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Abstract:  We evaluate the ability of machine learning to predict whether a hypothetical crystal 

structure can be synthesized and explain those predictions to scientists. Fine-tuned large language 

models (LLMs) trained on a human-readable text description of the target crystal structure perform 

comparably to previous bespoke convolutional graph neural network methods, but better prediction 

quality can be achieved by training a positive-unlabeled learning model on a text-embedding 

representation of the structure. An LLM-based workflow can then be used to generate human-readable 

explanations for the types of factors governing synthesizability, extract the underlying physical rules, 

and assess the veracity of those rules. These explanations can guide chemists in modifying or optimizing 

non-synthesizable hypothetical structures to make them more feasible for materials design. 

 

Introduction 

Advancements in computational chemistry and machine learning (ML) have enabled the design 

and engineering of promising materials with desired properties.[1-10] While the discovery of promising 

virtual materials has accelerated, the success in experimental validation remains time-

consuming.[11,12] To bridge this gap, research has been conducted to limit the exploration to 

synthesizable materials during the material design process.[13-17] In the field of inorganic materials, 

thermodynamic energy-based predictions for synthesizability and stability have long been used as crude 

estimations.[18-23] However, these energy-based predictions often miss many metastable candidate 
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materials and fail to account for materials that are energetically stable yet remain unsynthesized.[24] 

This indicates that such predictions do not adequately reflect the various complex factors influencing 

synthesizability. Recently, data-driven approaches based on accumulated synthesized materials have 

been investigated.[25-30] These studies have aimed to address the issue using positive-unlabeled (PU) 

learning, with considering synthesized materials as positive and not-yet-synthesized materials as 

unlabeled data.[31,32] Notably, in the domain-specific perovskite structures, transfer learning has been 

effectively employed to achieve accurate synthesizability predictions.[33] 

However, these data-driven methods have the limitation that the underlying chemical insights used 

by the machine to predict synthesizability cannot be well understood.[34] Understanding the crucial 

factors that contribute to synthesizability, rather than simply making predictions, can significantly aid 

in more feasible materials design. In the field of computer vision, several explainable AI (XAI) 

techniques have been proposed to understand machine’s reasoning for their predictions.[35,36] 

However, in the field of materials chemistry, such studies are challenging to implement, requiring the 

need for further research into deep explainability. 

Most recently, large language models (LLMs) trained on extensive bodies of literatures have been 

actively employed to address a variety of chemistry and materials science tasks.[37-46] One powerful 

approach is to customize pre-trained, general purpose foundation models by fine-tuning them on a small 

number of examples of a specific task.[47] Recent work has shown that fine-tuned LLMs can achieve 

performance comparable to existing, complex, bespoke machine learning models for a variety of tasks 

in organic[48-50] and inorganic[51,52] chemistry, and is the subject of recent comprehensive 

benchmarking studies.[53-55] 

Previously, we showed how fine-tuned LLM could be used to predict inorganic synthesizability 

and synthesis precursors given only compositional information.[51] However, different structures of 

the same composition can have vastly different properties, and in most cases, the goal is to synthesize 

a particular polymorph.  

Here, we show that the fine-tuned LLM based on text descriptions of the target crystal structure 

can give synthesizability predictive performance comparable to the latest bespoke graph-neural network 

ML models.  Moreover, even better prediction performance can be obtained by training a neural 

network model on the LLM-derived representations of the crystal structure description. Importantly, 

LLM can offer explanations and reasoning of the synthesizability for individual target structures, which 

are otherwise difficult in usual graph-based synthesizability predictions. The resulting models and 

explanations are demonstrated to better predict experimental outcomes than recent thermochemical 

predictions for synthesizability. 
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Results and Discussion 

Synthesizability prediction 

For given general inorganic structural information, the task is to determine whether a structure is 

synthesizable or not. This is a positive and unlabeled (PU) problem, where we know already-

synthesized (positive) and not-yet-synthesized (unlabeled) structures. We closely followed the previous 

work[25,51] and began with the Materials Project (MP)[56] crystal database retrieved in March 2024, 

which consists of 60,959 synthesized structures and 94,402 hypothetical structures. To convert these 

CIF-formatted structural data into textual data which can be readable as LLM input prompts, we used 

