents that the uninteresting yet numerous situations as-
sociated to zero activity dominate the selection of models
for selectivity, as the root-mean-squared loss (objective)
function of SISSO reflects the average performance across
the entire training data. Thus, the loss function would be
strongly affected by the data points with XC2H2

= 0 and
S = 0. Besides, by considering a narrow, nonzero con-
version range, a proper comparison of selectivity across
materials and reaction conditions is possible (see next

section).

The identified SG contains 539 data points (ca. 50% of
the dataset) and the distribution of XC2H2

for the data
points that belong to this SG is shown in red in Fig. 2A.
Most of the materials and reaction conditions associated
to high, close-to-one conversion values are found within
the identified SG. The distribution of SC2H4 for the data
points that belong to this SG is shown in red in Fig. 2B.
The situations associated with XC2H2 = 0 and SC2H4 = 0
that were present in the dataset (black bar at SC2H4 = 0
in Fig. 2B) are not part of the SG. The identified SG is
described by the rules σSG

X . They constrain the values of
three descriptive parameters:

σSG
X ≡ Toven ≥ 75◦C ∧ dclosest ≥ 2.57Å ∧ Esub

b,C ≥ 4.67eV.

(5)

In Eq. 5, Toven is the temperature of the oven in
which the reactor is placed, dclosest is the composition-

averaged closest interatomic bulk distance, and Esub
b,C is

the composition-averaged binding energy of subsurface
carbon. The symbol ∧ corresponds to the ”AND” oper-
ator. According to the SG rules, the full acetylene con-
version can be associated with the temperatures of 100

and 150 ◦C and with systems presenting dclosest and Esub
b,C

above certain thresholds. The relevance of the parame-

ters dclosest and Esub
b,C indicates that bulk as well as surface

properties of the metal NPs determine high conversion

levels. In particular, the parameter Esub
b,C highlights that

the activity depends on the subsurface interaction with
carbon. The candidate descriptive parameters obtained
from the experimental characterization of the materials
and the parameters reflecting the properties of the clean
surface and the interaction of the surfaces and subsur-
faces of the metal NPs with hydrogen do not appear in
the description of the identified SG. Finally, we also note
that the candidate descriptive parameter tOS, also of-
fered in the SGD analysis, is not selected in Eq. 5. In-
deed, we do not observe significant variation of XC2H2

as
a function of tOS (see ESI for details). The 12 materials
of the dataset are represented in the coordinates of the
key materials-dependent parameters identified by SGD

(dclosest and Esub
b,C) in Fig. 2C. In this plot, the bimetallic

alloys, which are part of the SG, are shown as red circles.
The monometallic systems, which are not part of the SG,
are shown as black circles. The SG rules are represented
by the dashed red lines and arrows, and the SG region is
highlighted in red.

While in this application the SG corresponds to high
catalytic activity, it should be noted that the SGD ap-
proach could be used to identify descriptions of data
points associated with moderate or low activity in other
systems. This is important because highly active mate-
rials and conditions are not necessarily those displaying
the desired selectivity, e.g. in consecutive reactions.[6, 8]

https://doi.org/10.26434/chemrxiv-2025-vf7hd ORCID: https://orcid.org/0000-0003-3002-062X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-vf7hd
https://orcid.org/0000-0003-3002-062X
https://creativecommons.org/licenses/by/4.0/


6

0.0 0.5 1.0
XC2H2

0

200

400

600

Co
un

ts

SGentire
dataset

(A)

1.0 0.5 0.0 0.5 1.0
SC2H4

0

100

200

300

400
(B)

4 5 6 7
Esub

b, C (eV)

2.5

2.6

2.7

2.8

2.9

3.0

d c
lo

se
st

 (Å
)

Ag

Cu
SG

(C)

0.0 0.5 1.0 0

20

40
Au

FIG. 2. Identification of subgroup rules describing materials and reaction conditions resulting in acetylene conversion in the cat-
alytic hydrogenation of concentrated acetylene using high-surface-area Al2O3-supported metal alloys synthesized mechanochem-
ically. (A): Distribution of acetylene conversion (XC2H2 , Eq. 1) in the entire dataset and in the identified SG. The inset shows
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(Esub
b,C), see full set of constraints in Eq. 5.

