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Machine Learning Force Fields (MLFF's) promise to enable general molecular simulations that can
simultaneously achieve efficiency, accuracy, transferability, and scalability for diverse molecules, ma-
terials, and hybrid interfaces. A key step toward this goal has been made with the GEMS approach
to biomolecular dynamics [Sci. Adv. 10, eadn4397 (2024)]. This work introduces the SO3LR method
that integrates the fast and stable SO3krates neural network for semi-local interactions with univer-
sal pairwise force fields designed for short-range repulsion, long-range electrostatics, and dispersion
interactions. SO3LR is trained on a diverse set of 4 million neutral and charged molecular complexes
computed at the PBEO+MBD level of quantum mechanics, ensuring a comprehensive coverage of
covalent and non-covalent interactions. Our approach is characterized by computational and data
efficiency, scalability to 200 thousand atoms on a single GPU, and reasonable to high accuracy
across the chemical space of organic (bio)molecules. SO3LR is applied to study units of four ma-
jor biomolecule types, polypeptide folding, and nanosecond dynamics of larger systems such as a
protein, a glycoprotein, and a lipid bilayer, all in explicit solvent. Finally, we discuss the future chal-
lenges toward truly general molecular simulations by combining MLFFs with traditional atomistic

models.

INTRODUCTION

The desire to perform quantitative molecular dynamics
simulations based solely on nuclear charges and electron
numbers has been expressed by many researchers, includ-
ing Schrodinger [1], Dirac [2], and Feynman [3]. Despite
a century filled with groundbreaking advances, this vi-
sion has yet to be fully realized in the realm of molecular
simulations. Existing approaches often make significant
trade-offs concerning Efficiency, Accuracy, Scalability, or
Transferability (EAST) [4]. In this manuscript, we ar-
gue that several methodological advances in the field of
atomistic modeling have coalesced to bring us closer to
achieving fully quantitative, quantum-accurate molecu-
lar simulations. While the journey toward this ultimate
goal may be lengthy and complex, it is a pursuit that
is undeniably worthwhile and requires a collaborative
community-based effort.

A key challenge in molecular simulations is the con-
struction of an atomistic force field (FF) model that satis-
fies the EAST requirements mentioned above [5-12]. Tra-
ditionally, FFs are obtained either from approximate but
fast mechanistic expressions, or accurate but computa-
tionally prohibitive ab initio electronic-structure calcula-
tions. Both approaches compromise either accuracy or ef-
ficiency, restricting the scope of problems that can be ad-
dressed. Recently, machine-learned force fields (MLFFSs)
have started to bridge this gap by exploiting statisti-
cal models with high flexibility [10-14]. Unlike classical

FFs, MLFFs exhibit unprecedented transferability across
chemical space; however, scalability with system size re-
mains an issue.

Many challenges remain to be addressed to enable
EAST-compliant and MLFF-driven general molecular
simulations. Among these we mention the develop-
ment of data and computationally efficient semilocal in-
teratomic interaction models [15-24], explicit treatment
of (many-body) long-range interactions [12, 25], build-
ing datasets with comprehensive coverage of chemical
space [26—34], and development of modern GPU-enabled
molecular simulation frameworks [35-37]. Within this
work, we take decisive steps towards solving the afore-
mentioned challenges for organic (bio)molecules. Our so-
lution combines recent advances from chemical and com-
putational physics, machine learning (ML), and estab-
lished techniques from the FF community. Semi-local in-
teractions are described by the SO3krates ML model [38]
using a many-body anharmonic treatment. The physi-
cal pairwise terms include short-range Ziegler-Biersack-
Littmark repulsion [39], long-range electrostatic interac-
tions, and a recently derived universal interatomic van
der Waals dispersion potential [40]. Complementarity
between the different terms is achieved through careful
parametrization on a curated and comprehensive dataset
of 4M molecular structures, leading to the SO3LR model
(we suggest pronunciation “solar”).

We demonstrate the applicability of SO3LR in
nanosecond-long simulations of small biomolecular units,
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polyalanine systems, bulk water, crambin protein, N-
linked glycoprotein, and a lipid bilayer. SO3LR can be
scaled to simulations involving up to ~200k atoms with
a latency of ~3 us/atom/step on a single H100 GPU,
thus approaching sizes and timescales relevant for realis-
tic biomolecules.

RESULTS

SO3LR Components

Generally applicable molecular simulations can be di-
rectly related to an accurate description of interactions
across systems and length-scales. To achieve these objec-
tives, SO3LR decomposes the potential energy into four
contributions (Fig. 1A):

Epot =

Ezpr, + FEsosk + Eglec + Episp, (1)
—— ~——— —

short-range  semi-local long-range

where Fzpy, is a short-ranged term inspired by Ziegler-
Biersack-Littmark (ZBL) repulsion between nuclei (see
“Materials and Methods”), Esosk is the semi-local many-
body potential learned by the SO3krates model, and
Egjec and Epjsp, are the long-ranged electrostatic and dis-
persion energies, respectively. All potential terms influ-
ence each other, and a careful optimization procedure
based on a diverse dataset of ~4 million points ensures
broad applicability. The proposed combination of model
design, dataset curation and joint optimization, resolves
the trade-offs in the EAST requirement and is described
in the following paragraphs.

