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The molecular Berry curvature plays an important role for electronic structure calculations within the adiabatic Born–
Oppenheimer approximation and is connected to many magnetic phenomena such as the Aharanov–Bohm and the
chirality-induced spin selectivity (CISS) effect. For molecules in external magnetic fields, the Berry curvature is essen-
tial to achieve a qualitatively correct description of nuclear motion. Here, it is responsible for screening the Lorentz
forces acting on moving nuclear charges. This connection has recently been exploited to derive a new type of popu-
lation analysis known as Berry charges. In this work, we derive a novel sum rule for the molecular Berry curvature.
This pseudomomentum-translational sum rule is then used to reveal the connection between Berry charges and the
well-known generalized atomic polar tensor (GAPT) charges. Furthermore, we present an efficient integral-direct im-
plementation of the molecular Berry curvature for molecules in finite magnetic fields into the TURBOMOLE program
suite. This is used to further demonstrate the connection between Berry and GAPT charges for a variety of larger
molecules, comparing the results to other established types of partial charges.

I. INTRODUCTION

The molecular Berry curvature is an important quantity
within the adiabatic limit of the Born–Oppenheimer approx-
imation. It may best be understood as a vector field induced
by a non-trivial geometric phase of the wave function, which
is also often referred to as the Berry phase.1–3 Both the Berry
phase and the Berry curvature contain information about the
topology of a system and are linked to many important phe-
nomena such as conical intersections, rotational g-factors, as
well as the Aharanov–Bohm and the chirality-induced spin se-
lectivity (CISS) effects.4–11

One of the sources for a non-trivial geometric phase of the
wave function may be an external magnetic field.12–17 The
resulting Berry curvature leads to an additional velocity-
dependent force in the nuclear equations of motion.18,19 The
effects of this so-called Berry force on molecular rotations and
vibrations have recently been studied with molecular dynam-
ics, in the harmonic limit, and with time-dependent nuclear-
electronic orbital Hartree–Fock theory.20–23 Due to the intu-
itive connection between the Berry force and corresponding
Lorenz forces, it was also noted that the Berry curvature al-
lows for the definition of an effective nuclear charge which
may be used to define a new type of population analysis.24

The partial charges obtained from this method are known as
Berry charges.
Both a numerical and an analytical approach have been pro-
posed for the calculation of the molecular Berry curvature in
an external magnetic field.18,25,26 The numerical approach is
limited in its numerical accuracy and it requires a somewhat
tedious scheme to eliminate any dependency on the global
phase of the wave function.18,25 While the analytical approach
does not suffer from these problems, it requires the solution

of linear response equations, a step which formally scales as
O(N5).26 It should be noted that both of these approaches are
associated with similarly high computational cost.
As an alternative, the molecular Berry curvature may also
be approximated using its connection to effective nuclear
charges.27 For this, some flavor of population analysis is com-
puted for the molecular system – this may be Mulliken,28–30

Löwdin,31 Bader,32 or Hirshfeld charges,33 partial charges ob-
tained from an electrostatic potential fit based on the Koll-
man parametrization,34 or any other type of effective nuclear
charge. These are then combined to approximate the molec-
ular Berry curvature, constraint by the properties we wish to
preserve. This includes, most importantly, the antisymmetric
tensor structure and the magnetic-translational sum rule.27

In this work, we introduce a novel translational sum rule
for the molecular Berry curvature. This pseudomomentum-
translational sum rule is an important relation which to the
best of our knowledge has not been described in the litera-
ture yet. Through this sum rule, a key connection between
Berry charges and generalized atomic polar tensor (GAPT)
charges35,36 is revealed. The latter are well-known in litera-
ture, which allows for an in-depth discussion about the ben-
efits and limitations of using Berry charges to interpret them
in terms of atomic partial charges. In addition to providing
this link between methods, the novel sum rule may be used to
facilitate the calculation of Berry charges.
To analyze the molecular Berry curvature as well as
the pseudomomentum-translational sum rule, we present a
highly efficient, analytical implementation into the TURBO-
MOLE37–39 program suite. This is based on the integral-
direct response algorithm in our spin-noncollinear imple-
mentation of the finite field (ff)40 approach which em-
ploys London atomic orbitals (LAOs)41,42 to ensure gauge
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origin invariance.43–47 Other notable ff-LAO implementa-
tions in established quantum chemistry software include
those in LONDON,48,49 ChronusQ,50–52 QCUMBRE,53–55

BAGEL,56,57 and QUEST.58–60

The remainder of this work is structured as follows. In
section II, we first present a rigorous derivation of the
pseudomomentum-translational sum rule. We then reintro-
duce the concept of the Berry population analysis which was
first proposed in Ref. 24. Using the novel sum rule, we
demonstrate the close relation between Berry charges and
GAPT charges.
Section III introduces our efficient, integral-direct implemen-
tation for the calculation of the molecular Berry curvature.
Particular emphasis is put on the construction of the perturbed
Fock matrix in the coupled perturbed Hartree–Fock (CPHF)
equations. We adapt a technique first used for the analyti-
cal calculation of geometry Hessians in the absence of mag-
netic fields, through which a direct transformation of the two-
electron integrals into the spinor basis can be avoided.61,62

This significantly increases the computational efficiency of
the algorithm.
In section IV, we provide the computational details for all
calculations carried out in the context of this work. Fi-
nally, in section V, we analyze the novel pseudomomentum-
translational sum rule and investigate its connection to Berry
charges for a variety of molecular systems. Berry charges are
compared to other types of partial charges and an important
connection to the electronic dipole moment is uncovered. We
close this section by analyzing the basis set convergence of
Berry and GAPT charges, demonstrating that they are equiv-
alent in the limit of a complete basis. This work is then con-
cluded in sec. VI.

II. THEORY

A. Preface and notation

The derivations in this chapter largely follow a previous
work presented by Peters, Culpitt, Tellgren, and Helgaker
in Ref. 27. Therein, the magnetic-translational sum rule for
the molecular Berry curvature is derived in the framework
of the adiabatic Born–Oppenheimer approximation.18,19,25

While the derivation here is specifically carried out for molec-
ular systems in an external magnetic field (B), its general-
ity should be heavily emphasized. In the absence of exter-
nal fields, a Berry curvature may for instance also be in-
duced through relativistic effects such as spin–orbit coupling
or through the band structure of solids.63,64

We use Hartree atomic units throughout this work if not stated
otherwise. Matrix R contains all nuclear coordinates while the
position vector RI contains the coordinates of atom I. Elec-
tronic coordinates are described through their position vector
r. Integration within the bra–ket notation is carried out over
the electronic coordinates. Greek indices indicate Cartesian
coordinates: α,β ,γ ∈ {x,y,z}. The Einstein summation con-
vention is used for repeated Greek indices only. We use δi j
for the Kronecker delta and εi jk for the Levi–Civita tensor.

B. The molecular Berry curvature

The adiabatic limit of the Born–Oppenheimer approxima-
tion gives rise to a geometric vector potential, often also re-
ferred to as Berry connection:1–3

χIα(R,O) = ⟨φ(r,R,O)|P̂Iα φ(r,R,O)⟩ . (1)

It acts as an additional potential in the nuclear Hamiltonian
and has similar properties as a vector potential.12,13,18 As in-
dicated by its dependency on the gauge origin O, it is a gauge-
variant quantity. In its definition, it contains the nuclear mo-
mentum operator,

P̂Iα =−i∇Iα , (2)

which is not a Hermitian operator in the Hilbert space spanned
by electronic coordinates. Consequently, the integration in
eq. (1) yields a complex-valued result and carries a trivial
(global) phase. The electronic wave function |φ(r,R,O)⟩ is
taken to be an exact eigenfunction of the electronic Hamilto-
nian here:

Ĥel(r,R,O) |φ(r,R,O)⟩= Eel(R) |φ(r,R,O)⟩ . (3)

It should be noted that the electronic Hamiltonian Ĥel is a
Hermitian operator acting on the Hilbert space of the elec-
tronic wave function. While the electronic Hamiltonian itself
is gauge-variant, the electronic energy Eel is not.65 As such,
the gauge-dependency of Ĥel is canceled out by the electronic
wave function |φ(r,R,O)⟩. A proper gauge transformation is
an important property of the exact wave function which should
be retained even by approximate wave functions. This can be
ensured by the use of London atomic orbitals.27,41,42

The molecular Berry curvature can be obtained from the Berry
connection through the following relation:18

ΩIα,Jβ (R) =
∂ χIα(R,O)

∂RJβ

−
∂ χJβ (R,O)

∂RIα

. (4)

The molecular Berry curvature is an antisymmetric tensor:
ΩIα,Jβ = −ΩJβ ,Iα . By inserting the definition of the Berry
connection into eq. (4), we can cast it in another, convenient
form:

ΩIα,Jβ (R) =−2Im
〈

∂φ(r,R,O)

∂RIα

∣∣∣∣ ∂φ(r,R,O)

∂RJβ

〉
. (5)

Unlike the geometric vector potential, the Berry curvature is
gauge-invariant.18 This property is retained for all approxi-
mate wave functions considered in this work.27

C. Translational sum rules

We now introduce two translational sum rules for the
molecular Berry curvature. The novel pseudomomentum-
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translational sum rule,

Nnuc

∑
J

ΩIα,Jβ (R) =
∂kβ (R)

∂RIα

, (6)

Nnuc

∑
I

ΩIα,Jβ (R) =−∂kα(R)

∂RJβ

, (7)

relates a summation over one nuclear index of the molecu-
lar Berry curvature to a nuclear displacement of the electronic
pseudomomentum k and Nnuc refers to the number of nuclei in
the molecular system. Eqs. (6) and (7) are related via the an-
tisymmetry of the molecular Berry curvature. The magnetic-
translational sum rule,