Robocrystallographer,[57] an open-source toolkit for generating text-based descriptions of crystal 

structures. Some examples of this conversion are shown in Figure S1 in the Supporting Information. In 

this work, we used MP30 data (where the number of unique atomic sites in a unit cell is ≤ 30 in the 

entire MP data) to prevent the text descriptions from becoming too lengthy and exceeding the maximum 

token limit for LLM input. Similarly, we discarded data where the string length of the text description 

exceeded 10,000 characters. Accordingly, a total of 100,195 text-described structural data, which 

consists of 38,347 synthesized and 61,848 hypothetical materials, were prepared, and 20% of the 

positive and unlabeled data were sampled as a hold-out test dataset for assessing model performance. 

We fine-tuned the OpenAI GPT-4o-mini model for the general synthesizability prediction task, 

following a strategy similar to our previous work.[51] Detailed descriptions of the model, prompt, and 

fine-tuning process are in the Supporting Information. (Results obtained by fine-tuning the previous 

GPT-3.5 base model are inferior in all cases; see Table S3 and Table S4.) We designed two types of 

fine-tuned LLM: StructGPT is provided with stoichiometric formula information with structural 

description, and StoiGPT contains only stoichiometric information and no structural description. (The 

general principles of the latter model were described in our recent paper,[51] but here it is retrained and 

tested on the current dataset with a new GPT base-model.)  We compared this to two-types of binary 

PU-learning classifiers methods: The PU-CGCNN model uses a previously described graph-based 

crystal representation,[25] retrained on the current dataset. The PU-GPT-embedding model first 

converts the text description of the structure into a 3072-dimensional vector representation using the 

text-embedding-3-large model,[58] and then uses that representation as input to train a binary PU-

classifier neural network model. The main difference between these two methods is the input 

representation. Details about model constructions and representations are described in the Supporting 

Information. For model evaluation, only the true positive rate (TPR) or recall can be used as a precisely 

calculated metric, due to the lack of true negative data in the PU problem. However, the precision 

(PREC) and the false positive rate (FPR) can be approximated by α-estimation, as discussed in prior 

works.[59,60] We adopted the same method for model evaluation and comparison in all cases. 
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As shown in Figure 1a, the fine-tuned model, StructGPT-FT, outperformed non-fine-tuned GPT 

model, demonstrating that fine-tuning is crucial for the synthesizability prediction task. (StoiGPT-FT 

outperformed the StructGPT-FT because a stoichiometry is considered synthesizable if at least one of 

its various polymorphs has been successfully synthesized, so it is easier to be correct.) StructGPT-FT 

slightly outperforms the bespoke PU-CGCNN model, indicating that a fine-tuned LLM using the text 

description of a structure is as powerful as a traditional graph-based learnable representation. This 

suggests that heuristic decisions in the conventional crystal graph construction, such as limiting edge 

connection to the 8-12 nearest atoms and omitting geometric angles, insufficiently represent the relevant 

details of real crystal structures. Even better performance is achieved by combining LLM-based input 

representation with traditional PU-learning methods. Specifically, the PU-GPT-embedding model 

outperforms both the StructGPT-FT and PU-CGCNN models, indicating that using a dedicated PU-

classifier model is better than using the LLM as a classifier and that GPT-embeddings are more effective 

than traditional graph-based representations of structure, respectively. This is our first significant result. 

We previously demonstrated the value of fine-tuning to make synthesizability predictions based 

solely on composition,[51] and the results here demonstrate the added value of including structural 

information. Several recent preprints[52,55,61] have explored the role of crystal structure descriptions 

in fine-tuned LLM prediction of solid properties. Our results support all of these prior claims, and 

improves upon them by demonstrating the value of using a pre-trained embedding model to generate 

the representation from the structure as input to a PU-classifier. In addition to the performance benefits, 

this can also reduce costs. To give a rough approximation, as of Dec 2024, the cost to compute the text-

embeddings is $0.065/M input tokens (the PU-classifier can be trained and run locally with modest 

resources which we assume to be free), whereas for the fine-tuning model, the cost is $3/M for fine-

tuning and $0.150/M for inference, a saving of 98% and 57%, respectively.  