EA — SO3krates. The cornerstone of our approach,
which enables high computational efficiency and accuracy
(EAST), is the SO3krates model [22, 38] — an MLFF
based on an equivariant graph neural network. Given
atomic positions R, atomic numbers Z, total charge Q,
and total spin S, it predicts atomic quantities

E;, qi, h; = SO3krates(R, Z, Q, S), (2)

where F; are atomic energies, ¢; are partial charges and
h; are Hirshfeld ratios (ratio of effective and free-atom
volume, Vog/Viree) [41]. The semi-local energy contribu-
tion is then calculated as the sum over the atomic ener-
gies

N
Esosc = » _ Ei. (3)
i=1

The predicted atomic energies contain information about
atoms in the direct local neighborhood and beyond via
mean field updates, which is why we refer to the energy
prediction as semi-local. The mean-field nature of these
updates cannot account for all types of interactions and
is limited by an effective cutoff, which is upper bounded

by the local cutoff times the number of update steps (the
effective cutoff in SO3LR is 13.5 A).

S — Long-range dispersion and electrostatics. To
improve the description of long-range effects and extend
the description beyond semi-local environments, we ex-
plicitly incorporate electrostatics and universal pairwise
interatomic vdW potentials. They are made trainable
by using the partial charges and Hirshfeld ratios pre-
dicted by SO3krates as an input. At the same time, both
contributions are based on analytically derived, physical
equations such that they follow the correct asymptotic
(at this moment pairwise) decay. This is an inevitable
requirement for the scalability (EAST) to length-scales
exceeding the ones covered by the training data.

Dispersion interactions are calculated using universal
pairwise interatomic vdW potentials derived from quan-
tum Drude oscillators (QDO) [40]:

where ng are long-range interatomic dispersion coeffi-
cients, and R?ﬂj are the vdW radii of the Becke-Johnson
(BJ) damping function [42]. The radii are defined based
on atomic polarizabilities as [43]

_ 1/7
i ago 4/304'4—04'
Rauj = YRy = 2v (Ofscu ;. (5)

where ag is the Bohr radius, ag. = e?/4meghc is the
fine-structure constant, with + being a single tunable
parameter in the dispersion module that controls the
damping strength. Atomic polarizabilities o; and dipole-
dipole dispersion coefficients Cg’ are obtained using the
Tkatchenko-Scheffler method [44] with the ML-predicted
Hirshfeld ratios h;, whereas the scaling relations from the
QDO model [40, 45] are applied to generate higher-order
dispersion coefficients Cg’ and C7}).

Electrostatic interactions are modeled using a damped
Coulomb potential

erf (r;; /o
Eglec = Z Qin(ij/)a (6)

L s
1<J K

where g; are the ML-predicted partial charges, and o is a
hyperparameter that controls the damping strength. We
remark that the semi-local SO3k module has the capacity
to accurately describe multipolar interactions, hence we
limit our model to leading-order electrostatics.

Coupling between long-range and semi-local energy
contributions arises from the structure of the potential
energy prediction (Eq. 1). The long-range modules have
a non-zero energy contribution for all atomic pairs, in-
cluding those within the local cutoff of the MLFF. As
such, the functional forms of the long-range potentials
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Fig. 1. Overview of the SO3LR model and simulation results.

A) SO3LR combines the SO3krates neu-

ral network with physically inspired interactions, including ZBL repulsion, electrostatics, and universal pairwise van

der Waals potential for dispersion which interact directly with the neural network model.

All building blocks are

jointly trained on a carefully curated data set which covers a broad range of chemical space and interaction classes.
SO3LR enables simulations of small biomolecular units of all four major types of biomolecules, and large-scale sim-
ulations of three types. B) This includes large-scale simulations of liquid water, protein, glycoprotein, and a lipid

bilayer.

alter the potential which is learned by the SO3krates
model. The choice of damping hyperparameters v and
o controls the fine balance between semi-local, electro-
static and dispersion interactions. In principle SO3krates
can learn to correct for arbitrary choices of ¢ and ~ up
to the local cutoff, but yet their choice affects the over-
all model performance. This can be attributed to the
fact that semi-local and long-range interactions are cou-
pled non-linearly through parameter and hyperparameter
optimization in both modules. Hence, the damping hy-
perparameters were fine-tuned on the S66x8 benchmark
dataset [46].

T — Optimization on diverse training data. All
SO3LR modules are jointly optimized on a diverse
dataset that spans a broad chemical space and various
interaction classes. This enables transferability (EAST)
between all four major types of biomolecules.

The comprehensive dataset has been a key factor in
the development of our MLFF. It is a collection of ex-
tensive quantum mechanical data from both small and
large molecules, as well as non-covalent systems with and

without explicit solvation. To this end, we combined
five datasets: 2.7M bottom-up GEMS fragments [47],
1M QM7-X molecules [31], 60k AQM gas-phase molec-
ular drugs [34], 33k SPICE dipeptides [33], and 15k
DES molecular dimers [30] (see Fig. S1 and Tab. S1 for
more details). The first three datasets were computed
using the non-empirical hybrid PBEO density functional
with a many-body treatment of van der Waals interac-
tions (PBE0+MBD). To maintain consistent references,
we recomputed the last two datasets at the same level
of theory. All reference calculations were performed us-
ing tightly converged numeric atom-centered orbitals as
implemented in the FHI-aims code [48, 49].

The datasets are complementary in terms of confor-
mational space and chemical diversity, covering 8 ele-
ments predominantly present in biosystems (H, C, N, O,
F, P, S, and Cl). Specifically, the QM7-X dataset en-
compasses the chemical space of small organic molecules,
while the AQM dataset includes medium-sized drug-like
molecules. DES molecular dimers were incorporated
to improve the description of non-covalent interactions.
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SPICE dipeptide structures were added to enhance the
accuracy for the protein-containing systems. Lastly, the
GEMS bottom-up dataset contains gas-phase and explic-
itly micro-solvated protein fragments, as well as struc-
tures with gas-phase water clusters.