Nnuc

∑
I,J

ΩIα,Jβ (R) = NelB̃αβ , (8)

was discussed in detail in Ref. 27 and relates a summation
over both nuclear indices of the molecular Berry curvature to
the number of electrons Nel and the external magnetic field.
The field tensor is defined as B̃αβ = −εαβγ Bγ , which can be
written as:

B̃ =

 0 −Bz By
Bz 0 −Bx
−By Bx 0

 . (9)

The validity of both sum rules in eqs. (6) and (8) also auto-
matically implies the existence of another sum rule,

Nnuc

∑
I

∂kβ (R)

∂RIα

= NelB̃αβ , (10)

which is given here for the sake of completeness. It relates
the nuclear displacements of the electronic pseudomomentum
to the number of electrons and the external magnetic field. A
coordinate of the electronic pseudomomentum is defined by27

kα(R) = ⟨φ(r,R,O)|k̂α φ(r,R,O)⟩ , (11)

with the pseudomomentum operator k̂ being constructed from
the kinetic momentum operator π̂, the magnetic field tensor
and the position operator r̂. A coordinate can be defined as:27

k̂α = π̂α − B̃αβ r̂β . (12)

The kinetic momentum operator is constructed via minimal
coupling66

π̂α = p̂α +Aα(r,O) (13)

from the canonical momentum operator

p̂α =−i∇α (14)

and the magnetic vector potential

Aα(r,O) =
1
2

B̃αβ (rβ −Oβ ) , (15)

which is cast here in the symmetric gauge, a special case of
the Coulomb gauge (∇ ·A = 0) for static, homogeneous mag-
netic fields. This allows us to write the electronic pseudomo-
mentum operator in a more convenient form, with one of its
coordinates being given as:

k̂α = p̂α − 1
2

B̃αβ (rβ +Oβ ) . (16)

Despite the dependence of the operator k̂ on the gauge ori-
gin O, the electronic pseudomomentum k(R) is gauge origin
invariant if the electronic wave function transforms properly
under gauge transformations. As previously discussed, this
is the case for exact wave functions and for all approximate
wave functions considered in this work.27

D. Sum rule in the limit of a complete basis

Before presenting a detailed derivation, we now briefly dis-
cuss how the pseudomomentum-translational sum rule can be
simplified further for wave functions in the limit of a complete
basis. Using the definition of the electronic pseudomomentum
and its operator in eqs. (11) and (16), respectively, we can re-
frame the pseudomomentum-translational sum rule as:

Nnuc

∑
J

ΩIα,Jβ (R) =
∂ pβ (R,O)

∂RIα

+
1
2

B̃βγ

∂ µγ(R,O)

∂RIα

. (17)

Here, we have introduced the electronic canonical momentum
p and the electronic dipole moment µ, respectively:

pα(R,O) = ⟨φ(r,R,O)|p̂α φ(r,R,O)⟩ ; (18)
µα(R,O) =−⟨φ(r,R,O)|(r̂α −Oα)φ(r,R,O)⟩ . (19)

Similarly, a coordinate of the electronic kinetic momentum π
can be defined as

πα(R) = ⟨φ(r,R,O)|π̂α φ(r,R,O)⟩ , (20)

and it can be interpreted as the general motion of electrons
in the molecular system. Evidently, bound electrons in a
molecule should not experience an overall kinetic momentum
and they should satisfy the continuity equation.67,68 For elec-
tronic ground states, this condition implies that:

π = 0 . (21)

Using the original definition of the electronic pseudomomen-
tum operator in eq. (12), we can write:

kα = πα + B̃αβ µβ . (22)

For exact wave functions, this then simplifies to

kα = B̃αβ µβ (23)

and the corresponding sum rule becomes:

Nnuc

∑
J

ΩIα,Jβ (R) = B̃βγ

∂ µγ(R,O)

∂RIα

. (24)
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This relation, however, holds only for wave functions in a
complete basis. For any wave function expanded in an incom-
plete basis, the condition in eq. (21) is no longer necessarily
satisfied. This can be understood by examining the two com-
ponents of the electronic kinetic momentum operator:

π̂α = p̂α +
1
2

B̃αβ (r̂β −Oβ ) . (25)

While the position operator r̂ has an exact representation in
coordinate space, the momentum operator p̂ has one in mo-
mentum space. The two are related through a Fourier trans-
formation, which is exact only in the limit of a complete basis.
As such, the gauge-dependency of the electronic canonical
momentum p(R,O) and that of the electronic dipole moment
µ(R,O) will generally not cancel for a wave function in an
incomplete basis.

E. Derivation of the pseudomomentum-translational sum
rule

We now present a detailed derivation of the novel
pseudomomentum-translational sum rule, thereby proving its
validity. The derivation presented here follows in large parts
the one presented for the magnetic-translational sum rule by
Peters, Culpitt, Tellgren, and Helgaker in Ref. 27 and is thus
held a bit more concise here. The interested reader is referred
to that work for any additional information.
We begin this derivation by considering the summation of the
molecular Berry curvature over one nuclear index in eq. (4):

Nnuc

∑
J

ΩIα,Jβ (R) =
Nnuc

∑
J

∂

∂RJβ

χIα(R,O)− ∂

∂RIα

Nnuc

∑
J

χJβ (R,O) .

(26)
In order to rearrange the first term in eq. (26), we define a
translation of all nuclear coordinates of the system by some
displacement vector T, which leaves both the electronic coor-
dinates and the gauge origin unchanged:27

R+RT =

R1 +T
R2 +T

...

 . (27)

Here, we note that a displacement of all nuclear coordinates
is equivalent to a translation of all atoms, which allows us to
rewrite the sum of all nuclear derivative operators as:

∂

∂Tβ

= ∑
J

∂

∂RJβ

. (28)

For the second term in eq. (26), we define the sum of all nu-
clear canonical momentum terms as the total nuclear canoni-
cal momentum of the system:27

Nnuc

∑
J

P̂Jβ = P̂tot
β

. (29)

Inserting eqs. (28) and (29) into eq. (26) yields:

Nnuc

∑
J

ΩIα,Jβ =
∂

∂Tβ

⟨φ |P̂Iα φ⟩− ∂

∂RIα

⟨φ |P̂tot
β

φ⟩ , (30)

which reframes the summation over the molecular Berry cur-
vature in terms of a translation of an individual nuclear canon-
ical momentum and a nuclear displacement of the total nu-
clear canonical momentum. We have omitted the arguments
of φ(r,R,O) in eq. (30) for the sake of brevity.
We will now derive a concrete form for the total nuclear
canonical momentum operator P̂tot. For this, we need to con-
sider the effects of a translation of all nuclear coordinates on
the system and finally evaluate this in the limit of a vanish-
ing translation (T → 0). We begin with considering how the
electronic Hamiltonian transforms if all nuclear coordinates
are translated by T. The transformed Hamiltonian may be ob-
tained through a unitary transformation,

Ĥel(r,R+RT,O) = Û(R,T,O) Ĥel(r,R,O)Û†(R,T,O) ,
(31)

and the corresponding electronic wave function transforms ac-
cordingly:

|φ(r,R+RT,O)⟩= Û(R,T,O) |φ(r,R,O)⟩ . (32)

This unitary transformation operator contains a non-trivial
phase induced by the translation, which is directly connected
to the electronic pseudomomentum operator k̂. In addition, it
contains a trivial phase, which consists of an arbitrary gauge
function η(R,T,O). The unitary transformation operator can
be written as:27

Û(R,T,O) = exp
(
−iT · k̂+ iη(R,T,O)

)
. (33)

Please note that eqs. (31)–(33) hold true for any choice of
gauge origin. Hence we will omit O for the sake of brevity
from now on. Next, we apply the translation to the total nu-
clear momentum operator:

P̂U,tot
α (R,T) = Û†(R,T) P̂tot

α Û(R,T) . (34)

By evaluating a Baker–Campbell–Hausdorff expansion in
which all third and higher order terms vanish, one obtains:27

P̂U,tot
α (R,T) =−i

∂

∂Tα

− k̂α + γ̂α(R,T)+
1
2

NelB̃αβ Tβ . (35)

Here, γ̂ is the derivative of the gauge function with respect to
T,

γ̂α(R,T) =
∂η(R,T)

∂Tα

, (36)

which is real-valued because η(R,T) is also real-valued by
construction. If we now consider the effect of the total nu-
clear momentum operator on the wave function of a displaced
reference system, we obtain:

P̂tot
α |φ(r,R+RT)⟩= P̂tot

α Û(R,T) |φ(r,R)⟩ (37)

= Û(R,T)P̂U,tot
α (R,T) |φ(r,R)⟩ . (38)
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By evaluating eq. (37) at T = 0, we finally obtain an expres-
sion for the total nuclear momentum operator at vanishing dis-
placement of the nuclear coordinates:

P̂tot
α |φ(r,R)⟩= (γ̂α(R)− k̂α) |φ(r,R)⟩ . (39)

We can insert eq. (39) into our sum rule in (30) and we may
additionally use the fact that γ̂(R) is not dependent on the
electronic coordinate,

γα(R) = ⟨φ(r,R)|γ̂α(R)φ(r,R)⟩ , (40)

to arrive at the following expression for the sum rule:

Nnuc

∑
J

ΩIα,Jβ =
∂

∂Tβ

⟨φ |P̂Iα φ⟩−
∂γβ (R)

∂RIα

+
∂kβ (R)

∂RIα

. (41)

By comparing the sum rule in eq. (41) to its final form given
in eq. (6), we realize that we only have to demonstrate that

∂

∂Tβ

⟨φ |P̂Iα φ⟩=
∂γβ (R)

