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Abstract
This study unveils a new transition state (TS) leading to the acyclic product via synchronous double
proton transfer by automatedly exploring the potential energy surface of β‐D‐xylopyranose under
pyrolysis conditions. Quantum chemistry methods with multi‐path canonical variational transition
state theory, show that the standard activation enthalpy of the new TS (46.4 kcal mol–1) is 1.5 kcal
mol–1 lower than that of the well‐established channel; however, the latter’s rate constant (4.36 ×
10–2‐9.96 × 101 s–1) is higher in the 673.15‐873.15 K pyrolytic interval by a factor of 5‐8. This
gap narrows to a factor of 2 within 320‐400 K, signifying that the new TS can potentially impact
the acyclic product production in this low‐temperature range. This is particularly relevant for β‐D‐
xylopyranose trimers, as the interior unit bears different substituents at the C1 and C3 positions.
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In recent decades, β‐D‐xylopyranose (hereafter termed xylopyranose),
the hemicellulose building block, has received significant attention. In‐
deed, recent studies have focused on elucidating its structure, pyrolytic
reactivity, and the effects of its functionalization Ayarde‐Henríquez
et al. (2024), Ballotta et al. (2024). It is widely accepted in the litera‐
ture that the predominant reaction pathway for xylopyranose thermal
decomposition is the ring‐opening reaction Hu et al. (2019). This pro‐
cess is a concerted reaction involving a hydrogen transfer from the
anomeric hydroxyl group to the ring oxygen, forming open‐chain D‐
xylose (hereafter termed xylose). Recent high‐level electronic structure
calculations and kinetic analysis have determined a standard activation
enthalpy of 43.5 kcalmol–1 for this elementary step, resulting in a faster
reaction rate compared to other potential initial reaction channels Lupi
et al. (2024). To the best of the authors’ knowledge, no alternative
ring‐opening transition states (TSs) have been proposed until now. Uti‐
lizing state‐of‐the‐art automated reaction discovery codes (AutoMeKin,
Martínez‐Núñez et al. (2021)), we report a new reaction pathway lead‐
ing to the formation of xylose, which undergoes a synchronous 2‐H
proton transfer. This newly identified mechanism is illustrated in Fig.

1, alongside the well‐known 1‐H proton transfer mechanism. Canon‐
ical rate constants for both reactions are also computed employing
multi‐path variational transition state theory (MP‐VTST).

METHODS
Discovery of Xylopyranose Ring‐Opening Reac‐
tion Mechanisms

Reaction pathways for xylopyranose ring‐opening processes were
generated using the AutoMeKin program Martínez‐Núñez (2015ab),
Martínez‐Núñez et al. (2021), which is designed for automated reac‐
tion mechanism discovery. AutoMeKin employs methodologies rooted
in graph theory, reactive molecular dynamics, and electronic structure
calculations to fully explore potential energy surfaces (PESs), thereby
facilitating the identification of potential reaction mechanisms.
The dynamic simulations required to obtain the initial TS struc‐

tures were conducted with the semi‐empirical PM7 method Stewart
(2013) as implemented in the MOPAC package Stewart (2016). For
these simulations, ten trajectories per iteration were calculated over
100 total iterations. To screen and avoid redundant structures result‐
ing from intermediate fragmentation, we applied specific criteria: the
smallest accepted imaginary frequency was set at 100 cm–1 (keyword
imagmin), to account for torsional TSs, and the lowest eigenvalue of
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F I GUR E 1 In the left panel: Single (TS‐1H) and double (TS‐2H) proton transfer mechanisms lead to the ring‐opening of xylopyranose. In the
right panel: The ring‐opening barriers of both pathways, showing that the standard activation enthalpy of the new TS‐2H lies 1.5 kcal mol–1 below.
The new pathway is in red, and the known channel is in blue.