Optimization of the model parameters is done by min-
imizing a combined loss
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where F; are atomic forces, i are molecular dipoles,
and h; are Hirshfeld ratios, with A as trade-off param-
eters between the individual loss terms. The predicted
forces are obtained as the gradient w.r.t. the atomic posi-
tions of the potential energy (Eq. 1) and Hirshfeld ratios
and partial charges are the ones predicted by SO3krates
(Eq. 2). The partial charges are indirectly trained based
on dipole moments, instead of direct fitting to reference
partial charges. This approach reduces the model’s sen-
sitivity to the choice of charge-equilibration scheme and
enhances transferability [50]. It should be noted that the
model is trained on forces, rather than on energies and
forces, which ensures accuracy of relative energy predic-
tions only. Further training details can be found in the
“Materials and Methods” section.

m\:
WMU:

SO3LR Evaluation

A force field that is truly EAST-compliant should
be able to accurately simulate systems of varying na-
ture and size. To demonstrate SO3LR’s capabilities and
limitations, we first evaluate its performance on test
and benchmark sets to assess its accuracy in predicting
forces, binding energies, dipole moments, and Hirshfeld
ratios. This is followed by an analysis of the dynamics
of small biomolecular units from the MD22 benchmark
dataset [51]. We then investigate the folding and stabil-
ity of polyalanine systems in vacuo, which depend on a
delicate interplay of various interactions. Before transi-
tioning to simulations of larger biosystems, we conduct a
detailed analysis of water dynamics. Finally, we extend
the evaluation to large-scale molecular dynamics simu-
lations of more complex systems, including a protein, a
glycoprotein, and a lipid bilayer, all in explicit water (see
Fig. 1B).

Test set and benchmark errors. We begin the eval-
uation of the model by analysing its accuracy w.r.t. quan-
tum mechanical reference data (Tab. I). The test set com-

TABLE I. Root Mean Square Error of the model on
various test sets. Force (eV/A), dipole moment vector
(e x A), and Hirshfeld ratios. Dash indicates no data.

Dataset Size +# atoms Force Dipole Hirsh. rat.
QMT7-X 10000 6-23  0.069 0.031 0.012
GEMS bottom-up 10000 2-120 0.094 0.048 -
AcAlazgNMe 100 42 0.052 0.051 0.012
DHA 100 56 0.053 0.072 0.012
AT-AT 100 60 0.170 0.238 0.025
Stachyose 100 87 0.105 0.119 0.016
Buckyball Catcher 100 148 0.387 4.032 0.030
AcAla;sNMe 312 162 0.055 - -

Crambin top-down 5624 230-321 0.057 - -

A Dipole Moment [Debye] B Binding Energy [kcal/mol]
QM7b (MAE: 0.13, N: 7211) Neutral (MAE: 0.82, N: 8800)
g| ® AlphaML (MAE: 0.14, N: 52) @ Charged (MAE: 1.46, N: 1148)
50
¢ L]
§° p 0
kS .
5 »
o 41 &)
-8 =501
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0 2 4 6 8 -100 -50 0 50

Reference Reference

Fig. 2. Evaluation of the SO3LR long-range mod-
ules’ performance. A) Evaluation of the model on
dipole moment prediction for 7k QM7b molecules and Al-
phaML showcase database [52]. B) Performance of the
model evaluated on the unseen SAPT10k dataset [53],
separated into neutral and charged subsets.

prises 10k randomly sampled structures from each of the
QM7-X and GEMS bottom-up fragments (all other train-
ing sets were fully utilized during training). Additionally,
we recalculated 100 random structures from five MD22
benchmark molecules at the PBE0O+MBD /tight level of
theory. Furthermore, we assessed the model using ~300
AcAla;sNMe structures and ~5600 crambin top-down
fragments that were employed in the training of system-
specific models in Ref. 47.

The model demonstrates good performance in predict-
ing forces, dipole moments, and Hirshfeld ratios. A closer
examination of the table reveals two key observations.
First, fragments from curved carbon-based systems, such
as the buckyball catcher, are absent from the training set,
which is reflected in the increased errors. This suggests
that further expansion of the dataset would be necessary
to achieve full transferability across the chemical space
(also see Fig. S2). Nevertheless, the molecular dynamics
simulations of all five MD22 molecules remain stable, as
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Fig. 3. Simulations of small biomolecular fragments. Ramachandran plots (¢/¢ dihedrals) for (A) AcAlagNMe
and (B) stachyose from the MD22 dataset [51]. PBE+MBD and SO3LR simulations at 500 K with 85ps for
AcAlagNMe and 27 ps dynamics for stachyose. SO3LR simulations of 500 ps are shown in Fig. S3. Trajectory is
sampled every 1fs. The Boltzmann-inverted scale is shown in kcal/mol. The comparison between PBE+MBD from

MD22 and SO3LR (trained on PBE0+MBD forces) is only shown as a guide to the eye.

discussed in the following subsection. It is important to
note that the typically reported MD22 errors [38, 54] cor-
respond to system-specific models. Second, by compar-
ing the errors of AcAlagNMe, AcAla;sNMe, and cram-
bin top-down fragments, which are identical, we con-
clude that the SO3LR model is scalable to large sol-
vated protein fragments and that long-range modules ef-
fectively describe intermolecular interactions, despite be-
ing trained only on small fragments.

To assess the quality of electrostatic interactions, we
benchmarked partial charge prediction using the QM7b
and AlphaML benchmark datasets, which were com-
puted at the LR-CCSD/d-aug-cc-pVDZ level of the-
ory [52]. SO3LR accurately predicts dipole moments
with MAEs of 0.13D in magnitude and 5.1° in angles
(Fig. 2A). This performance is comparable to the best
semi-empirical methods [55]. Our training set contains
molecules from the QM7x dataset, which includes per-
turbed structures from QM7b. The AlphaML bench-
mark, on the other hand, contains a wider set of com-
pounds, including DNA /RNA nucleobases, amino acids,
carbohydrates, drugs, and hydrocarbons. We achieve a
MAE of 0.14D on this dataset (Fig. 2A), showcasing
transferable and accurate dipole moment prediction cru-
cial for calculating reliable electrostatic interactions.