∂RIα

(42)

holds true. In other words, we have to show that the translation
of the Berry connection may at most result in the displacement
of the gauge function. Intuitively, this sounds very reasonable
considering that the Berry connection is often interpreted as
a vector potential.12,13,18 We shall now demonstrate that the
relation presented in eq. (42) indeed holds true and thereby
proof the validity of the pseudomomentum-translational sum
rule. We use the product rule of derivatives to rewrite the ex-
pression as:

∂

∂Tβ

⟨φ |P̂Iα φ⟩=
〈

∂φ

∂Tβ

∣∣∣∣−i
∂φ

∂RIα

〉
+

〈
φ

∣∣∣∣−i
∂ 2φ

∂Tβ RIα

〉
(43)

=

〈
−
(

i
∂φ

∂Tβ

)∣∣∣∣ ∂φ

∂RIα

〉
+

〈
φ

∣∣∣∣ ∂

∂RIα

(
−i

∂φ

∂Tβ

)〉
(44)

=−
〈

P̂tot
β

φ

∣∣∣∣ ∂φ

∂RIα

〉
+

〈
φ

∣∣∣∣ ∂

∂RIα

P̂tot
β

φ

〉
. (45)

Please note that we have used Schwarz’s theorem to get from
eq. (43) to (44). Furthermore, due to the hermicity of both γ̂
and k̂, we may use the turnover rule and write:

∂

∂Tβ

⟨φ |P̂Iα φ⟩=−
〈

φ

∣∣∣∣(γβ (R)− k̂β )
∂φ

∂RIα

〉
+

〈
φ

∣∣∣∣ ∂

∂RIα

(γβ (R)− k̂β )φ

〉
.

(46)

Since the electronic pseudomomentum operator k̂ does not de-
pendent on nuclear coordinates, it commutes with any nuclear
displacement operator, [∇Iα , k̂β ] = 0 and we thus obtain the
following relation:〈

φ

∣∣∣∣ ∂

∂RIα

(γβ (R)− k̂β )φ

〉
=

〈
φ

∣∣∣∣(γβ (R)− k̂β )
∂φ

∂RIα

〉
+

∂γβ (R)

∂RIα

(47)

Inserting eqs. (46) and (47) into the sum rule presented in
eq. (41), we finally arrive at

Nnuc

∑
J

ΩIα,Jβ (R) =
∂γβ (R)

∂RIα

−
∂γβ (R)

∂RIα

+
∂kβ (R)

∂RIα

; (48)

=
∂kβ (R)

∂RIα

(49)

which is the pseudomomentum-translational sum rule. Please
note that while we have assumed |φ⟩ to be an exact wave func-
tion here, the only property which was required is that it trans-
forms according to eq. (32) upon translation of nuclear coor-
dinates. As previously mentioned, it can be shown that this
property remains intact for approximate wave functions that
are expanded in a basis of LAOs.27

F. Berry population analysis

The intuitive connection between the molecular Berry cur-
vature and effective charges has been explored excessively in
recent literature.20–25 In Ref. 24, the concept of a population
analysis based on the Berry curvature was discussed in more
detail. Here, we focus on the definition of isotropic charges
based on the molecular Berry curvature in the limit of a van-
ishing magnetic field. First, we define the following atomic
pseudomomentum tensor which corresponds directly to our
novel translational sum rule,

ωI,αβ (R,B) =
Nnuc

∑
J

ΩIα,Jβ (R,B) =
∂kβ (R,B)

∂RIα

, (50)

in which we also highlight the explicit dependence on the ex-
ternal field. Without loss of generality, we may assume the
magnetic field to be parallel to one of the Cartesian axes in
our calculations. We may then obtain the following definition
for field-dependent Berry charges,

qx,Berry
I (R,B)Bx = 0.5[ωI,yz(R,B)−ωI,zy(R,B)] ; (51)

qy,Berry
I (R,B)By = 0.5[ωI,zx(R,B)−ωI,xz(R,B)] ; (52)

qz,Berry
I (R,B)Bz = 0.5[ωI,xy(R,B)−ωI,yx(R,B)] , (53)

which directly relates them to the antisymmetric part of the
atomic pseudomomentum tensor.24,25 Please note that Ref. 24
introduces two different charge approximations based on the
molecular Berry curvature. In addition to partial charges
based on the antisymmetric part of the atomic pseudomomen-
tum tensor (B1), the authors propose a population analysis
based on the full tensor (B2).24 We will limit our discussion
here to the former type of population analysis.
In a finite magnetic field, the electronic structure is dependent
on the direction of the magnetic field and thus, we also expect
the partial charges qx,Berry

I , qy,Berry
I , and qz,Berry

I to be different.
In the limit of a vanishing field, we expect these Berry charges
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to converge:

qx,Berry
I (R) = lim

|B|→0
qx,Berry

I (R,B) ; (54)

qy,Berry
I (R) = lim

|B|→0
qy,Berry

I (R,B) ; (55)

qz,Berry
I (R) = lim

|B|→0
qz,Berry

I (R,B) . (56)

Furthermore, this limit should be independent on the direc-
tion of the vanishing field. However, while the Berry charges
indeed rapidly converge with a decreasing magnetic field, we
generally obtain qx

I (R) ̸= qy
I (R) ̸= qz

I(R), except for a few spe-
cial cases. In contrast, the isotropic average of these Berry
charges always remains invariant with respect to rotations of
the field axis:24,25

⟨qBerry
I (R)⟩rot =

1
3

[
qx,Berry

I (R)+qy,Berry
I (R)+qz,Berry

I (R)
]
.

(57)

G. Connection to atomic polar tensors

In Ref. 24, the authors note a striking similarity between
Berry charges and those obtained from the atomic polar ten-
sor (APT). Without the pseudomomentum-translational sum
rule, however, this connection remained somewhat empirical
in nature. In this section, we demonstrate the exact connection
between Berry charges and GAPT charges. While the atomic
polar tensor is generally defined as the geometry gradient of
the molecular dipole moment, we will only focus on the elec-
tronic part of this quantity,

TI,αβ =
∂ µβ

∂RIα

, (58)

in the remainder of this work in order to facilitate the compar-
ison to the Berry population analysis. Direction-dependent
charges may be identified as the diagonal elements of the
APT:

qx,APT
I (R) = TI,xx ; (59)

qy,APT
I (R) = TI,yy ; (60)

qz,APT
I (R) = TI,zz . (61)

The rotationally invariant GAPT charges are then obtained as
the average of these APT charges:

qGAPT
I (R) := ⟨qAPT

I (R)⟩rot =
1
3
[TI,xx +TI,yy +TI,zz] (62)

=
1
3

[
qx,APT

I (R)+qy,APT
I (R)+qz,APT

I (R)
]
. (63)

Please note the similarity between eqs. (57) and (62). We
will now derive an explicit relation between the two sets of
partial charges from the definition of the pseudomomentum-
translational sum rule in eq. (17). First, we assume the mag-
netic field to be parallel to the Cartesian z-axis and formulate

an expression for ωI which depends explicitly on the elec-
tronic dipole moment:

ωI,xy =
∂ky

∂RIx
=

∂ py

∂RIx
+

Bz

2
∂ µx

∂RIx
(64)

ωI,yx =
∂kx

∂RIy
=

∂ px

∂RIy
− Bz

2
∂ µy

∂RIy
(65)

Here, we have omitted the explicit dependencies on R and O
for the sake of brevity. An explicit expression for the cor-
responding Berry partial charge may now be obtained using
eq. (53), which yields:

qz,Berry
I =

1
2Bz

(
∂ py

∂RIx
− ∂ px

∂RIy

)
+

1
4
(TI,xx +TI,yy) . (66)

Analogous expressions can be found for the Berry charges
qx,Berry

I and qy,Berry
I , respectively. The isotropic average of

Berry charge may then be identified as:

⟨qBerry
I ⟩rot =

1
6Bx

(
∂ pz

∂RIy
−

∂ py

∂RIz

)
+

1
6By

(
∂ px

∂RIz
− ∂ pz

∂RIx

)
+

1
6Bz

(
∂ py

∂RIx
− ∂ px

∂RIy

)
+

1
6
(TI,xx +TI,yy +TI,zz) .

(67)

Since we use the same magnetic field strength for every in-
dividual calculation of qx,Berry

I , qy,Berry
I , and qz,Berry

I , we may
set Bx = By = Bz = B and simplify the expression given in
eq. (67). We further realize that the last contribution therein
may be identified as the GAPT charge expression. This yields:

⟨qBerry
I ⟩rot =

1
6B ∑

α

εαβγ

∂ pγ

∂RIβ

+
1
2

qGAPT
I . (68)

The expression given in eq. (68) demonstrates the relation be-
tween Berry and GAPT charges. Essentially, Berry charges
are a mix of GAPT charges and another contribution which
also resembles an atomic partial charge. The latter is obtained
from the geometry gradient of the canonical momentum in the
presence of a (vanishing) magnetic field. In the remainder of
this work, we refer to this contribution as momentum partial
charges and define them as:

qMom
I =

1
3B ∑

α

εαβγ

∂ pγ

∂RIβ

. (69)

Furthermore, we note that these momentum partial charges do
not vanish in the absence of an external magnetic field. In the
perturbative limit, they may be expressed as:

lim
|B|→0

qMom
I =

1
3

εαβγ

∂ 2 pγ

∂Bα ∂RIβ

∣∣∣∣
|B|=0

. (70)

We close this section by pointing out that this division of the
Berry charges in a GAPT and a momentum charge contribu-
tion is effectively a basis set artifact. As layed out in sec. II D,
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the pseudomomentum-translational sum rule can be simplified
in the limit of a complete basis. Following a similar derivation
carried out in this section but starting from eq. (24) instead, we
obtain:

⟨qBerry
I ⟩rot = qGAPT

I for basis → ∞. (71)

In the limit of a complete basis and a vanishing magnetic field,
Berry and GAPT charges are identical. It follows that the only
difference we observe between the two variants of population
analysis is a consequence of using an incomplete basis.