The text-embedding-3-large is a hierarchical embedding (also known as Matryoshka embedding, 

by analogy to Russian nested dolls) model, where earlier dimensions correspond to more significant 

coarse descriptions and later dimensions correspond to increasingly fine-grained features of the 

text.[58,62] To test whether this is true for structure descriptions, we retrained the PU-GPT-embedding 

model with inputs that were truncated from the original 3072-dimensions to 2048, 1024, 512 and 256-

dimensions. The performance monotonically decreases as the vectors are truncated (Table S8), 

consistent with the loss of precision. Additionally, while the predicted probabilities are sharply peaked 

near 0 and 1 for the full vector input, truncating the input causes the distributions to be broadened to 

intermediate values (Figure S10), indicating that the model is more uncertain about its predictions. 

Together, these results indicate that the PU-model uses the full vector embedding description to make 

its prediction. The successful use of these embeddings for prediction suggests their use for determining 

the similarity of different crystal structures. Whereas previous methods of comparing inorganic crystal 

similarity have relied primarily upon electronic structure[63,64] or on structural encodings,[65] here 
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the representation comes from a text-description of the structure. This in turn can be used to retrieve 

similar compounds from a database, which may be useful for LLM-based retrieval augmented 

generation (RAG) or general discovery by chemical analogy.[66] A full exploration of this is outside 

the scope of the current article. 

To investigate the two different (graph-based vs. GPT-embedding-based) structural representation 

capturability, we further evaluated both the PU-GPT-embedding and PU-CGCNN models across 

different description length divisions (<1000, 2000, 3000, …, 10000) of the hold-out-test dataset, as 

shown in Figure 1b. The result demonstrated that the model performances for each model varied as 

description length increases. This suggests that the representation capturability for inorganic structures 

can be influenced by structural complexity. For simpler structures, graph-based representation well 

captures the relations, whereas for more complex structures, GPT-embedding vectors are more effective 

structural representations. However, a recent preprint by Rubungo et al. came to the opposite 

conclusion—that LLM-based models excel with shorter textual descriptions, while CGCNN performs 

better on datasets with longer descriptions—for materials property prediction.[55] Therefore, we 

suggest that the appropriate structural representation in model development should be carefully chosen 

to enhance the model performance depending on the structural complexity of the target system. 

 

 

Figure 1. (a) Comparison of model performances for the general synthesizability prediction. FT indicates fine 

tuning and PUL indicates positive-unlabeled learning. (All calculated metrics are tabulated in Table S1.) (b) 

Model performances of PU-GPT-embedding and PU-CGCNN depending on the description length divisions of 

the hold-out-test dataset. 
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Structural sensitivity 

To examine the sensitivity to input structure changes, we randomly varied the fractional 

coordinates within 1% and 5% in the CIF structures of the hold-out test set. These mutated CIF 

structures were then processed through Robocrystallographer to convert them into text descriptions. 

As shown in Figure 2a, the overall text length increased, indicating that the structural symmetry 

was reduced during the mutation process, resulting in longer descriptions. We then investigated how 

the synthesizability prediction changes for these mutated structures. As shown in Figures 2b, the 

original structures exhibited an 71.0% recall for StructGPT-FT, but the 1% and 5% mutated structures 

showed a significantly lower recall of 3.1% and 1.2%, respectively. In the same context, for unlabeled 

data, the proportion predicted to be synthesizable dropped from 6.2% to 0.2% and 0.1%. PU-GPT-

embedding model also exhibited a similar trend for the mutation test (Figure 2c), showing consistency 

with the StructGPT-FT case. This indicates that StructGPT-FT and PU-GPT-embedding models exhibit 

high sensitivity to even small structural changes for synthesizability prediction. 

 

 

 

Figure 2. (a) The distribution of structural description length for the original and mutated crystal structures. (b) 

and (c) The result of synthesizability distribution by (b) StructGPT-FT and (c) PU-GPT-embedding model for 

original and 1%/ 5% mutated structures. 
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Comparison to thermodynamic stability 

As an alternative to the purely data-driven approach used here, thermodynamics-based pre

dictions assume that a material is synthesizable if its formation energy is within some thresho

ld of the convex hull.[18,19,21-23] To compare the synthesizability through the thermodynami

c stability, we obtained the energy above hull (Ehull) for each inorganic crystal from the Mat

erials Project (MP); Figure S13 shows a summary histogram. Since Ehull < 0.05 eV/atom is 

often used as energetically favorable (near-stable) criterion, it has been considered as a crude 

estimate for crystal synthesizability.[24,70] Figure 3 shows a two-dimensional histogram of Eh

ull versus synthesizability scores of StructGPT-FT model. As shown in Figure 3a, the thermo

dynamic energy-based prediction achieved a recall of 87.1% in the metastable range (<0.2 eV