the Laplacian was set to 0.1 (keyword eigLmax). Additional screening
parameters, such as MAPE max and BAPE max, were set to 0.002 and
1.5, respectively, to compare descriptors characterizing the structures
obtained from the molecular dynamics simulations. Further details on
these parameters are provided in ref. Martínez‐Núñez et al. (2021).
Subsequently, optimized geometries and zero‐point corrected elec‐

tronic energies for all PES’s critical points, such as reactants, TSs, inter‐
mediates, and products, were determined using the revDSD‐PBEP86
Kozuch and Martin (2011)‐D3(BJ) Grimme et al. (2011) double‐hybrid
functional in combination with the jun‐cc‐pVTZ basis set Papajak et al.
(2011), hereafter referred to as rDSD. Optimized Cartesian coordinates
are reported in the Supporting Information (SI).
The characterization of such structures along the reaction pathways

as either minima (reactants, intermediates, products) or saddle points
(TSs) was achieved through diagonalization of analytical rDSD Hessians.
Moreover, intrinsic reaction coordinates (IRCs) Fukui (1981) were traced
starting from the identified TSs to characterize the elementary steps
further and ensure the TSs connect the correct reactant and product. All
DFT calculations were performed using Gaussian16 Frisch et al. (2016).
The extensive and complex reaction networks generated by Au‐

toMeKin were analyzed using the AMK tool Garay‐Ruiz et al. (2022),
which facilitates the visualization of molecular structures, vibrational
normal modes, and potential energy profiles of the investigated reaction
mechanisms. Through this approach, we identified possible reaction
pathways leading to xylopyranose ring‐opening and characterized the
critical points governing these processes.

Energy Refinement

The electronic energieswere refined by using theDLPNO‐CCSD(T) level
of theory (Riplinger et al. (2013)), with the F12 explicit correlation cor‐
rection, on top of revDSD geometries. This method was selected due
to its proven ability to deliver results that closely approximate those of

the canonical CCSD(T) approach while significantly reducing the com‐
putational cost. The tightPNO cutoff setting was used to increase the
accuracy of the localized pair natural orbital (PNO) approach, ensuring
reliable results for the most complex systems. The choice of the cc‐
pVTZ‐F12 basis set, Peterson and Dunning (2002), provides an optimal
balance between computational efficiency and accuracy, particularly
when combined with explicitly correlated methods. All DLPNO calcu‐
lations were performed using the ORCA quantum chemistry program
Neese (2022). The outcomes show that the new TS‐2H is energetically
favorable as its standard activation enthalpy is approximately 1.5 kcal
mol–1 lower than the one characterizing the single proton transfer. See
Fig. 1, right panel.

Kinetics

Within VTST’s framework, computing rate constants involves critical
aspects, including variational effects and torsional anharmonicity, espe‐
cially for systems with multiple conformers (or structures) of reactants
and TSs. The program Pilgrim Ferro‐Costas et al. (2020) enables the
detailed computation of thermal rate constants considering these fac‐
tors by gauging MP‐VTST and treating the torsional anharmonicity via
subroutines implemented in the MSTor program Chen et al. (2023).
For a reaction proceeding from a reactant to a product through a TS,

the canonical rate constant k(T) at the absolute temperature T is given
by the Eyring equation within the framework of conventional transition
state theory (TST):

k(T) = κ(T)
kBT
h
Q‡(T)
QR(T)

exp
(
–
∆E‡

RT

)
, (1)

where R is the universal constant of the ideal gas, kB is the Boltzmann
constant, h is Planck’s constant, Q‡(T) and QR(T) are the partition func‐
tions of the TS and reactant, respectively, ∆E‡ is the potential energy
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F I GUR E 2 The left panel depicts the forward (solid lines) and backward (dash lines) rates for the single (blue) and double (red) proton transfers,
along with the multi‐path (MP) corrections (green lines). In the right panel, a kinetic Monte‐Carlo simulation shows that the relative population of
reactant (xylopyranose) and product (xylose) does not change for either mechanism. CVT is the canonical variational transition state theory, SCT
stands for semiclassical small‐curvature tunneling approximation, and MS‐T corresponds to the multi‐structural torsional method.

TAB L E 1 Fitted Arrhenius parameters over the 270‐1200 K temperature interval. The forward/backward reaction values and their correspond‐
ing root mean square errors (RMSE) are reported in each entry.