Next, we evaluate noncovalent interaction energies on
a comprehensive SAPT10k benchmark computed at the
SAPT2+(3)(CCD)/aug-cc-pVTZ level of theory [53]. It
consists of 70 subsets, featuring challenging binding mo-
tifs dominated by electrostatics and/or dispersion inter-
actions and offering substantial diversity across chemical
space. We exclude 34 out of 9982 complexes because they
contain atom types beyond the 8 elements our model was
trained on (hence, predictions on those structures are not
meaningful). Overall, the model performs well, achiev-
ing sub-chemical accuracy with a MAE of 0.89 kcal/mol

(Fig. 2B). Rare outliers include ClO4 -m, NO3 -7 and
SOs-7m complexes. This is an impressive performance
overall, particularly given that part of the error comes
from the PBEO+MBD reference data.

Simulations of small biomolecular units. Molec-
ular dynamics simulations are the ultimate test for eval-
uating force fields. We simulated five molecular systems
from the MD22 benchmark, encompassing four major
biomolecule types and one supramolecular complex: the
AcAlazgNMe tetrapeptide, stachyose tetrasaccharide, AT-
AT DNA base pairs, docosahexaenoic fatty acid (DHA),
and the Buckyball Catcher. The first two systems under-
went 500 ps of simulation at 500 K to compare with the
PBE+MBD references computed at 500 K, other systems
were simulated at 300 K. The model demonstrated ro-
bust conformational exploration across all molecules. In
particular, the free energy surface exploration of tetraala-
nine and stachyose closely aligns with MD22 ab initio
results, computed at the PBE4+MBD level of theory, as
shown in Ramachandran plots (Fig. 3AB). Note that in
this figure we report only short molecular dynamics sim-
ulations, and the comparison between PBE+MBD and
SO3LR dynamics is only provided as a guide to the eye.
Full 500 ps trajectories are shown in Fig. S3 [56]. The
tetrapeptide explores all ’allowed‘ (¢/v) regions found
in experimental protein structures [56]. The buckyball
catcher complex remained stable and retained the ball
(Fig. S4), despite larger errors on the test set. These
results suggest that our model can reliably explore con-
formational landscapes of small molecules even in the
absence of the system-specific training data.

Simulations of polyalanine systems. We fur-
ther investigate polyalanines, focusing on the folding of
extended AcAla;sNMe and the stability of the folded
AcAla;sLysHT at elevated temperatures. These sys-
tems present significant challenges due to the delicate
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Fig. 4. Simulations of polyalanines. A) Secondary
structural motifs observed along a typical folding trajec-
tory of AcAla;sNMe at 300K in the gas phase. B) Sec-
ondary structural motifs observed along a trajectory of
AcAla;sLysH" at 500K in the gas phase, starting from
the folded a-helix conformation.

interplay of hydrogen bonding, polarization, and disper-
sion interactions. Previous attempts to simulate them
without incorporating top-down fragments either failed
to correctly fold AcAla;sNMe or overstabilized the a-
helix, and in some cases, predicted diminished stability
for AcAlasLysH™ [47, 54].

For each system, we performed four runs of 500 ps.
The extended AcAla;sNMe structure folded in all cases
(Fig. 4A and Fig. S5A). The timescales and folding mech-
anisms were similar to those observed in Ref. 47: ini-
tially, the peptide primarily consists of turns, then passes
through a “wavy” intermediate, and finally folds into a
helical form with dynamic transitions between - and
310-helices. The latter is particularly noteworthy, as em-
pirical force fields tend to overestimate the stability of
a-helices [61, 62].

For the folded AcAla;sLysH™, we observe that the a-
helical motifs are preserved up to 500-600K (Fig. 4B
and Fig. S5B). These findings agree with experimental
measurements, which observe scattering cross sections for
AcAla;sLysH" consistent with an a-helical structure up
to ~725 K when subject to interactions with the helium
buffer gas [63]. Direct comparison with gas-phase exper-
iments would have to explicitly include the helium envi-
ronment and quantum nuclear effects. Overall, the two
polyalanine systems provide a good evaluation of scalabil-
ity to medium-sized systems in dynamics, complementing
the observed scalability in terms of test errors.

Simulations of liquid water. Liquid water plays a
crucial role in biosystems, making it an essential subject
for SO3LR’s evaluation. We performed a simulation of a
water box containing 4096 water molecules in the NPT
ensemble. Observables were averaged over 300 ps follow-

ing an initial 200 ps equilibration phase. Our analysis
focused on three aspects: radial distribution function,
density convergence, and self-diffusion coefficient.

The radial distribution function shows the expected
shell structure (Fig. 5A and Fig. S6), which indicates,
however, that the liquid phase is slightly overstructured.
Increasing the temperature to 330 K allows for an approx-
imate treatment of missing nuclear quantum effects and
improves agreement with the experimental data [57, 64].

We investigated the convergence of the density as a
function of the cutoff for long-range interactions (Fig. 5B,
see methods for details). The water density varies be-
tween 1.04 and 0.97g/cm? for long-range cutoffs of 10—
20A. We adopted a cutoff of 12A for all subsequent
biosimulations in explicit water, balancing accuracy and
computational efficiency.

To provide further insights into water dynamics, we
calculated the self-diffusion coefficient of water (Fig. 5A,

labels). The diffusion coefficient is 0.079 Az/ ps at 300K

and 0.224 AQ/ps at 330 K with the 12 A long-range cutoff.
For comparison, the experimental diffusion coefficient at
room temperature is 0.23 A2/ps [58].