III. IMPLEMENTATION

A. Preface and notation

In this section, we describe our efficient integral-direct
implementation of the Berry curvature into the TURBO-
MOLE37–39 program suite. We largely follow the work pre-
sented by Culpitt, Peters, Tellgren, and Helgaker in Ref. 26.
Therein, an analytical scheme for the calculation of the
Berry curvature in the framework of generalized Hartree–
Fock (GHF) was introduced. As such, we omit a detailed
derivation here and instead highlight the specific features of
our implementation that are novel.
We start by introducing some additional notation required for
this section. We use φp for spinors, and subscripts i, j,k, l re-
fer to occupied spinors while a,b refer to their virtual counter-
parts. All spinors are constructed in a linear combination of
LAOs,41,42 with Gaussian-type orbitals constituting the basis
functions:

|p⟩ := |φp⟩= ∑
µ

Cµ p |µ⟩ . (72)

Here, C are the spinor coefficients. For the analytical calcula-
tion of the molecular Berry curvature, we need to consider
derivatives with respect to nuclear displacements. We use
the notation |φ Iα

p ⟩ to describe total derivatives with respect

to a nuclear displacement and |φ (Iα)
p ⟩ for partial derivatives

at fixed spinor coefficients. Perturbed spinor coefficients of
the occupied–virtual block U Iα

ai are obtained from solving the
coupled perturbed Hartree–Fock (CPHF) equations61,69(

A B
B∗ A∗

)(
UIα

UIα∗

)
=

(
FIα

FIα∗

)
, (73)

where matrices A and B are given as

Aai,b j = (εa − εi)δi jδab +(ai|| jb) , (74)
Bai,b j = (ai||b j) , (75)

containing spinor energies εp and electron repulsion integrals
given in the Mulliken notation. The efficient construction of
perturbed Fock matrix FIα on the right-hand side (RHS) of
eq. (73) will be the focus of sec. III C and details on solving
the CPHF equations are given in sec. III D.

B. Construction of the molecular Berry curvature

For an electronic ground state, a convenient expression for
the molecular Berry curvature can be derived in the frame-
work of CPHF theory. Starting from the expression in eq. (5),
we may obtain the following:26

ΩIαJβ =−2Im

(
∑

i

〈
φ
(Iα)
i

∣∣φ (Jβ )
i

〉
+∑

ia
U Iα∗

ai UJβ

ai

+∑
ia

〈
φa
∣∣φ (Jβ )

i

〉
U Iα∗

ai +∑
ia

〈
φ
(Iα)
i

∣∣φa
〉
UJβ

ai

−∑
i j

〈
φ
(Iα)
i

∣∣φ j
〉〈

φ j
∣∣φ (Jβ )

i

〉)
,

(76)

which casts the molecular Berry curvature only in terms of
perturbed molecular integrals with constant coefficients and
the solutions of the CPHF equations UIα . We note here that
the first term in eq. (76) can be obtained in a straightforward
fashion by contracting a perturbed two-center integral with the
ground state total one electron density of the system:

∑
i

〈
φ
(Iα)
i

∣∣φ (Jβ )
i

〉
= ∑

µν

D0,µν⟨µ(Iα)|ν(Iα)⟩ . (77)

In GHF theory, the one-electron density

Dµν = ∑
i

CµiC∗
ν i (78)

may be decomposed into a total density and three spin densi-
ties according to

D =
3

∑
m=0

Dm ⊗σm , (79)

with σm being the Pauli matrices and m ∈ {0,1,2,3} repre-
senting the total (0) and spin (x,y,z) components, respectively.
We further use the symbol n∈{1,2,3} to refer only to the spin
components in this work. For a more comprehensive introduc-
tion to GHF theory in the context of finite magnetic fields, the
interested reader is referred to more specialized literature on
that topic.25,46,51

We close this general discussion on the construction of
the molecular Berry curvature by noting that

〈
φa
∣∣φ (Iα)

i

〉
=〈

φ
(Iα)
i

∣∣φa
〉∗, which implies that only one of these integrals has

to be computed. In our implementation, all 3Nnuc bra-sided
derivative overlap integrals are constructed in the atomic or-
bital (AO) basis and subsequently transformed into the spinor
basis. The occupied–occupied part of the resulting inte-
grals are used for the fifth contribution in eq. (76), while the
occupied–virtual part is used for the third and fourth contribu-
tion.

C. Construction of the perturbed Fock matrix

The only missing component is the perturbed spinor coef-
ficient matrix UIα . As previously mentioned, this is obtained

https://doi.org/10.26434/chemrxiv-2025-d6hq6 ORCID: https://orcid.org/0000-0003-1895-2037 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-d6hq6
https://orcid.org/0000-0003-1895-2037
https://creativecommons.org/licenses/by-nc-nd/4.0/


8

from solving the CPHF equations and obtaining it therefore
constitutes the most time-consuming step in the calculation
of the molecular Berry curvature. In our implementation, the
computation of U consists of two parts. First, the construction
of the perturbed Fock matrix, which is the RHS of eq. (73).
Second, the iterative solution of the CPHF equations. Here,
we start by focusing on the first part.
Following the derivations presented in Ref. 26, we obtain the
following expression for the perturbed Fock matrix:

FIα
ai = εiS

(Iα)
ai −F(Iα)

ai +∑
kl

S(Iα)
kl (ai||lk) . (80)

For the first contribution, the perturbed overlap matrix S(Iα)

is calculated as the sum of a bra- and ket-derived overlap ma-
trix in AO basis and subsequently transformed into the spinor
basis. We only require the occupied–virtual part of this ma-
trix here. In the second contribution, the derivative of the
Fock matrix at constant spinor coefficients F(Iα)

ai requires us
to calculate all integrals which are also necessary for the com-
putation of geometry gradients. In the GHF framework, the
contributions may be decomposed according to:25,51

F(Iα)
0,µν

= h(Iα)
µν + J(Iα)

µν −K(Iα)
0,µν

,

F(Iα)
n,µν =−K(Iα)

n,µν +
ZF(Iα)

n,µν .
(81)

This contains the derivatives of the one-electron Hamiltonian
h(Iα), the Coulomb matrix J(Iα), as well as the exchange ma-
trix K(Iα). Furthermore, the derivative of the spin Zeeman
contribution ZF(Iα) needs to be calculated. The Coulomb and
exchange contributions contain derivatives of the four–center
two-electron integrals which are contracted with the unper-
turbed density matrices

J(Iα)
µν = ∑

κλ

∂ (µν |κλ )

∂RIα

D0,λκ , (82)

K(Iα)
m,µν = ∑

κλ

∂ (µλ |κν)

∂RIα

Dm,λκ , (83)

while the derivatives of the spin-Zeeman term are equivalent
to derivatives of the overlap matrix scaled with the corre-
sponding component of the magnetic field vector:

ZF(Iα)
n,µν = BnS(Iα)

µν . (84)

The second contribution to the perturbed Fock matrix in
eq. (80) may also be constructed in the AO basis and sub-
sequently transformed into the spinor basis, where only the
occupied–virtual block is required. It should be stressed again
that all of these contributions are readily available in any quan-
tum chemistry code that is already capable of computing a ge-
ometry gradient for molecules in a finite magnetic field.
We now turn to the third contribution in eq. (80), which con-
tains the two-electron integrals in spinor basis, contracted with
the derivative of the overlap matrix. At first glance, it ap-
pears as if a transformation of the four-center integrals into
the spinor basis is unavoidable in the construction of the RHS
of the CPHF equations. Such a transformation scales very

unfavorably as O(N5) with the system size. This expensive
step would thus be a significant bottleneck in the calculation
of the molecular Berry curvature. It can, however, be circum-
vented here. By transforming the entire third contribution in
eq. (80) into the AO basis, we obtain after a few algebraic
manipulations:61,62

∑
kl

S(Iα)
kl (ai||lk) = ∑

kl
∑
µν

C∗
µkCν lS

(Iα)
µν ∑

κλ

C∗
κlCλk(ai||κλ )

= ∑
µνκλ

Dλ µ Dνκ S(Iα)
µν (ai||κλ )

= ∑
κλ

MIα

λκ
(ai||κλ ) .