C. Identification of Symbolic-Regression Models
for Time-Dependent Selectivity Focused on

Noticeable Acetylene Conversion

We now analyze the selectivity of the materials and
reaction conditions that present high activity and belong
to the identified SG. The evolution of measured SC2H4

values with tOS for the materials in the SG are shown
in Fig. 3A and B for Toven 100 and 150 ◦C, respectively.
Some materials such as Pd1Ag9 and Pd1Ag5 present a
near-constant SC2H4

for tOS > 30 min. This indicates
that for these materials, the steady state is reached in
less than 30 min. However, other materials develop an
improved selectivity as tOS increases. In particular, the
Pd1Cu9 material presents SC2H4 = −1 (total hydrogena-
tion catalyst) at tOS < 30 min, and the SC2H4 value
becomes positive (selective catalyst) after ca. 180 min
in the case of Toven = 150◦ - see Fig. 3B, square brown
markers. Thus, for some catalysts, the compound ini-
tially placed in the reactor is undergoing significant mod-
ifications. The induction period for reaching optimal per-
formance and the steady state is in the range of hours.
We stress that all materials shown in Fig. 3 are active
towards acetylene conversion (with XC2H2

≈ 1) since the
start of the reaction at tOS = 0.

By using only the data points belonging to the SG asso-
ciated to high acetylene conversion (539 data points), we
trained SISSO models for SC2H4

. The mean prediction
(test) error evaluated using five-fold nested cross valida-
tion is 0.105 for SISSO models with the optimal complex-
ity. Such value is significantly lower than the standard
deviation of SC2H4

in the training data set (0.600). This
shows that the identified models describe unseen data

with good accuracy. The fit of the best SISSO mod-
els to the data, shown in Fig. 3C and D for Toven 100
and 150 ◦C, respectively, indicates that the identified ex-
pression (Eq. 6) is able to capture the selectivity trends
both across materials and with tOS. In particular, the
selectivity shift of the Pd1Cu9 material (Fig. 3C and D,
square brown markers) with tOS is well captured by the
AI model.

SSISSO
C2H4

=cC2H4
0 (Toven)

+cC2H4
1 (Toven) ∗

tOS

∆W surf
H ∗ |ϵd − Esurf

b,H |

+cC2H4
2 (Toven) ∗ Esub

d,C ∗ wmetal ∗Dµ

+cC2H4
3 (Toven) ∗ e

{8.37∗10−4 eV
min (

tOS+359 min

Esub
b,H

+1.38 eV
)}

(6)

In Eq. 6, the coefficients are denoted cC2H4
i (Toven) to

highlight that they correspond to different fitted values
for the two different Toven (see ESI for details). Firstly,
we note that the model expression contains the key pa-
rameter tOS, required to describe the ethylene selectivity
time dependency. Additionally, the following materials-
dependent theoretical key parameters appear in Eq. 6:

work-function shift with hydrogen adsorption (∆W surf
H ),

d-band center (ϵd), binding energy of hydrogen (Esurf
b,H ),

deformation energy of subsurface carbon (Esub
d,C), and

binding energy of subsurface hydrogen (Esub
b,H). Finally,

the total metal loading (wmetal) and mean value of parti-
cle size (Dµ), measured prior to the catalytic test, are also
identified as key experimental parameters. The relevance

of the microscopic parameters ϵd, ∆W surf
H , Esurf

b,H , Esub
d,C,
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FIG. 3. Measured (top row) and SISSO-modelled (bottom row) selectivity towards ethylene formation (SC2H4 , Eq. 2). The
two columns display results at different oven temperatures Toven 100 and 150 ◦C, respectively. SC2H4 < 0 indicates that more
ethylene (from the feed) was consumed than formed from acetylene. SC2H4 > 0 indicate that more ethylene was formed from
acetylene than consumed (selective materials and conditions).