While the model does not achieve exact agreement
with experimental values, the computed density and self-
diffusion coefficients underscore its transferability and
scalability. This is notable considering that the train-
ing set contains only gas-phase clusters of water with at
most 40 molecules (~10k clusters or ~0.26% of the com-
bined dataset). It is also well known that even explicit ab
initio MD simulations with the PBEO+vdW functional
struggle to fully capture all experimental properties of
water [64]. For biomolecules, accurate modeling of water
close to their surface may hold greater practical relevance
than exact replication of bulk water behavior.

Simulations of large biomolecules. Finally, we
showcase the potential of the SO3LR by simulating large
biomolecules in explicit water. The selected systems en-
compass various biomolecular classes, each characterized
by distinct structural and functional properties that can
be validated against existing simulations or experimental
data. The systems include the crambin protein, glycopro-
tein (PDB: 1K7C), and the POPC lipid bilayer.

For crambin (25k atoms including water), we com-
pute the power spectrum from 125ps of dynamics at a
temporal resolution of 2.5fs, after 1ns equilibration pe-
riod. The experimental water vibrations at 1640 cm™!
and 3200-3600 cm ™! are reproduced in SO3LR with bet-
ter agreement than GEMS, AMOEBA and AmberFF
(Fig. 5C). We further examined the root mean square
deviation RMSD(t, t+At) averaged over three 3ns sim-
ulations, which indicates that SO3LR shows slightly in-
creased protein mobility on longer timescales, consistent
with the GEMS model (Fig. 5D). Nevertheless, we find
that the overall structure stays close to the starting folded
state, without any indication of unfolding (Fig. S7). To
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Fig. 5. Simulations of bulk water and explicitly solvated biomolecules. A) Oxygen-oxygen radial distribu-
tion function for bulk water (4096 water molecules). The diffusion coefficients of water at 300 and 330K, obtained
using the model with a 12 A long-range cutoff, are specified in the legend. The experimental values were taken from
Refs. 57, 58. B) Dependence of density of water on long-range cutoff at 300 K. C) Power spectrum of crambin in
water obtained from 125 ps of dynamics. AmberFF and GEMS results are taken from Ref. 47. D) Root mean square
deviation (RMSD) of Crambin, excluding hydrogen atoms, between conformations sampled at times ¢ and t + At
averaged over three 3ns runs. E) RMSD of protein and carbohydrate segment of glycoprotein averaged over three
500 ps runs. F) Tail group NMR order parameters from SO3LR simulation of 128 POPC Lipid Bilayer and from
experiment [59]. The standard deviation is shown with background color. G) Single GPU performance. SO3LR la-
tencies were measured based on liquid water molecular dynamics using JAX-MD [36] in the NVT ensemble on the
H100 80 GB GPU. The slope is 3.25 x 1075 s/atom/step. MACE-OFF(S) and AimNet2 latencies, measured on A100
and H100, respectively, were taken from Refs. 54, 60.

visualize the conformational space sampling, we applied
two-dimensional Uniform Manifold Approximation and
Projection (UMAP) [65]. The projection of the paths
reveals that SO3LR and GEMS sample conformational
space more extensively than AmberFF and AMOEBA
(Fig. S8), which aligns well with high conformational
variability derived from NMR measurements [66].

the carbohydrate segment compared to the protein seg-
ment (Fig. 5E). These findings align with results from
the specifically parameterized CHARMM force field [67].
However, the simulation revealed limitations in sampling
conformations of the N-linkage. Specifically, the C~-
CpB-Ca-N dihedral, located at the protein-carbohydrate
junction, can adopt three conformations: g+ (60°),

For glycoprotein (48k atoms including water) we con- anti (180°), and g— (300°). Our simulation only sam-

ducted a 500 ps simulation at 300 K. This system, com-
prising both protein and carbohydrate segments, pre-
sented a challenge for SO3LR due to the absence of
carbohydrates in its training data. Despite this, the
model successfully inferred increased carbohydrate flex-
ibility, as evidenced by the greater RMSD observed for

pled the anti-conformation out of these three possible
states. Longer simulations would be required to deter-
mine whether the model can explore other conformations
without carbohydrate-protein linkages in the training set.

Lastly, we modeled a homogeneous POPC lipid bilayer
(33k atom system consisting of 128 lipids and 5120 water
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TABLE II. POPC Lipid Bilayer Structural Properties:
area per lipid (AQ) and bilayer thicknesses Dy g (A).

S/lipid Dun

Experiment [68] 64.3+1.3 36.5
Lipid21 [69] 63.92+£0.09 38.50+0.20
CHARMMS36/LJ-PME [70]  65.440.5  37.3£0.30

SO3LR 58.040.1 37.0

molecules). We performed a 500 ps simulation at 303 K
and examined the structural properties: area per lipid,
bilayer thickness, and lipid tail order parameters. These
properties are critical measures of the accuracy of lipid
simulations and are highly sensitive to factors such as
hydrophilic attraction between head groups, hydropho-
bic repulsion between lipid tails, and interactions with
surrounding water molecules. We found that SO3LR is
in good agreement with experimental data and with em-
pirical force fields specifically fine-tuned to lipid simu-
lations (Tab. II). The 10% underestimation of the area-
per-lipid likely stems from the isotropic NPT ensemble
currently used in SO3LR simulations, compared to the
semi-isotropic NPT used for empirical force fields. NMR
lipid tail order parameters are another important quan-
titative measure that describe the degree of order within
the acyl chains of lipids in a bilayer. The order parame-
ters averaged over the last 250 ps suggest that the bilayer
structure is in suitable agreement with the NMR experi-
ments (Fig. 5F) [59].