/atom) and 74.4% in the near-stable range (<0.05 eV/atom) for the 7,491 hold-out positive co

mpounds, which is comparable to StructGPT-FT score-based prediction (70.7%). However, the 

energy-based prediction showed that 33.3% and 72.0% of the hold-out unlabeled compounds a

re synthesizable by Ehull < 0.05 and 0.2 eV/atom criteria, respectively, which is significantly 

different from the result of the StructGPT-FT model, which shows only 6.1% (Figure 3b). Th

is suggests that while thermodynamic approaches have good recall, they have much lower pre

cision than our data driven approach, and will generate many false positives. 

Recently, thermodynamic-based synthesizability predictions for twelve novel hypothetical c

ompounds were tested in the laboratory.[24,70] Even though the these 12 compounds were all 

energetically near the ground state (<0.01 eV/atom), and therefore thermodynamically predicted 

to be “synthesizable”,  repeated attempts to synthesize any of them failed. (These compounds 

are indicated as the stars in Figure 3b; additional details in Table S9.) In contrast, our Struct

GPT-FT model correctly assigns all of these compounds as negative, with synthesizability scor

es below the threshold (<0.777), in perfect agreement with the experimental outcomes. PU-GP

T-embedding model also predicts their scores lower than the threshold (<0.813) for 10 out of 

12 cases. (See the details in Table S9.) This indicates the strength of our LLM-based approac

h in capturing other aspects of metastability and synthetic accessibility that are neglected by t

he thermodynamic approach to synthesizability. 
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Figure 3. The two-dimensional colored histogram of energy above hull (Ehull) vs. score of StructGPT-FT model 

for (a) 7,491 hold-out test positive and (b) 12,204 hold-out test unlabeled materials. Red line indicates 

synthesizability threshold (0.777) and orange lines indicate thermodynamic stability thresholds for near-stable 

(<0.05 eV/atom) and metastable (<0.2 eV/atom) region. The white stars indicate the twelve hypothetical 

compounds, which were demonstrated as non-synthesizable by several attempted experiments. (See the details for 

these materials in Table S9.) 

 

 

Explanation / Inference for synthesizability 

Using the synthesizability predictions made above, we then used the StructGPT-FT model

 to generate physical explanations for these results.  The user prompt was: “Explain why an 

inorganic compound with the following structural information is (not) synthesizable: [Structural

 description]”. (The “(not)” is included depending on the prediction of our model.)  The syst

em prompt was: “Return only output of the following format for each reason, and no other i

nformation: ### Reason 1. **[Keyword of reason]** [Detailed description], ### Reason 2 …”.

 Using this prompt, we provided StructGPT-FT with a total of 17,734 structure-prediction pair

s, where the predictions of two models (StructGPT-FT and PU-GPT-embedding) were identical

 as either positive or negative, to extract the hidden relations and identify the detailed descrip

tive reasons along with their associated keywords. StructGPT-FT usually answered the explana
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tion with 4 or 5 reasons (Figure S6). The Supporting Information contains examples of these 

explanations and the URL for the complete set of explanations. 

What physical principles does StructGPT-FT use in these generated reasons? We accumul

ated all the keywords of reasons for the 17,734 structures, and put top-500 frequently mentio

ned raw keywords into GPT-4o to cluster similar keywords and make 10 representative categ

ories. (See the detailed keyword items in the Supporting Information.) We plotted a bar histo

gram of the 10 most relevant reasons (Figure 4a). It is generally acknowledged that thermody

namic stability alone is an insufficient factor for material synthesizability. In our results, expla

nations for about 25.4% (4,513/17,734) of structures included thermodynamic stability as a rea

son for their synthesizability. To investigate how the importance of each factor changes accor

ding to the structure type, we analyzed the explanation factor proportion of top-3 frequent str

ucture types; cubic perovskites, Heusler compounds, and spinel structures. Figure 4b showed t

he structural t-SNE distribution, with top-10 structure types highlighted by colors. The top-3 s

tructure types exhibited different proportions of explanation keywords, suggesting the importan

ce of each factor varies by substance type (e.g., bonding and coordination characteristics for c

ubic perovskites, inconsistencies and chemical compatibility for Heusler compounds, and space 

group and symmetry for spinel structures). The result for the remaining top-10 structure types 

were shown in Figure S7 in the Supporting Information. Figure 4c showed the structural t-SN