(85)

This expression may also be simplified to:

∑
kl

S(Iα)
kl (ai||lk) = ∑

µν

C∗
µaCν i ∑

κλ

MIα

λκ
(µν ||κλ ) . (86)

Here, we have introduced the auxiliary matrix

MIα = DS(Iα)D , (87)

which is constructed in the AO basis. It has similar proper-
ties to a perturbed density matrix and is Hermitian. Any code
capable of calculating the Coulomb and exchange matrices
within the SCF procedure can therefore also be used to con-
tract MIα with the four-center integrals instead. The result
is transformed into the spinor basis and the occupied–virtual
block of the result is equivalent to the third contribution in
eq. (80). Through this scheme, the costly transformation of
four-center integrals into the spinor basis is entirely avoided.
The result is a fully integral-direct algorithm for the construc-
tion of the RHS of the CPHF equations. This had already
been previously recognized for calculations of the geometry
Hessian in the absence of external magnetic fields.61,62

D. Solving the CPHF equations

We conclude this section by briefly examining how the
CPHF equations are solved in our implementation. The solver
we use for this purpose is integral-direct and based on David-
son’s method, which iteratively diagonalizes a subspace of the
target matrix. This algorithm has been used in previous work
for solving Casida’s equation in the case of time-dependent
Hartree–Fock. In the static case, Casida’s equations and the
CPHF equations are equivalent.69

The orbital rotation matrices A and B were defined in eqs. (74)
and (75), respectively. Besides spinor energies, they consist
of Coulomb and exchange integrals in the spinor basis. Sim-
ilar to our procedure in sec. III C, we need to transform these
two-electron integrals into the AO basis in order to obtain a
formalism which can be implemented using an integral-direct
algorithm. Having already constructed the RHS of CPHF in
eq. (73), we can avoid having to fully construct the matrices A
and B by realizing that only products with the solution vectors
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Uχ and Uχ∗ are required. They are of the form

Fχ

ai = ∑
jb

Aai,b j ·U χ

b j , (88)

= ∑
jb
[(εa − εi)δi jδab +(ai|| jb)] ·U χ

b j , (89)

with equivalent contributions from B and Uχ∗. We use the
more general perturbation parameter χ here instead of Iα in
order to differentiate the expressions given here from those on
the RHS of the CPHF equations. The perturbed Fock matrix
Fχ is obtained as a linear combination of expressions such as
those given in eq. (88). Evaluating the first term in eq. (89)
is trivial and as such, we will focus on the second term. We
transform this expression into the AO basis to obtain:

∑
jb
(ai|| jb) ·U χ

b j = ∑
µν

C∗
µaCν i ∑

jb
(µν || jb) ·U χ

b j (90)

= ∑
µν

C∗
µaCν i ∑

jb
∑
κλ

C∗
κ jCλb(µν ||κλ ) ·U χ

b j

(91)

= ∑
µν

C∗
µaCν i ∑

κλ

(µν ||κλ ) ·∑
jb

C∗
κ jCλbU χ

b j

(92)

= ∑
µν

C∗
µaCν i ∑

κλ

(µν ||κλ ) ·U χ

λκ
, (93)

where we have defined the matrix elements as

U χ

λκ
= ∑

jb
CλbU χ

b jC
∗
κ j . (94)

As such, the problem has been reduced to a contraction of
the electron repulsion integrals with the perturbed coefficient
matrices Uχ in eq. (93), the solution of which has to be trans-
formed into the spinor basis. As before, only the occupied–
virtual block of the resulting matrix is required here. Please
note that Uχ is generally not Hermitian.
The procedure for obtaining the perturbed coefficient matri-
ces UIα now works as follows: First, the RHS of the CPHF
equations is constructed according to eq. (80) and stored on
disk. Second, a starting guess for UIα is created and used
to construct the left-hand side (LHS) according to the proce-
dure described in this section, particularly eq. (93). Third, the
LHS is compared to the RHS and from the difference, a new
set of U vectors is created. This is done until the procedure
is converged and the final set of solutions is written on disk
for a subsequent calculation of different molecular quantities,
including the molecular Berry curvature and the APT.

IV. COMPUTATIONAL METHODS

In the previous sections, we have derived the novel
pseudomomentum-translational sum rule for the molecular
Berry curvature. Furthermore, we have described our effi-
cient, integral-direct algorithm capable of analytically com-
puting the Berry curvature and other response properties for
molecules in finite magnetic fields. We now use these tools to

numerically validate the pseudomomentum-translational sum
rule. Furthermore, we examine Berry charges of various
molecules and compare them to the results obtained from
other partial charge models. In particular, the connection be-
tween Berry and GAPT charges is investigated.
Unless stated otherwise, the molecular geometries presented
in this work were optimized in the absence of an external mag-
netic field at the PBE/def2-TZVP level of theory.70,71 Rela-
tively large grids (grid 4) were employed for the numerical in-
tegration of the exchange-correlation functional.72 The reso-
lution of the identity approximation was used for the Coulomb
part (RI-J) with an appropriate def2-TZVP auxilary basis
set.73 In the individual SCF cycles, the energies were con-
verged up to at least 10−7 Eh. Geometries were optimized up
to an energy of at least 10−6 Eh and up to a gradient norm of
at least 10−4 Eh/a0.
For the numerical validation of the Berry curvature in
sec. V A, we calculated the water molecule in an external
magnetic field of magnitude |B| = 0.1B0 pointed in the di-
rection B = (1,2,3)⊤. This calculation was carried out on the
GHF/def2-TZVP level of theory. Very tight convergence cri-
teria were chosen: the energy was converged to 10−12 Eh and
the norm of the density matrix to 10−14. The Berry curva-
ture and all other response properties were obtained from a
subsequent linear response calculations. Therein, the solution
vectors were converged up to a norm of 10−10.
The basis set convergence of Berry and GAPT charges is in-
vestigated in sec. V B. For this purpose, we have calculated
the LiH molecule aligned in both a parallel and a perpendicu-
lar direction to the bond axis. The magnetic field strength was
chosen to be 10−6 B0 ≈ 0.235T. All calculations were per-
formed using GHF. Dunning basis sets of the type cc-pVXZ
and aug-cc-pVXZ basis sets with X = D, T, Q, 5 were used
for this investigation. SCF calculations were converged to
10−14 Eh and the norm of the density matrix to 10−14, while
the solution vectors in the linear response calculations were
converged up to a norm of 10−13.
In sec. V C, results from different partial charge models are
compared for the three heteroaromatic molecules furan, pyr-
role, and thiophene. The geometries were optimized as pre-
viously described, but medium-sized grids (grid 3) were cho-
sen for the numerical integration of the exchange-correlation
functional. In sec. V D, trihalomethyl cations of the form CX+

3
where X = F, Cl, Br are computed. Finally, the methylmag-
nesium bromide molecule was calculated. Here, we chose
the PBE0 functional for the geometry optimization. Partial
charges for all of these systems were obtained on the HF/def2-
TZVP level of theory. Mulliken and Kollman charges were
obtained from calculations in the absence of a magnetic field,
while Berry and GAPT charges were obtained using the GHF
method in an external magnetic field of 10−4 B0 ≈ 23.5T. The
SCF calculations were converged to 10−12 Eh in the energy
and 10−14 in the norm of the density matrix. Linear response
solution vectors were converged up to a norm of 10−10.
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V. RESULTS AND DISCUSSION

A. Numerical validation of the novel sum rule

The novel pseudomomentum-translational sum rule was
presented and derived in secs. II C – II E of this work. We start
this discussion by validating it numerically for one example,
relating it also to the APT and the geometry gradient of the
canonical momentum operator. As a test case, we chose the
water molecule in an external magnetic field of |B| = 0.1B0
pointed in the direction B = (1,2,3)⊤. This is equivalent to a
magnetic field of B ≈ (0.0267261,0.0534522,0.0801784)⊤.
The water molecule was chosen to lie in the xz-plane and con-
sequently, the overall system has C1 symmetry.74

We have calculated the molecular Berry curvature of this
system, alongside the geometry gradients of the canonical
momentum and the electronic dipole moment. The values
are depicted in fig. 1. Therein, we have also evaluated the
pseudomomentum-translational sum rule according to eq. (6)
as indicated in red and the magnetic-translational sum rule27

according to eq. (8), which is highlighted in blue here. Fur-
thermore, the geometry gradient of the electronic pseudomo-
mentum was evaluated according to eq. (17), which is also
indicated in red within the figure.
Evidently, the pseudomomentum-translational sum rule leads
to a matrix with identical values to those found in the geom-
etry gradient of the electronic pseudomomentum. While only
7 digits are depicted here, they agree up to the precision of the
reference calculation, which in this case is at least 10 digits.
By summing over an additional atomic index, the magnetic-
translational sum rule is obtained. For the water molecule with
Nel = 10, it can be clearly seen that it matches up with the
magnetic field tensor shown in eq. (9). All of these findings
clearly demonstrate the validity of both translational sum rules
for the molecular Berry curvature. While this system is only
one example, we demonstrate this also for all other systems
investigated in the context of this work. The supporting infor-
mation lists both the molecular Berry curvature as well as the
geometry gradients of the electric dipole moment, canonical
momentum, and the electronic pseudomomentum.

B. Basis set convergence of Berry and GAPT charges

In sec. II F, we have reintroduced the concept of isotropic
Berry charges originally proposed in Ref. 24. Their close rela-
tion to GAPT charges35,36 was explicitly shown in sec. II G of
this work using the pseudomomentum-translational sum rule.
Having validated the sum rule numerically, we now turn our
focus on comparing Berry charges to GAPT charges. Of par-
ticular interest in this investigation is the consideration of the
basis set limit given in eq. (71), which was derived using the
pseudomomentum-translational sum rule. To reiterate, Berry
and GAPT charges become equivalent in the limit of a com-
plete basis. In this section, we demonstrate that individual
APT charges may also be related to elements of the atomic
pseudomomentum tensor in eq. (50). For a magnetic field
aligned with the Cartesian z-component, B = (0,0,Bz)

⊤, this

relation was explicitly shown in eqs. (64) – (65). Further-
more, we introduce individual momentum partial charges cor-
responding to the elements of the atomic pseudomomentum
tensor:

qxy,Mom
I =

2
Bz

∂ py

∂RIx
, (95)

qyx,Mom
I =− 2

Bz

∂ px

∂RIy
. (96)

A similar set of partial charges can be defined for other direc-
tions of the magnetic field vector. The isotropic average of
their linear combination was shown in eq. (69). In a complete
basis, the relation between APT charges, momentum charges,
and the atomic pseudomomentum tensor elements becomes:

qx,APT
I = qxy,Mom

I = ωI,xy/Bz , (97)

qy,APT
I = qyx,Mom

I =−ωI,yx/Bz . (98)

As a model system, we chose the lithium hydride molecule in
a very small magnetic field of Bz = 10−6B0 applied in parallel
direction to the bond axis. To assess the basis set limit, we
evaluated the molecular Berry curvature and the APT charges
using the basis sets (aug-)cc-pVXZ (X = D, T, Q, 5). Due to
the C∞ symmetry of the system,74 the atomic pseudomomen-
tum tensor ωI becomes antisymmetric: ωI,xy = −ωI,yx. For
the same reason, the two relevant APT charges become equiv-
alent in this case: qx,APT = qy,APT. As such, we only have to
compare the APT charge qy,APT to the atomic pseudomomen-
tum tensor element ωI,yx. The same is true for the respective
momentum charges. The results are presented in table I for
the hydrogen atom in LiH.