DISCUSSION

A long-held vision in the atomistic simulation commu-
nity is the development of force fields (FFs) with a unified
functional form that can be applied across diverse chem-
ical spaces — such as solvents, proteins, DNA, RNA, sug-
ars, and lipids. These FFs should closely approximate
quantum-mechanical behavior while remaining efficient
and scalable enough to model realistic biomolecular com-
plexes under various conditions (e.g., pressure, tempera-
ture, and external environments). In this work, we pre-
sented significant advancements towards fulfilling these
criteria through the SO3LR model, which is embedded
within an openly accessible and fully transparent frame-
work. This framework integrates reliable and diverse
quantum-mechanical datasets [30, 31, 33, 34, 47], a fast
and stable SO3krates machine-learning architecture [38],
universal long-range interaction modules [40], a JAX-
MD simulation engine [36], and robust analysis tools.
Together, these components facilitate quantum-accurate
molecular simulations across an extended biomolecular
chemical space.

Our developments aim towards enabling general molec-
ular simulations and similar goals have been pursued
by the seminal efforts in the empirical force field com-
munity over many decades [71-79]. SO3LR yields a 6-
fold improved accuracy compared to the AMBER FF for
polyalanine [47] when benchmarked on the PBEO+MBD
atomic forces. At the same time, SO3LR is about 40
times slower on a single GPU than the GROMOS FF [47].
Our extended assessment on energies, forces, dipoles,
polarizabilities, as well as our analysis of nanosecond-
long MD trajectories demonstrates that SO3LR is highly
transferable throughout biochemical space and scalable
to hundreds of thousands of atoms. Such transferability
and scalability are achieved without the need to specify
atom types, impose harmonic constraints, or introduce
bespoke functional forms for interatomic interactions in
different biomolecular entities. The bottom-up training
on quantum mechanical data ensures that our simula-
tions are transferable to a wider range of conditions than
previously possible. This is confirmed by polyalanine
simulations from 300 to 800 K, accurate structural and
spectroscopic observables for high and low vibrational
frequencies obtained for solvated crambin, as well as the
local and global structural properties for the 1K7C gly-
coprotein and the POPC lipid bilayer. The toolset devel-
oped in this work complements the existing and quickly
growing machinery of successful biomolecular modeling
tools. Our presented advancements would not have been
possible without building on a wealth of existing land-
mark methods, many of which were developed by the
empirical force field community.

One noteworthy component of our proposed
SO3LR model is a successful combination of ex-
plicit physical knowledge, such as short- and long-range
force modules, coupled with a semi-local many-body
potential. Importantly, all of these contributions are
carefully balanced by SO3LR via learning from data.
Thus, the known physical interactions do not need to be
learned from data, but SO3LR can — under the correct
hard-coded inductive biases (repulsion, electrostatics,
and dispersion energies) — focus its nonlinear expressive
power mainly on learning both: the complex many-body
contributions and the appropriate balance of the diverse
energy terms from Eq. 1.

Despite recent progress in establishing “foundation
models” for atomistic systems [54, 60, 80-82], many chal-
lenges remain in achieving truly general molecular sim-
ulations. Key areas for enhancing the SO3LR model
include: (i) expanding the DFT+MBD training sets to
encompass a broader spectrum of (bio)chemical entities,
such as ions, sugars, lipids, DNA, supramolecules, and
a variety of solvents, (ii) generating higher-level coupled
cluster [83] or quantum Monte Carlo [84] reference data
for small fragments, (iii) refining long-range interaction
modules to effectively account for anisotropic many-body
interactions [85], (iv) optimizing SO3LR for multi-GPU
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architectures [86], (v) extending simulations to treat nu-
clear quantum effects [87, 88] beyond classical Newto-
nian molecular dynamics. This is a non-exhaustive list
of research directions, all of which are subject of ongoing
efforts in the community.

As atomistic simulations are highly sensitive to the in-
tricacies of the underlying force fields and simulation pa-
rameters, it is imperative to establish a standardized set
of benchmarks for quantum-accurate machine-learning
force fields. Such benchmarks will ensure reproducibil-
ity of results and enable robust modeling of experimen-
tally relevant phenomena across realistic time and length
scales.

MATERIALS AND METHODS

Ziegler-Biersack-Littmark repulsion. The short-
range repulsion between nuclei is modeled via a term
inspired by the ZBL repulsion [21, 39]:

EZBL - k Z Z jfcut TLJ)

i JEN; Tij

4 (8)
) Z cmefammj(Zf+Zf)/d’

m=1

where k. is the Coulomb constant, Z; are the atomic
numbers, and a.,, C¢n, p, and d are free parameters.
The term N; denotes the neighborhood of the i-th atom,
and fcy is a cutoff function that smoothly transitions
between one and zero when atoms leave (or enter) the
neighborhood. The ZBL term ensures a correct descrip-
tion of nuclear repulsion, which improves the stability of
the potential for short bond-distances.

SO3krates. Given initial atomic representations fEO] €
R¥ they are iteratively refined via UpdateLayers as

FI = UpdateLayer {fﬁt], fﬁt], Tij (9)

LjeNi’
where N; denotes the neighborhood of atom 4 containing
all atoms within a cutoff sphere of radius r¢y;. The final
representations fET] € R¥ are used to predict per-atom
energies F; € R which are summed to yield per-structure
energies Fsosx = Zivzl E;.

The initial atomic representations encode information
about the atomic types Z, the total charge ) and the
multiplicity S of the system, such that

Pl =eiz +eiq+eis. (10)

Each summand is an F-dimensional embedding for each
atom ¢ in the system. Atomic numbers are encoded in a
per-atom fashion (see Ref. [38]) whereas total charge and
multiplicity are encoded globally following the strategy
described in Ref. 21.