E distribution colored by their synthesizability. When considering the distribution based on str

ucture types in Figure 4b, it becomes evident that the synthesizability may vary depending on

 the structure types (e.g., most Heusler compounds and spinel-type structures are predicted no

n-synthesizable). 

How do these different factors contribute to the synthesizability prediction of our fine-tun

ed models?  We performed an ablation study, using GPT-4o-mini to rewrite the input Robocr

ystallographer structure description texts, removing specific types of information or to arbitraril

y changing specific details (e.g., changing the space group or geometry information). (See sec

tion VI.1 Text elimination and perturbation test in the Supporting Information.) We then provi

ded this modified text as input to the unmodified StructGPT-FT model; results are shown in 

Table S6 and S7. Removing or changing the symmetry and element type information caused t

he largest degradation in model performance; removing or changing bond-length information h

ad the smallest effect (only reducing the performance by 2-3 percentage points). This is consi

stent with prior work on structure-based representations in bidirectional LLMs, in which nume

rical data was entirely omitted from the input text description.[67] Interestingly, while geometr

y and bond-length are the most commonly invoked reasons by the model, they actually have 

less impact on the final prediction. 
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Are the explanations reasonable? Each generated reason typically consists of a header des

cribing the general type of factor, a sentence describing specific properties of the crystal (cop

ied or paraphrased from the Robocrystallographer input text), and a sentence describing how t

hose specifics relate to stability and synthesizability (or instability and difficulty of synthesis); 

see examples in the Supporting Information Section V.  We developed a four-step approach f

or extracting the underlying claim and testing the model’s confidence in that claim. First, we 

separate the reasons, removing the header. Second, for all of the sentences that explain the re

ason, we pass them into a GPT-4o-mini model with the user prompt "In one sentence, descri

be an "if-then" rule based on the underlying principle used by this explanation, which could 

be applied to a new compound: [reason text]” .  For example, the input text “The uniform S

Figure 4. (a) 10 most relevant reasons for general synthesizability. (b) t-SNE for crystal structures in which top-

10 structure types were colored to indicate their distribution. Top-3 types (blue for cubic perovskites, orange for 

heusler compounds, and green for spinel structures) showed their explanation proportion by pie-charts. (c) t-SNE 

for crystal structures colored by their synthesizability. 
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c(1)-Ir(1) bond lengths of 2.78 Å  indicate a regular and stable bonding environment. Uniform 

bond lengths generally correspond to lower internal strain in the crystal, suggesting a synthesi

zable compound." returns “If a new compound exhibits uniform bond lengths, then it likely h

as low internal strain, indicating that the compound is stable and synthesizable.”. We call thes

e outputs rules. Third, we pass each rule as a user prompt into GPT-4o, along with the syste

m prompt “You are provided with a statement of unknown veracity. Return only True or Fal

se and nothing else depending on the veracity of the statement.”. The GPT-4o model returns 

the log-probabilities of each possible response token (“True” or “False”), which allows us to 

evaluate the probability that the model would answer “True” or “False” (in this case, the mo

del temperature setting is irrelevant). The associated probabilities of returning “True” or “Fals

e” are not strictly the truth of the statement, but they do reflect the model’s consensus about 

the training corpus. Stated another way, a rule for which the model has a high probability of 

returning “True” is likely to be a principle that is common in the chemistry textbooks and ot

her resources that comprise the training corpus, and thus are a proxy for what the literature 

would say. Prior work by Kadavath et al. has found that pre-trained LLMs provide well-calib

rated true/false self-evaluation on factual questions.[68] Finally, by the classical logical Princip

le of Non-Contradiction,[69] a statement and its negation cannot both be true. This allows us 

to generate an internal consistency test, where we have GPT-4o rewrite the original rule by t

he user prompt “Rewrite the following sentence so that it would become false: [reason]”.  O

ur above example gets rewritten as “If a new compound exhibits uniform bond lengths, then 

it likely has high internal strain, indicating that the compound is unstable and unsynthesizabl

e.” We then evaluate the veracity as above. 