Basis set qy,APT
H qyx,Mom

I −ωH,yx/Bz

cc-pVDZ –1.7725 –1.6628 –1.7176
cc-pVTZ –1.7777 –1.7533 –1.7655
cc-pVQZ –1.7801 –1.7718 –1.7760
cc-pV5Z –1.7810 –1.7783 –1.7797

aug-cc-pVDZ –1.7844 –1.7809 –1.7827
aug-cc-pVTZ –1.7818 –1.7770 –1.7794
aug-cc-pVQZ –1.7815 –1.7803 –1.7809
aug-cc-pV5Z –1.7815 –1.7810 –1.7812

TABLE I. Comparison between one APT charge, one momentum
charge and the corresponding element of the atomic pseudomomen-
tum tensor divided by the magnetic field strength. A magnetic field of
10−6 B0 was applied in parallel direction to the bond axis of LiH. The
calculations were performed using Hartree–Fock. Different Dunning
basis sets are considered to assess the basis set convergence. All val-
ues are given in units of [e].

The basis set convergence is clearly visible for the APT charge
qy,APT

H , the momentum charge qyx,Mom
I , and the atomic pseu-

domomentum tensor element ωH,yx/Bz. The APT charge con-
verges faster against the basis set limit compared to the other
two, but all of them eventually converge against the same
limit. Please note that the atomic pseudomomentum tensor
element is the average of the APT and momentum charge. In
the largest basis considered here, aug-cc-pV5Z, the difference
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FIG. 1. Schematic depiction of how to evaluate the translational sum rules of the molecular Berry curvature for the water molecule in a skewed
external magnetic field. The molecular Berry curvature is shown with labels indicating its components. Summing over one atomic index is
equivalent to evaluating the pseudomomentum-translational sum rule, indicated here in red. Subsequently summing over the other atomic
index is equivalent to evaluating the magnetic-translational sum rule,27 indicated here in blue. As a comparison, the geometry gradients of the
canonical momentum and electronic dipole moment are shown. From these, the geometry gradient of the electronic pseudomomentum was
calculated. This matches perfectly with the results obtained from the pseudomomentum-translational sum rule.

between the APT and momentum charge is only 0.0005e,
which is about 0.03%. It is unsurprising that the momentum
charge and therefore also the atomic pseudomomentum ten-
sor element converges more slowly against the basis set limit
compared to the APT charge. The basis set requirements for
the pseudomomentum were already discussed in sec. II D –
it is a composite quantity, constructed from both the electric
dipole moment and the canonical momentum. While the for-
mer has an exact representation in coordinate space, the latter
only has one in momentum space. As such, the basis we pro-
vide (which is in real space) leads to a rapid convergence of
the APT charge. In comparison, the pseudomomentum needs
a larger basis in real space to converge.
Next, we consider the LiH molecule in a magnetic field ap-
plied in perpendicular direction to the bond axis. Due to
the symmetry reduction to Cs,74 the atomic pseudomomentum
tensor is no longer antisymmetric and the APT charges are no
longer equivalent: qx,APT ̸= qy,APT. Thus, we need to consider
them separately. The results for the hydrogen atom in LiH are
presented in table II. First, we note that the results for the APT
charge qy,APT

H , the momentum charge qyx,Mom
I , and the corre-

Basis set qx,APT
H qxy,Mom

I ωH,xy/Bz qy,APT
H qyx,Mom

I −ωH,yx/Bz

cc-pVDZ –1.4326 –1.3151 –1.3738 –1.7725 –1.6628 –1.7176
cc-pVTZ –1.4780 –1.4554 –1.4667 –1.7777 –1.7533 –1.7655
cc-pVQZ –1.4818 –1.4635 –1.4727 –1.7801 –1.7718 –1.7760
cc-pV5Z –1.4860 –1.4753 –1.4806 –1.7810 –1.7783 –1.7797

aug-cc-pVDZ –1.4639 –1.4392 –1.4515 –1.7844 –1.7809 –1.7827
aug-cc-pVTZ –1.4882 –1.4361 –1.4622 –1.7818 –1.7770 –1.7794
aug-cc-pVQZ –1.4883 –1.4884 –1.4884 –1.7815 –1.7803 –1.7809
aug-cc-pV5Z –1.4882 –1.4885 –1.4883 –1.7815 –1.7810 –1.7812

TABLE II. Comparison between the two non-redundant APT
charges, momentum charges and the corresponding elements of
the atomic pseudomomentum tensor divided by the magnetic field
strength. A magnetic field of 10−6 B0 was applied in perpendicular
direction to the bond axis of LiH. The calculations were performed
using Hartree–Fock. Different Dunning basis sets are considered to
assess the basis set convergence. All values are given in units of [e].

sponding atomic pseudomomentum tensor element ωH,yx/Bz
are exactly the same as for LiH in a parallel field. However,
for the other set of charges, we can observe a slower con-
vergence to the basis set limit compared to the parallel case.
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Particularly the non-augmented basis sets of type cc-pVXZ
converge very slowly, with a difference of 0.01e between the
APT and momentum charge in the case of cc-pV5Z, which
amounts to about 0.7%. It should be noted that the augmented
basis sets perform significantly better. The aug-cc-pVQZ ba-
sis set appears to be sufficient for a convergence of both the
APT and momentum charges, yielding results that agree up to
the numerical accuracy of the reference calculation.
These findings confirm the expected basis set convergence of
the APT and momentum charges, and thereby also the Berry
charges. However, we want to point out a peculiar conver-
gence pattern visible for the momentum charge in table II.
While the APT charges are already converged for the aug-
cc-pVTZ basis set, the momentum charge qyx,Mom

I is still off
by more than 0.05e, which corresponds to an error of about
3.5%. Curiously, the non-augmented cc-pVTZ basis yields
a value which is closer to the aug-cc-pV5Z reference, differ-
ing only by approximately 2.2%. Why does the augmented
basis yield a worse result for the 3ζ basis compared to its
non-augmented counterpart? To analyze this, we have per-
formed further calculations for LiH in a perpendicular mag-
netic field with the aug-cc-pVTZ basis set in which we have
subsequently discarded some of the additional diffuse func-
tions. The results are listed in table III.

Basis set qx,APT
H qxy,Mom

H qy,APT
H qyx,Mom

H
H w/o aug(s) –1.4869 –1.4178 –1.7816 –1.7773
H w/o aug(p) –1.4890 –1.5131 –1.7823 –1.7802
H w/o aug(d) –1.4892 –1.5048 –1.7818 –1.7700
H w/o aug(p,d) –1.4897 –1.5135 –1.7815 –1.7729
H w/o aug(s,p,d) –1.4871 –1.5002 –1.7813 –1.7706
Li w/o aug(s) –1.4880 –1.4325 –1.7817 –1.7765
Li w/o aug(p) –1.4881 –1.4321 –1.7818 –1.7781
Li w/o aug(d) –1.4878 –1.4340 –1.7816 –1.7787
Li w/o aug(f) –1.4883 –1.4479 –1.7817 –1.7773

TABLE III. APT and momentum charges for LiH with a magnetic
field of 10−6 B0 applied in perpendicular direction to the bond axis.
The calculations were performed using Hartree–Fock. All calcula-
tions were performed with a modified aug-cc-pVTZ basis, in which
some of the additional diffuse functions were discarded as indicated.
All values are given in units of [e].

The APT charges are almost not affected by the change in
the basis set, with the largest differences being of approxi-
mately 0.002e. The momentum charges, on the other hand,
are heavily affected by the presence of the diffuse functions in
the aug-cc-pVTZ basis. This is particularly true for the addi-
tional diffuse functions on the hydrogen atom for the qxy,Mom

H
charge. Differences here are almost 0.1e, which is two or-
ders of magnitude larger than differences visible for the APT
charges. The presence of the diffuse p- and d-functions in the
augmented basis set appears to be particularly important for
the momentum charge. Discarding these functions leads to
a significantly more negatively charged hydrogen atom com-
pared to the result obtained from the aug-cc-pVTZ basis. It
should be noted that the qxy,Mom

H charges become even more
negative than the one obtained from the aug-cc-pV5Z basis.
As previously discussed in sec. II D, we expected the mo-

mentum and therefore also the momentum charges to con-
verge significantly slower to the basis set limit than the elec-
tric dipole moment and the APT charges. The diffuse func-
tions are essential here because the external magnetic field
induces a plane-wave character into the electronic wave func-
tion, which needs to be captured by the basis in coordinate
space. This implies that the molecular Berry curvature might
also be affected by such basis set convergence issues. De-
pending on the molecular system, some coordinates of the
molecular Berry curvature may converge significantly faster
than others with the basis set size. Future investigations for
molecules in finite magnetic fields should take this effect into
account when choosing a basis.

C. Dipole moments of heteroaromatic molecules

Having examined the basis set convergence of Berry and
GAPT charges, we now compare their general performance
to Mulliken charges28–30 as well as partial charges ob-
tained from an electrostatic potential fit based on Kollman’s
parametrization.34 Since partial charges are not observable
quantities, we cannot directly compare them to reference data.
However, properties constructed from them – such as the elec-
tric dipole moment – can be used to assess the quality of a
population analysis. In this section, we therefore investigate
the electric dipole moment of various molecules, comparing
the results obtained from the aforementioned types of popu-
lation analyses to the quantum-mechanical definition given in
eq. (19).
As model systems, we chose the five-membered heteroaro-
matic molecules furan, pyrrole, and thiophene. All of them
are planar and their structures are shown in fig. 2. These
molecules are particularly interesting for this investigation be-
cause pyrrole is known to have an inverse electric dipole mo-
ment compared to furan and thiophene.75 We expect the dif-
ferent types of population analysis to predict this feature at
least qualitatively correct.