Partial Charges and Dipoles. Following Ref. 21, par-
tial charges are obtained as

QiQZi+qi(QZ (g2, +q]> (11)

where ¢; € R are predicted from the final atomic repre-
sentations fET] € R via a two-layered multi layer per-
ceptron network with silu non-linearity and gz, € R is an
element dependent bias. The charge correction with the
total charge () ensures charge conservation. The partial
charges can be used to predict molecular dipole moments
(used in the loss function, see Eq. 7).

N
i=Y_ ai, (12)
=1

where 7; € R? are the atomic positions.
Training details. SO3krates models (v1.0) were trained
on a combined loss of forces, dipole moments, and Hir-
shfeld ratios with a weighting factor of 10:1:1, respec-
tively. We used the AMSGrad optimizer [89] with an
initial learning rate of 10™2 and an exponential learn-
ing rate decay every 500k steps by a factor of 0.85. The
global norm of the gradient updates is clipped at 10.

The model uses a 4.5A cutoff, feature dimension of
F = 128, and a maximal degree of Ly.x = 4 for the
Euclidean variables and T = 3 message passing layers,
electrostatics damping coefficient of o = 4, and disper-
sion damping coeflicient of v = 1.2. After each atten-
tion update, a two-layered multi-layer perceptron (MLP)
with silu non-linearity refines the invariant features. This
increases the number of trainable parameters and thus
model expressiveness, which is important in the large
data regime. To stabilize training and improve gradi-
ent flow, layer normalization [90] is applied to the invari-
ant features after the attention and the interaction block.
The model was trained for 86 h (corresponding to 5.125M
gradient steps) with a batch size of B = 200.
Long-Range Cutoff. For large structures with tens to
hundreds of thousands of atoms, considering all pairs of
atoms becomes computationally infeasible and necessi-
tates the introduction of a long-range cutoff. Addition-
ally, if simulations are performed in a box (e.g. with wa-
ter) the largest meaningful long-range cutoff is directly
connected to the box size. As such, the system under
investigation and the simulation parameters, determine
different values for the long-range cutoff. To account for
this, we carefully designed a switching function for the
long-range potentials, which allows to choose between
different cutoff values up to no long-range cutoff at the
time of simulation. The choice does not affect the first
two terms in Eq. 1 or intermediate properties, partial
charges and Hirshfeld ratios, which are used as inputs to
calculate the last two terms.

Both the dispersion and the electrostatic potential
have infinite range and take on a non-zero value at the
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long-range cutoff (Fig. S9). This results in a disconti-
nuity in the forces at the cutoff value, leading to energy
drift during MD simulations [91]. To ensure smoothness
of the PES at the long-range cutoff we modify the pair-
wise electrostatic potential as

a(r) = %jke - few(r) - ugs(r) + (1 - fSW(r)) ~ups(r),
(13)

where ugg(r) is the energy-shifted potential, upg(r) is
the force-shifted potential (see below) and fsw(r) is a
switching function that smoothly interpolates between 1
and 0 on a given interval from r,, to rog. By switching
between the energy- and the force-shifted term the po-
tential at short-range is the same as the one the model
was trained with (no long-range cutoff for training), and
enables to maintain the learned balance between differ-
ent terms (Fig. S9). The shifted potentials are given

as [91, 92]
_Ju(r) —u(Re), r<R.
ues(r) = {0, r> R, 14)
and
urs(r) = {W) ~u(Re) —ulr = Ro)-w/(R) 1< R
0, r> R,
(15)

where u(r) is the unmodified pairwise electrostatic poten-
tial (Eq. 6) and R, is the long-range cutoff. Dispersion
interactions are smoothly switched to zero as

’f)(r) = fSW(T) 'U(T)a (16)

where v(r) is the pairwise potential in Eq. 4. The switch-
ing function parameters (ron, Toff) were set to (R x 0.45,
R.) for electrostatic interactions and (R. — 2, R,.) for
dispersion interactions. The parameters were chosen to
prevent clumping artifacts at the 10 A long-range cutoff.
Binding energy calculation. Binding energy was cal-
culated as the difference between the bound dimer and
the non-interacting monomers (separated by a distance
larger than the long-range cutoff) with charges assigned
for each monomer in isolation.
Simulation details. All simulations were conducted
using the NVT ensemble for gas-phase systems and the
NPT ensemble for periodic systems, with a timestep of
0.5 fs. Nosé-Hoover Chains (3 chains) were used for ther-
mostat and barostat coupling, as implemented in JAX-
MD [36], with default parameters: 1000 timesteps for the
barostat and 100 timesteps for the thermostat [93-95].
Prior to simulation, all structures were pre-optimized us-
ing the FIRE algorithm [96].

MD22 molecules and polyalanines. Gas-phase simula-
tions were performed for 500 ps at 500 K for stachyose

10

and AcAlagNMe, as well as at 300K for other MD22
molecules. Simulations of AcAla;sNMe were carried out
at 300 K, whereas AcAla;sLysH' was simulated at 500
800K with a step of 100K, each for 500 ps. Secondary
structure assignment of polyalanines was conducted us-
ing the STRIDE algorithm [97].

Water simulations. Simulations were run for 500 ps,
with observables averaged over the final 300 ps. The dif-
fusion coefficient was determined from the positions of
oxygen atoms using Einstein diffusion equation [98, 99].
Double-precision was employed to enhance numerical sta-
bility.

Crambin. The initial structure was obtained from
PDB ID: 2FD7 [100], with mutated residues reverted to
the wild-type sequence. The system was solvated with
8205 explicit water molecules. Simulations were per-
formed for 1ns at 300K, excluding the first 500 ps for
equilibration. The root mean square deviation of Cram-
bin, RMSD(t, t+At), was obtained excluding hydrogen
atoms from three 3ns runs. Power spectra were com-
puted from atomic velocities sampled over a 125ps tra-
jectory with a time resolution of 2.5 fs using schnetpack
package [101, 102].