and Esub
b,H indicates that the surface properties, includ-

ing the interaction of surface and subsurface with car-
bon and hydrogen, are crucial for the selectivity towards
ethylene. This might be related to the formation of sur-
face carbides and the availability of surface hydrogen.[41]
Indeed, the formation of PdxCy surface layers has been
shown to lower the desorption barrier of ethylene while
the low availability of surface hydrogen atoms can pre-
vent the undesired further hydrogenation of ethylene to
ethane, both enhancing SC2H4 . [50] Additionally, the rel-
evance of Dµ and wmetal could be related to the type and
relative amount of surface sites available, which depend
on the distribution of NP sizes and on the metal load-
ing. Interestingly, the tOS-independent term of Eq. 2

contains the parameters Esub
d,C, wmetal, and Dµ, whereas

the tOS-dependant terms of Eq. 2 contain the parameters

ϵd, ∆W surf
H , Esurf

b,H , and Esub
b,H. Therefore, the stability of

the subsurface carbon and the loading and size of metal
NPs mainly determine the initial value of ethylene se-
lectivity at tOS = 0 min, while the stability of surface
and subsurface hydrogen is the key factor modulating
the evolution of the selectivity with tOS. No elemental or
metal bulk candidate descriptive parameters are selected
by SISSO in Eq. 6. This suggests that the ethylene se-
lectivity is governed by processes related to the NP sur-
face and subsurface rather than its bulk. We note that
many analytical expressions considered by SISSO may

provide a similar description compared to Eq. 6. Thus,
the expressions and operators themselves might not have
physical meaning. However, the parameters entering the
expressions do have a physical meaning, as they correlate
with relevant underlying physical processes. We have also
trained SISSO models for the selectivity towards ethane.
These results are discussed in the ESI.

In addition to ethylene and ethane, C4 products such
as butane, 1-butene, 2-cis-butene, and 2-trans-butene,
are formed during the acetylene hydrogenation. The se-
lectivity towards C4 products is lower than the selectiv-
ity towards ethylene or ethane (SC4 < 0.2). However,
the formation of C4 products indicates the tendency of
carbon-carbon bond formation, and thus the tendency of
forming acetylene oligomers, often referred to as green
oil. These oligomers can accumulate on the surface of
the material leading to the loss of activity (deactivation)
typically at long tOS.[32] In order to get insights on the
processes that lead to oligomer formation and thus to
catalyst deactivation, we also trained a SISSO model for
SC4

by using the 539 data points belonging to the SG
associated to high acetylene conversion. This model is
noted in Eq. 7 (see further details in ESI).
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SSISSO
C4

=cC4
0 (Toven)

+cC4
1 (Toven) ∗

ln{1.0 1
min ∗ (tOS − 4.05 min)}

Esurf
b,H ∗ sBET

+cC4
2 (Toven) ∗

(δsubC )6

ϵd − Esurf
b,H

+cC4
3 (Toven) ∗

dclosest ∗ (Esub
d,C + EA)

EA
(7)

The key parameters identified in Eq. 7 are tOS, ϵd,

Esurf
b,H , Esub

d,C, composition-averaged distance expansion

due to subsurface carbon (δsubC ), dclosest, composition-

averaged electron affinity (EA), and specific surface area

(sBET). The microscopic parameters ϵd, Esurf
b,H , Esub

d,C, and

δsubC , indicate that (sub)surface processes, including the
participation of carbon and hydrogen, are crucial for the
formation of C4 molecules. Additionally, the parame-
ters dclosest and EA show that properties of the bulk of
NP are important. Finally, the key parameter sBET re-
flects that the surface area also impacts the formation
of C4 products. The relevance of the (sub)surface pa-

rameters ϵd, Esurf
b,H , Esub

d,C, and δsubC can be related to
the influence of surface-carbon binding and hydrogen
availability on the reaction pathways that lead to C4