MP‐CVTSCT/MS–T 1H‐PT‐CVTSCT/MS–T 2H‐PT‐CVTSCT/MS–T

A /s–1 3.16× 1013/5.28× 1011 3.58× 1013/6.92× 1011 7.82× 1011/1.28× 1010

Ea /kcalmol–1 45.7/35.7 46.2/36.5 43.0/33.0
RMSE 223.39/57.66 179.75/450.31 3.14/5.49

barrier height, and κ(T) is the transmission coefficient that accounts for
quantum tunneling effects.
In VTST, the location of the dividing surface is varied to minimize the

rate constant, leading to the canonical variational transition state theory
(CVT) expression:

kCVT(T) = mins

{
κ(T, s)

kBT
h
Q‡(T, s)
QR(T)

exp
(
–
V(s)
RT

)}
, (2)

where the reaction coordinate s is varied to find the minimum value
of the rate constant, V(s) is the potential energy, and κ(T, s) is the
temperature‐dependent transmission coefficient.
In reactions with multiple possible transition states or pathways,

MP‐VTST provides a more accurate estimation of the overall reaction
rate by summing the contributions of each pathway, weighted by their
individual rate constants.
The overall rate constant kMP‐CVT is given by:

kMP‐CVT(T) =
∑
j

kj(T) (3)

where kj(T) is the rate constant of the j‐th reaction path.
Quantum mechanical tunneling effects have been considered by

using small curvature tunneling (SCT) corrections. The transmission

coefficient κj of each path is given by:

κj = exp
(
–
2

ħ

∫ s2

s1
[2µ (V(s) – E)]1/2 ds

)
(4)

where µ is the reduced mass along the reaction coordinate, s1 and s2
are the turning points of the reaction coordinate where V(s) = E.
By summing the rate constants for all significant pathways, MP‐VTST

provides a comprehensive rate constant that accounts for the contribu‐
tions of multiple reactionmechanisms, each characterized by its own TS
and PES. This method is particularly useful for complex reactions with
competing pathways, ensuring a more accurate prediction of the overall
reaction kinetics.
Torsional anharmonicity, arising from the non‐rigid nature of molecu‐

lar torsional modes, can significantly affect the partition functions and,
consequently, the rate constants. For each mode, the torsional anhar‐
monic partition function, Qtor, is computed using the MSTor program:

Qtor =
∫ 2π

0
exp

(
–
V(ϕ)
kBT

)
dϕ, (5)

where V(ϕ) is the potential energy as a function of the torsional angle ϕ.
See the SI for detailed analyses of anharmonicity, tunneling, recrossing
coefficients, and a comparison of transition state theories.
The kinetic results unveil that the single proton transfer rate ex‐

ceeds that of the new TS in both the forward and backward directions
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across the temperature range. In particular, the rate ratio of the ring‐
opening process ranges from five to eight within the pyrolysis regime,
673.15‐873.15 K. Additionally, at any given temperature, both mecha‐
nisms are kinetically faster in the backward direction, highlighting their
thermally driven nature (see Fig. 2, left panel). For single and dou‐
ble proton migrations, kinetic Monte‐Carlo simulations show that the
xylopyranose‐to‐xylose thermal conversion becomes significant near
the upper limit of the pyrolysis interval (see Fig. 2, right panel). The
Arrhenius parameters derived from fitting the forward rates of the sin‐
gle proton channel align closely with recent reports Lupi et al. (2024),
Ayarde‐Henríquez et al. (2024), as presented in Table 1. A quantitative
analysis of both mechanisms’ thermal rates across a pyrolysis‐relevant
temperature range is provided in the SI.
In conclusion, the new transition state converting β‐D‐xylopyranose

into D‐xylose features a synchronous double proton transfer, contrast‐
ing with the well‐established single proton mechanism. While this alter‐
native channel is energetically favorable by 1.5 kcalmol–1, it is kinetically
slower in the pyrolysis regime (673.15‐873.15 K) by a factor of 5‐8. How‐
ever, this finding underscores the double proton transfers’ relevance in
chemistry and biology, as similar reactions might occur in hemicellulose
motifs, potentially influencing the kinetics.
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