Glycoprotein. The starting structure was taken from
the PDB ID: 1K7C [103]. 15008 water molecules were
used for solvating the system and the pH was set to 3.7
to guarantee charge neutralization. The RMSD was cal-
culated based on three runs of 500 ps.

POPC Lipid bilayer. The starting structure, consisting
of 128 lipids and 5120 water molecules, was obtained from
Ref. 69. The system was equilibrated over 250 ps using
a combination of geometry relaxations and NVT simula-
tions. Observables were then averaged over an additional
250ps at 303K in an isotropic NPT ensemble imple-
mented in JAX-MD. The initial box dimensions were ad-
justed manually to mimic semi-isotropic NPT ensemble.
The area per lipid was calculated from the simulation box
dimensions. Bilayer thickness (Dgg), derived from elec-
tron density profiles, and NMR order parameters were
both calculated using CPPTRAJ [104]. Double-precision
was employed to enhance numerical stability.

DATA, MODEL AND CODE AVAILABILITY

The model, datasets, and codes used in this
work  are available at  https://github.com/
general-molecular-simulations/so3lr. The reposi-
tory contains notebooks with tutorial simulations.
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Fig. S1. Statistics on a combined dataset of 3.9 million molecular fragments. Histograms of the number
of atoms, number of heavy atoms, maximum distance in each fragment, and atom types.

TABLE S1. Properties present in the combined datasets.

Dataset Size Forces Dipoles Hirsh. rat.
GEMS bottom-up 2.7m vV v X
QM7-X 1m v v v
AQM 60k 4 4 v
SPICE Dipeptides 33k v v v
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Fig. S2. TorsionNet500 Benchmark. Comparison of energies predicted by SO3LR with the TorsionNet500
benchmark [105], recomputed at the PBEO+MBD level of theory. A Histogram of Pearson R coefficients, with
additional metrics shown in the inset. B Torsional profiles for six molecules. The absence of certain functional groups
(e.g., triazole and trifluoromethylthio groups) in the training set leads to higher average errors. In contrast, torsional
profiles commonly encountered in biosimulations are predicted accurately.
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Fig. S3. Simulations of small biomolecular fragments. Ramachandran plots (¢/t¢ dihedrals) for (A)
AcAlagNMe and (B) stachyose molecules from MD22. SO3LR simulations at 500 K for 500 ps. Trajectory is sampled
every 1fs. The Boltzmann-inverted scale is shown in keal /mol.

https://doi.org/10.26434/chemrxiv-2024-bdfr0-v2 ORCID: https://orcid.org/0000-0002-8620-6135 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0


https://doi.org/10.26434/chemrxiv-2024-bdfr0-v2
https://orcid.org/0000-0002-8620-6135
https://creativecommons.org/licenses/by-nc/4.0/

—— SO3LR
5
Ops 250ps 500ps 0 2 4 6 8 10 12 14
MD simulation time Distance [A]
—— SO3LR
>
Ops 250ps 500ps
MD simulation time 0 5 10 15
C Distance [A]
—— SO3LR
>
Ops 250ps 500ps 0 2 4 5 8 10 12 12
MD simulation time Distance [A]
—— SO3LR
Ops 250ps 500ps 0 5 10 15 20 25 30
MD simulation time Distance [A]

17

Fig. S4. Simulation of structures from the MD22 benchmark. Snapshots of the simulation at 0 ps, 250 ps
and 500 ps (left) and the corresponding radial distribution function g(r) computed over frames sampled every 1ps
(right) for the (A) buckyball catcher, (B) AT-AT, (C) DHA, and (D) nanotube. Simulations were performed for

500 ps at 300 K.
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Secondary structural motifs of (A) four folding trajectories of extended
AcAla;sNMe at 300K in the gas phase and (B) four trajectories starting from the folded AcAla;sLysH' at 500,
600, 700, and 800K. STRIDE was used for secondary structure assignment [97].
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Fig. S6. Water radial distribution functions.

Distance [A]

Oxygen-hydrogen and hydrogen—hydrogen radial distribution

functions for bulk water (4096 water molecules), simulated at 300 and 330K and compared with experimental re-
sults [57]. Intramolecular contributions in the experimental data are not included.
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RMSD of Crambin
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Fig. S7. Crambin RMSD. Root mean square deviations of three crambin trajectories simulated with SO3LR with
respect to the initial frame.
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Fig. S8. 2D UMAP. Calculated using UMAP package [65] from a 3ns trajectory of crambin in aqueous solution.
The initial 500 ps were discarded for system equilibration. The projection was calculated using non-hydrogen protein
atoms with UMAP hyperparameters set to 30 neighbors and a minimum distance of 0.1. All subplots share identical
latent space coordinates.
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Electrostatics damping
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Fig. S9. Electrostatics switched interactions. The model was trained with a damped erf(r;;/4) /r;; electrostatic
potential on gas-phase data, with a 100 A long-range cutoff that recovers all neighbours and a 4.5A short-range
cutoff. In simulations with periodic boundary conditions, we employ a long-range cutoff of 12 A to balance accuracy
and computational efficiency. The potential at short-range should be the same as the one the model was trained with
to maintain the learned balance between different terms. Simultaneously, the potential should smoothly transition to
zero at the long-range cutoff to ensure that the potential is the exact integral of the force and to avoid introducing
discontinuities in the forces. Therefore, we smoothly switch between the energy-shifted (blue curve) and force-shifted
(orange curve) potentials to obtain the final potential (green curve). Dispersion interactions are smoothly energy-
shifted starting 2 A before long-range cutoff.
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