products. Indeed, it had been argued that surface sites
that provide strong palladium-carbon binding are more
prone to oligomerize acetylene and other surface inter-
mediates during the reaction.[50] The relevance of the
bulk parameters dclosest, EA, in turn, could be related
to the de-alloying of the NPs.[51, 52] This de-alloying
process in palladium-based materials, for instance, re-
sults in the creation of palladium-rich surface sites, which
could more efficiently oligomerize acetylene compared to
sites containing both palladium and other metals such as
silver.[50] Indeed, the X-ray diffraction (XRD) analysis of
some of the palladium-silver alloys after the reaction[32]
indicates the segregation of palladium to the surface. In
case of a fixed particle size, sBET is correlated with the
distances between NPs. The relevance of this parame-
ter could point at the importance of average distances
between particles in the oligomerisation side reaction.
However, the average particle sizes in the investigated
data set vary between 3 to 9 nm. Thus, this interpre-
tation has to be handled with care. Interestingly, the
time-dependent term of Eq. 7, which captures the SC4

increase with tOS (see Fig. S8), contains the parameters

Esurf
b,H and sBET. Thus, the availability of hydrogen as

well as underlying processes related to the specific sur-
face area modulate the evolution of the formation of C4

molecules over time and are likely associated to catalyst
deactivation.

While some of the microscopic, (sub)surface-related
parameters of the SSISSO

C4
model of Eq. 7 also appear in

the SSISSO
C2H4

model of Eq. 6, the bulk parameters and sBET

only appear in the expression for the selectivity towards
C4. This indicates that, in addition to surface processes,
bulk phenomena related to the properties of the NP vol-
ume and the distance between NPs could impact the for-
mation of C4 molecules, and likely that of the oligomers.
By manually selecting data points associated with

XC2H2 ≈ 1, one could obtain similar data sets compared
to the data sets used to train the SISSO models for se-
lectivity discussed in this section. However, such an ap-
proach would not indicate whether a new material, i.e., a
material that was not tested in catalysis, is active. Con-
versely, the SG rules can be used to predict which new
materials are active for the acetylene hydrogenation, as
it will be shown in the next section.

D. Exploitation of the AI Models to Design
Bimetallic and Trimetallic Systems and

Experimental Verification

Let us now exploit the SGD and SISSO models trained
using a data set containing palladium alloys with silver,
gold, and copper to design bimetallic systems contain-
ing a wider range of stoichiometries as well as other
chemical elements. We focus on the hypothetical ma-
terials Pd(1−xM )MxM

, where M= Fe, Co, Ni, Cu, Ru,
Rh, Ag, Pt, Au. Note that not all of these hypothetical
stoichiometries might result in solid solutions. Besides,
not all of these materials might be synthesizable via the
mechanochemical approach. Values of xM in the range
[50,90] % are analyzed. The bimetallic materials with
xM 45, 55, 65, 75, 85, 90% are represented as grey cir-

cles in the dclosest vs. Esub
b,C plot of Fig. 4A. In this plot,

the monometallic systems are represented as black circles
and the SG rules describing materials associated to high
acetylene conversion are displayed as red dashed lines.
The red shaded area corresponds to the materials pre-
dicted to have high acetylene conversion. The systems
containing platinum and ruthenium are predicted to fully
convert acetylene irrespective of xM . This is consistent
with the fact that these metals are traditional hydrogena-
tion catalysts.[51, 53] Conversely, according to the SG
rules, the systems based on iron, cobalt, nickel, copper,
rhodium, silver, and gold only present high acetylene con-
version below a certain xM value, i.e., the amount of pal-
ladium has to be higher than a certain threshold. While
nickel and rhodium are reported to be active for the hy-
drogenation of diluted acetylene,[26, 28] they have not
yet been tested in the high-concentration, high-pressure
conditions in order to verify these predictions.
The ethylene selectivity values for the bimetallic sys-

tems Pd(1−xM )MxM
were predicted based on Eq. 6. To

make these predictions, all parameters appearing in Eq. 6
need to be specified. However, the experimental parame-
ters wmetal and Dµ are unknown for materials that were
not yet synthesized and characterized. In order to make
the predictions, we assume wmetal and Dµ to be equal
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FIG. 4. The SG rules and SISSO models derived based on palladium-, silver-, gold-, and cooper-based materials synthesized by
ball milling are used to design new bi- and tri-metallic palladium-based systems for the catalytic hydrogenation of concentrated
acetylene. (A): The SG rules on composition-averaged closest interatomic distance (dclosest) and subsurface carbon binding

energy (Esub
b,C) identify alloy compositions that fully convert acetylene. (B) and (C): Ethylene selectivity predicted by the SISSO

model (SSISSO
C2H4

) for bimetallic systems (Pd(1−xM )MxM , with M= Fe, Co, Ni, Cu, Ru, Rh, Ag, Pt, Au) at two tOSs. (D) and