FIG. 2. Molecular structures of furan, pyrrole and thiophene with
numbers indicating different positions.

The classical definition of an electric dipole moment is a sum
over charges and their respective coordinates. For partial
charges, we can make the assumption that they are located
exactly at the nuclear position of their respective atoms:

µα

!
= ∑

I
qI(R) ·RIα . (99)
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However, this construction can lead to a conceptual problem.
The derivative of the dipole moment with respect to an atomic
coordinate yields36

∂ µα

∂RJβ

= qJ(R)δαβ +∑
I

∂qI(R)

∂RJβ

·RIα , (100)

which does not satisfy the classical relation between charges
and dipole moments. The problem is the dependence of the
partial charge’s magnitude on its position in space – classical
charges do not exhibit any such dependency. Instead of as-
suming that the partial charges add up to the electric dipole
moment, we could also require them to yield the correct rela-
tion to the derivative of the dipole moment:

∂ µα

∂RJβ

!
= qJ(R)δαβ . (101)

However, with this choice we lose information about the con-
nection between partial charges and the electric dipole mo-
ment. Trying to solve eq. (101) for µ, we quickly realize that
we would have to arbitrarily define an integration constant.
As such, partial charges can – except for a few special cases
– only fulfill either eq. (99) or eq. (101). It should be noted
that usually, partial charges derived from any type of popu-
lation analysis will fulfill neither of these two equations per-
fectly. However, their construction might already suggest that
they will yield more reasonable results for either one of these
conditions. For APT charges (and the closely related Berry
charges), the second condition is already fundamental to their
construction. Hence, we do not necessarily expect them to
yield reasonable results for the electric dipole moment if it
is calculated according to eq. (99). Kollman charges, on the
other hand, are obtained from an electrostatic potential fit. As
such, they are much more closely aligned to the first condi-
tion and should yield reasonable results for the electric dipole
moment. Mulliken charges are constructed directly from the
density matrix and are therefore not necessarily linked to ei-
ther of those conditions.
As pointed out in Ref. 76, planar molecules present a special
case. For a molecule in the xz-plane, the derivatives ∂qI/∂RJy
will vanish due to symmetry reasons. Therefore, the APT
charge APTyy = qy

I corresponds exactly to the electric dipole
moment here. A similar relation can be derived for the Berry
charges. Following from the connection to the APT charges,
the linear combination

qx+z−y,Berry
I = qx,Berry

I +qz,Berry
I −qy,Berry

I (102)

= 3⟨qBerry
I ⟩rot −2qy,Berry

I (103)

corresponds to the APT charge qy
I . They are equivalent in the

limit of a complete basis. In the remainder of this section, we
will take these two special cases (APTyy and Berryx+z−y) into
account.
We start this discussion with the furan molecule. The par-
tial charges for all nonequivalent atoms are presented in ta-
ble IV. As expected, Berry and GAPT charges are very similar
to one another, with the biggest difference of less than 0.02e
being the partial charge predicted for the oxygen atom. The

Atom Berry Berryx+z−y GAPT APTyy Mulliken Kollman
1O –0.4978 –0.1540 –0.5159 –0.1702 –0.3373 –0.1206
2C 0.1582 –0.0896 0.1669 –0.0817 0.0581 –0.1127
3C –0.0719 –0.2111 –0.0792 –0.2157 –0.1839 –0.1916
2H 0.0909 0.1982 0.0926 0.2000 0.1530 0.1906
3H 0.0716 0.1794 0.0776 0.1824 - 0.1414 0.1741

TABLE IV. Partial charges calculated for furan on the HF/def2-
TZVP level of theory. The numbering of the atoms follows from
figure 2, hydrogen atoms are tagged with the number of the respec-
tive atom they are bound to. All values in [e].

APTyy and Berryx+z−y charges agree similarly well with one
another, but show extreme discrepancies to the APT and Berry
charges, respectively. For oxygen, this difference is approxi-
mately 0.35e, and we even find a qualitative difference for the
2C atom, with Berry and GAPT charges predicting positive
partial charges, while the APTyy and Berryx+z−y charges are
negative. Mulliken charges qualitatively agree with Berry and
GAPT charges. Kollman charges, on the other hand, agree
with APTyy and Berryx+z−y charges. The biggest difference is
only about 0.05e and can be found for the oxygen atom when
comparing the APTyy and Kollman charge.
For pyrrole, partial charges obtained from the different popu-
lation analyses are listed in table V. As expected, Berry and
APT charges are in good agreement, with the biggest dif-
ference of about 0.04e for the nitrogen atom. APTyy and
Berryx+z−y charges again show large differences to APT and
Berry charges, predicting much more electronegative car-
bon atoms and a much more electropositive nitrogen atom.
The differences between these two types of partial charges is
somewhat larger, with the biggest difference of about 0.06e
being found on the nitrogen atom. Mulliken charges are in rel-
atively good agreement with the APTyy charges compared to
furan. Kollman charges, on the other hand, show a much big-
ger discrepancy here, with differences of almost 0.2e for the
nitrogen atom compared to the respective APTyy charge. Koll-
man charges predict significantly more electronegative carbon
atoms for pyrrole compared to the other methods.

Atom Berry Berryx+z−y GAPT APTyy Mulliken Kollman
1N –0.3512 –0.2285 –0.3895 –0.2910 –0.3214 –0.1083
1H 0.2379 0.3094 0.2511 0.3239 0.2511 0.3030
2C 0.0206 –0.1883 0.0371 –0.1423 –0.0608 –0.2847
3C –0.0949 –0.2321 –0.1094 –0.2654 –0.1771 –0.1946
2H 0.0766 0.2051 0.0778 0.2016 0.1451 0.2088
3H 0.0543 0.1748 0.0638 0.1896 0.1280 0.1732

TABLE V. Partial charges calculated for pyrrole on the HF/def2-
TZVP level of theory. The numbering of the atoms follows from
figure 2, hydrogen atoms are tagged with the number of the respec-
tive atom they are bound to. All values in [e].

The partial charges for thiophene are listed in table VI. Here,
Berry and GAPT charges are even closer to one another than
for the other two molecules. They both predict a slightly
negative charge on the sulfur atom, whereas all other mod-
els predict a positive charge. The largest difference between
Berryx+z−y and APTyy charges can be found for the 2C atom,
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approximately 0.01e. Kollman charges are relatively close to
the two aforementioned types of population analyses, with the
largest difference of about 0.04e for the sulfur atom. Mulliken
charges are in a qualitative agreement to Kollman, APTyy,
and Berryx+z−y charges, but overestimate the electropositive
character of sulfur, while underestimating the electronegative
character of the 2C atom.

Atom Berry Berryx+z−y GAPT APTyy Mulliken Kollman
1S –0.0515 0.0973 –0.0647 0.0897 0.1427 0.0539
2C –0.0129 –0.2704 –0.0007 –0.2484 –0.1893 –0.2785
3C –0.0920 –0.1409 –0.1082 –0.1666 –0.1734 –0.1357
2H 0.0780 0.1895 0.0818 0.1885 0.1568 0.2294
3H 0.0527 0.1731 0.0595 0.1816 0.1346 0.1579

TABLE VI. Partial charges calculated for thiophene on the HF/def2-
TZVP level of theory. The numbering of the atoms follows from
figure 2, hydrogen atoms are tagged with the number of the respec-
tive atom they are bound to. All values in [e].

The electric dipole moments for all three molecules as calcu-
lated from the different types of population analyses are pre-
sented in table VII. In addition, the electric dipole moment
evaluated according to eq. (19) from the density of the HF
calculation is given here. This value is taken as the reference,
and the difference between the dipole moments evaluated via
the partial charge models and this reference is visualized in
fig. 3.

Model Furan Pyrrole Thiophene
Density –0.3123 0.7573 –0.2760
Berry –0.8278 0.4373 –0.0191
Berryx+z−y –0.2888 0.7637 –0.3110
GAPT –0.8655 0.4208 –0.0225
APTyy –0.3123 0.7573 –0.2760
Mulliken –0.4808 0.4397 0.2265
Kollman –0.3046 0.7535 –0.2641

TABLE VII. Electric dipole moments for furan, pyrrole, and thio-
phene. ’Density’ refers to the expectation value of the dipole mo-
ment operator calculated from the ground state density. The other
dipole moments were evaluated using their respective partial charge
models. All values in [ea0].