(E): Ethylene selectivity predicted by the SISSO model (SSISSO
C2H4

) for trimetallic systems PdxAgyCu1−x−y at two tOSs. The
selectivity predictions are made for Toven = 150◦C.

to the mean values of these parameters in the training
set, i.e., 0.012 and 5.67 nm, respectively. Thus, the pre-
dictions of Fig. 4B and C might vary if the systems ex-
hibit wmetal andDµ values significantly different from the
mean values of the training set.

The color scale in the (xM ,M) composition matrix of
Fig. 4B and C reflects the SSISSO

C2H4
values at Toven = 150◦C

for tOS 40 and 400 min, respectively. For tOS = 40 min,
the materials containing high amounts of ruthenium, sil-
ver, and gold present SSISSO

C2H4
> 0. For tOS = 400 min, the

ethylene selective increases, and some compositions with
high xM based on iron, cobalt, and copper also reach
SSISSO
C2H4

> 0. However, iron-, cobalt-, copper-, silver-,
and gold-based materials with high xM do not satisfy
the SG rules for high XC2H2

shown in Fig. 4A. Thus,
the AI models indicate that bimetallic systems based on
these metals could be selective at the expense of a lower
(possibly close-to-zero) activity. Among the considered
bimetallic systems, the ruthenium-based materials with
high xM are predicted to be the most selective ones. For

instance, the bimetallic material with xRu = 90% is asso-
ciated to SSISSO

C2H4
= 0.95 for tOS = 400 min. This material

is also predicted to be highly active according to the SG
rules shown in Fig. 4A. However, Ru-Pd systems are not
expected to be miscible at any composition according to
the phase diagram.[54] Alternatively, the SISSO model
indicates that silver-based materials with xM higher than
90% might be even more selective than the material with
the highest selectivity in the training set, Pd1Ag9.

In order to test the predictions of the AI mod-
els, we synthesized, characterized by TEM and SEM-
EDX, and tested in catalysis the new Pd1Ag12 and
Pd1Ag15 bimetallic materials. The acetylene conversion
(Xmeasured

C2H2
) measured at Toven = 150◦C at different tOS,

shown in Fig. 5A and B, indicates full conversion of acety-
lene and is consistent with the analysis of the SG rules in
Fig. 4A, which indicates that the activity for these sys-
tems only drops at very low amounts of palladium. The
measured and predicted ethylene selectivity (Smeasured

C2H4

and SSISSO
C2H4

, respectively) are shown in Fig. 5A and B
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as blue and red squares. Note that the predictions are
slightly different from the predictions shown in Fig. 4B,
since they were made using the values of Dµ (6.03 and
7.04, respectively) and wmetal (0.0153 and 0.0161) mea-
sured by TEM and EDX-SEM, respectively, for the syn-
thesized Pd1Ag12 and Pd1Ag15 materials. Pd1Ag12 and
Pd1Ag15 present an initial measured selectivity of 67 and
68 %, respectively, at 27 min. These selectivities slightly
drop to 61% at 405 min. These values are comparable to
the selectivity of the material Pd1Ag9 (65 % at 405 min),
which was the material with the best performance among
those used to train the model. The SISSO model predicts
the ethylene selectivity for Pd1Ag12 and Pd1Ag15 with
good accuracy. This is to be expected, since the compo-
sition of these materials are only slightly different from
the Pd1Ag9 material, which was included in the train-
ing data. However, the Pd1Ag15 material is predicted
to have a slightly higher selectivity compared to the ac-
tually measured one. The SISSO model is also correct
in that no significant change in selectivity occurs with
tOS. Only minor decreases in selectivity are observed in
experiment.