First, we notice that almost all partial charge models predict
the correct sign for the electric dipole moments of the het-
eroaromatic molecules, with pyrrole showing the aforemen-
tioned characteristic inverse dipole moment. However, from a
quantitative point of view, the results differ drastically. For fu-
ran, the results obtained from Berry and GAPT charges differ
from the reference by more than 0.5ea0, yielding an electric
dipole moment which is almost three times larger than the ref-
erence value. For thiophene, Berry and GAPT charges predict
an almost vanishing electric dipole moment, while the refer-
ence has a value of −0.2760ea0. Generally, Berry and GAPT
charges do not appear to be suitable for accurately predicting
the electric dipole moment. While this had been noted for
GAPT charges in the literature,36 we also want to highlight
this deficiency for Berry charges here.
Mulliken charges also perform poorly in the description of the

FIG. 3. Difference between electric dipole moments calculated from
different partial charge models and the reference value which was
calculated from the density. See also table VII.

electric dipole moments. For the thiophene molecule in par-
ticular, they predict the wrong direction of the electric dipole
moment, thereby failing even in a qualitatively correct de-
scription of this property. While they predict the correct sign
for furan and pyrrole, differences of more than 0.3ea0 to the
reference value can be observed.
As previously discussed, APTyy charges are expected to yield
exactly the same results as the reference.36,76 This is observed
here as well, with the two matching up to the accuracy of the
calculation, which in this case is at least 10 digits. As ex-
pected, Berryx+z−y charges yield very similar results with dif-
ferences of up to about 0.03ea0 compared to the reference.
As previously discussed, the discrepancy between APTyy and
Berryx+z−y charges should mostly be seen as a basis set arti-
fact. Kollman charges yield very similar values to the refer-
ence as well, with errors of only about 0.01ea0.
The good performance of APTyy, Berryx+z−y, and Kollman
charges is clearly visible in fig. 3. However, it should be
stressed again that the heteroaromatic systems investigated
here are a special case. For non-planar molecules, there are
generally no linear combinations of Cartesian components of
either the APT or Berry charges that lead to such a good agree-
ment with an appropriate reference.77 GAPT charges and the
closely related Berry charges generally describe molecular
properties such as the electric dipole moment poorly. They
can, however, be very useful to model charge fluctuation dur-
ing molecular motion.36 For GAPT charges, this is relevant in
the case of infrared spectroscopy, while Berry charges can be
useful for the description of molecular rotations and vibrations
in strong magnetic fields.20,27

D. Partial charges of molecules with strong ionic character

In this section, we compare the performance of the
different partial charge models for molecules with strong

https://doi.org/10.26434/chemrxiv-2025-d6hq6 ORCID: https://orcid.org/0000-0003-1895-2037 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-d6hq6
https://orcid.org/0000-0003-1895-2037
https://creativecommons.org/licenses/by-nc-nd/4.0/


15

ionic character. Relatively high charges are expected for
some of the atoms contained in these molecules, and they
present a challenge for any type of population analysis. Our
first model systems are trihalomethyl cations,78,79 which
are molecules of the form CX+

3 where X = F, Cl, Br. The
resonance structure of this system is depicted in fig. 4. For
the investigation of partial charges, these molecules are
particularly interesting because the carbon atom is known to
become increasingly electronegative in the homologous series
from CF+

3 to CBr+3 .80,81 We expect this trend to be reflected
in the partial charges of the system.

C+
X

XX
C

+X

XX
C +

X

XX
C+

X

XX

FIG. 4. Resonance structures of the trihalomethyl cation CX+
3 with

X = F, Cl, Br.

The partial charges evaluated from the four aforementioned
types of population analysis (Berry, GAPT, Mulliken, and
Kollman charges) are presented in table VIII. Due to the
symmetry of the molecular system, there is no distinction
between partial charges of different halogen atoms within the
individual structures. The partial charge at the carbon atom
is indicated as CX+

3 , while the partial charge at the halogen
atom is indicated as CX+

3 .

Atom Berry GAPT Mulliken Kollman

CF+
3 2.0009 2.0457 0.9768 0.9976

CCl+3 1.4241 1.4497 0.1761 –0.1304
CBr+3 1.1845 1.2038 0.0527 –0.3179
CF+

3 –0.3336 –0.3486 0.0077 0.0008
CCl+3 –0.1414 –0.1499 0.2746 0.3768
CBr+3 –0.0615 –0.0679 0.3158 0.4397

TABLE VIII. Partial charges in [e] for CX+
3 with X = F, Cl, Br. All

calculations were performed on the HF/def2-TZVP level of theory.
Berry and GAPT charges were evaluated at |B|= 10−4B0.

The data is further visualized in fig. 5. Overall, the trend of
an increasingly electronegative carbon atom is reproduced by
all types of population analysis. Berry and GAPT charges are
relatively close to one another in all cases, with the largest
difference being less than 0.05e (2.2%) for the carbon atom
in CF+

3 . Differences to Mulliken and Kollman charges are
much more pronounced, more than 1e in all instances. While
the Berry and GAPT population analyses predict a charge
of about +2e for the carbon atom of CF+

3 , Mulliken and
Kollman only predict one of about +1e. For CCl+3 and CBr+3 ,
the differences become even more drastic. The Kollman
population analysis predicts negative partial charges on
carbon, while Berry and GAPT charges both predict a heavily
ionic (> +1e) carbenium ion. The presence of a heavily
cationic carbenium ion for these molecules is not supported
by experimental data, the interested reader is referred to
Ref. 81 for a detailed report on this issue. Therefore, this
large discrepancy between Kollman and GAPT/Berry charges

should be interpreted as a deficiency of the latter two.

CF +
3 CCl +

3 CBr +
3 CF3 + CCl3 + CBr3 +

0.0

0.5

1.0

1.5

2.0

Pa
rti

al
 c

ha
rg

e 
in

 [e
]

Berry
GAPT
Mulliken
Kollman

FIG. 5. Visualization of the partial charges in [e] for CX+
3 with X =

F, Cl, Br presented in table VIII.

We now turn our attention to another species: methylmag-
nesium bromide. Partial charges obtained from the different
models are listed in table IX and visualized in fig. 6. In
contrast to the CX+

3 , all partial charge models appear to
at least qualitatively agree with one another. As expected,
Berry and GAPT charges are very similar in all cases, while
there are some larger differences compared to Mulliken and
Kollman charges. For the magnesium atom, both GAPT and
Berry charges predict a partial charge of about +1.15e, while
Kollman predicts a partial charge of only about +0.81e. This
is a difference of more than 40% if the Kollman charge is
taken as the reference value. For the carbon atom, differences
of approximately 0.2e are obtained. This corresponds
to similarly large relative error compared to the Kollman
charge. For the bromine atom, we also get differences of
approximately 0.2e, corresponding to an error of about 40%.

Atom Berry GAPT Mulliken Kollman
C –0.3141 –0.3461 –0.7914 –0.5308
H –0.0504 –0.0430 0.1319 0.0638

Mg 1.1341 1.1579 0.9158 0.8076
Br –0.6689 –0.6827 –0.5202 –0.4682

TABLE IX. Partial charges in [e] for CH3MgBr. All calculations
were performed on the HF/def2-TZVP level of theory. Berry and
GAPT charges were evaluated at |B|= 10−4B0.

To summarize, Berry and GAPT charges yield very sim-
ilar results for the molecules investigated here. This
is to be expected due to their close connection via the
pseudomomentum-translational sum rule. In a complete
basis, Berry and GAPT charges would be equivalent, but even
in finite basis sets commonly used in quantum chemical cal-
culations, the two models predict very similar partial charges.
Berry charges therefore suffer from the same deficiencies as
GAPT charges.36,77 Compared to other models such as partial
charges obtained from an electrostatic potential fit based
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on Kollman’s parametrization, Berry and GAPT charges
predict quantitatively and in some instances even qualitatively
different results. This problem is especially egregious for
the more challenging molecules with strong ionic character
considered in this section.
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FIG. 6. Visualization of the partial charges in [e] for CH3MgBr pre-
sented in table IX.

VI. CONCLUSION

The molecular Berry curvature plays a crucial role for quan-
tum chemical calculations of molecules in finite magnetic
fields. Due to its intimate connection to the motion of ef-
fective charges, recent years have even seen the emergence of
a population analysis based on the Berry curvature.24 While
the close connection between the resulting Berry charges and
charges based on the generalized atomic polar tensor (GAPT)
were noticed in the literature, it remained somewhat elusive.
In this work, we have derived a novel translational sum rule
based on the electronic pseudomomentum for the molecular
Berry curvature. Through this sum rule, we were able to re-
veal a deeper insight into the properties of the molecular Berry
curvature, making an exact formulation of the connection be-
tween Berry and GAPT charges possible.
Furthermore, we have introduced a new algorithm capable of
efficiently evaluating the molecular Berry curvature as well as
other related response properties such as the atomic polar ten-
sor for molecules in finite magnetic fields. Our algorithm is
entirely integral-direct, avoiding the unfavorable transforma-
tion of the four-center two-electron integrals from the atomic
orbital to the molecular orbital basis. This new algorithm was
implemented into the TURBOMOLE program suite, where it
will be available in the next official release version (V7.9).
Using the novel pseudomomentum-translational sum rule and
our efficient implementation of the molecular Berry curvature,
we have investigated the connection between Berry and GAPT
charges. We were able to derive that both types of population

analysis are equivalent in the limit of a complete basis set,
which was also confirmed numerically. Finally, we demon-
strated that Berry charges are often not a suitable choice of
population analysis, exhibiting deficiencies that have already
been described for the closely related GAPT charges in the
literature. For instance, we could show that Berry charges are
not suited to yield accurate descriptions for molecular prop-
erties such as the electric dipole moment. For the prediction
of partial charges, they also yield relatively large differences
to other models such as an electrostatic potential fit based on
Kollman’s parametrization. While the molecular Berry curva-
ture remains a very important quantity for the description of
molecular motion in an external magnetic field, Berry charges
should only be used with great caution when trying to gain
insight into the electronic structure of molecules.

SUPPORTING INFORMATION

The supporting information contains the molecular coordi-
nates (xyz format) for all molecules discussed in this work.
Furthermore, the molecular Berry curvature and the related
atomic tensors are listed. This includes the geometry gradi-
ents of the electric dipole moment, the canonical momentum,
and the electronic pseudomomentum.
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riani, F. Della Sala, E. Fabiano, D. A. Fedotov, S. Fürst, S. Gillhuber,
R. Grotjahn, M. Kaupp, M. Kehry, M. Krstić, F. Mack, S. Majumdar, B. D.
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