In addition to the bimetallic systems, we also used
the AI models to predict the reactivity of the Pd-Ag-
Cu system as an example of a trimetallic material. This
system is represented as an orange triangle in Fig. 4A.
The SG constraints indicate that high XC2H2

can be
achieved for most of the compositions, with the exception
of silver- and copper-rich systems. The predicted SSISSO

C2H4

values (Fig. 4D and E) indicate that the selectivity in-
creases with tOS, in particular for silver- and copper-rich
compositions. The composition for which the selectivity
presents its maximum value at tOS = 400 min is approx-
imately Pd1Ag5Cu1. The trimetallic Pd1Ag5Cu1 system
was experimentally synthesized, characterized by TEM
and EDX-SEM and tested. The measured Dµ and wmetal

for Pd1Ag5Cu1 is equal to 6.03 nm and 0.0145, respec-
tively. It presents an initial measured selectivity of 62
% at 27 min, which slightly increases to 65% at 405 min
(Fig. 5C). Thus, the trimetallic Pd1Ag5Cu1 material is
as selective as the most selective material of the train-
ing set (Pd1Ag9). Even though the predicted selectivity
values deviate significantly from the measurements at the
beginning of the reaction, the SISSO model correctly pre-
dicts the ethylene selectivity of Pd1Ag5Cu1 at long tOS,
e.g., tOS > 300 min. Besides, the model is qualitatively
correct in that the selectivity increases with tOS. These
results indicate the potential of the AI approach to guide
the design of materials.

We note that the quality of the predictions of SISSO
models can be improved with more data acquired in a
systematic way using active learning.[55] By training en-
sembles of SISSO models with different subsets of train-
ing data or with different subsets of primary features, a
statistical distribution of analytical expressions can be
created. These expressions all describe the training data
well. However, the predictions of the different expressions
for new materials present a variance, which quantifies the

uncertainty of the predictions. This uncertainty can be
used to steer the acquisition of new data in unexplored re-
gions of the materials space. Thus, larger portions of ma-
terials space can be systematically covered. Furthermore,
the active-learning framework can also focus the acquisi-
tion of new data corresponding to the high-performance
region of the materials-property map to improve the re-
liability of the SISSO description in this most important
region.

IV. CONCLUSION

We developed and applied a focused AI approach
to model the time-on-stream evolution of the mea-
sured reactivity of palladium-based alloys synthesized
mechanochemically and applied in the selective hy-
drogenation of equally concentrated acetylene-ethylene
streams. Out of 21 measured and calculated candidate
descriptive parameters reflecting the reaction conditions
and materials’ mesoscopic, bulk, and (sub)surface prop-
erties, we identified key physical parameters correlated
with the reactivity. The key materials’ parameters iden-
tified by AI highlight the crucial influence of surface and
subsurface carbon and hydrogen chemistry on the selec-
tivity, among other underlying processes. Guided by the
AI models, new bimetallic and trimetallic alloys were
designed and tested experimentally. The materials pro-
posed by AI and tested experimentally present ethylene
selectivity comparable to the best performing catalysts in
the training set. Besides, the AI models predict the evo-
lution of their reactivity with time on stream with good
accuracy. Further investigations center currently on the
mechanochemical synthesis of immiscible Pd-Ru alloys
which are predicted by the AI models to outperform the
rather typical Pd-Ag systems in this reaction. In fact,
mechanochemistry might enable the synthesis of immis-
cible systems, e.g., Pd-Pt and Pt-Au.[35] The focused
data-centric approach introduced in this paper allows to
navigate across immense pools of possible catalytic ma-
terials while taking into account their time-on-stream be-
havior, making it a valuable tool in catalyst and process
design.
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Schüth. Catalytic reactions of acetylene: A feedstock
for the chemical industry revisited. Chemical Reviews,
114(3):1761–1782, Feb 2014.

[24] Michael Bowker, Serena DeBeer, Nicholas F. Dum-
mer, Graham J. Hutchings, Matthias Scheffler, Ferdi
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Mechanochemical synthesis of supported bimetallic cat-
alysts. Chemistry of Materials, 33(6):2037–2045, 2021.

[31] Amol P. Amrute, Jacopo De Bellis, Michael Felder-
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[38] Özgül Agbaba, Ioan-Teodor Trotuş, Wolfgang Schmidt,
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Révay, Michael Hävecker, Axel Knop-Gericke, S. David
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