As shown in Figure 5a, the probability of being “True” for most if-then rules is close to 

1, while for counterfactual rules, the probability of being “True” is close to 0, indicating that 

most individual explanations are self-evaluated as reasonable by GPT-4o. Since each material 

has 4 to 5 explanations, to evaluate the veracity of these combined explanations, we calculate

d the probability distribution which was aggregated using the geometric mean (Figure 5b) and 

the arithmetic mean (Figure 5c) of each individual rule. The results also confirmed that the c

ombined explanations for a material exhibit a high degree of reasonability. Furthermore, by ca

lculating the truthiness/falseness confusion matrix between if-then rules and counterfactual rule

s (Figure S12e), we confirmed that there is internal consistency in GPT-4o's veracity evaluati

on (when the if-then rule is true, the counterfactual rule becomes false). In this regard, most 

reasons provided by StructGPT-FT use principles that are generally well-attested by the trainin

g corpus and are internally consistent. 
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Figure 5. The results of assessing the whole explanations based on the log-probability. Since StructGPT-FT 

usually answered the explanation with 4 or 5 reasons per 1 material (Figure S6), we combined (a) each explanation 

probability by (b) geometric mean of probabilities and (c) arithmetic mean of probabilities. 

 

 

 

Transfer learning to perovskites 

Transfer learning is a machine learning technique where a model developed for a particular task is 

reused as the starting point for a model on a second related task, effectively leveraging pre-existing 

knowledge to improve learning efficiency and performance. To demonstrate the feasibility of transfer-

learning for the LLM-based method presented above, we considered the problem of perovskite 

synthesizability, using a separate dataset of 1,533 synthesized and 13,276 hypothetical perovskite 

structures, Full methods and results are discussed in Supporting Information. The overall model quality 

results for this transfer learning setting were comparable to the more general case discussed above, 

although the CGCNN method had the best performance.  This is consistent with the performance trend 

seen in Figure 1b, as the perovskites have simpler structures and more concise text descriptions (Figure 

S2b), and CGCNN tends to do better in this regime. 
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Conclusion 

We utilized LLMs for structure-based general synthesizability prediction along with their 

explanations. Fine-tuned LLMs and LLM-embedding-based bespoke ML models showed promising 

performance compared to the traditional bespoke ML models. Furthermore, LLMs can provide 

explainability by inferring the reasons for determining the synthesizability. Explanations can be easily 

obtained through a simple prompt. Unlike recent work on using LLMs for materials structure-property 

explainability,[71] these explanations are applied to model predictions, rather than requiring literature 

examples. 

Based on these explanations, we can specify the detailed and essential aspects related to general 

synthesizability determination. By employing this strategy for non-synthesizable materials, we can 

identify the factors contributing to their low synthesizability. We anticipate that these explanations can 

guide chemists in modifying or optimizing non-synthesizable hypothetical structures to make them 

synthesizable. 

In comparing the graph-based model with the LLM-embedding-based model, we analyzed the 

representation capturability for inorganic crystal structures. The result showed that LLM-embedding 

vectors can serve as a more effective structural representation in the case of complex structures 

compared to the conventional graph-based formulation. 

Through comparisons with thermodynamic energy-based predictions using both statistical analysis 

and specific examples, it was observed that relying solely on thermodynamic-based predictions can 

result in many false positive cases. Since many factors influence the synthesizability of materials, LLM-

based predictions and explanations can be helpful for understanding the complex material chemistry. 

However, there are limitations that should be addressed in future works: 

(1) Since this model highly relies on existing material database, the prediction could be biased by 

the distribution of already-synthesized materials.[72-74] Other results suggest that LLM-based methods 

may be less transferable to out-of-domain problems than conventional methods, due to the lack of hard-

coded inductive biases.[75] Furthermore, there might be errors in the material database, making it 

necessary to carefully validate the data obtained from DFT calculations, which we used as training data 

for our data-driven method. 

(2) In this study, we focused on ordered inorganic crystal structures. Defects and disorder are 

inevitable in real world materials,[76] indicating the need for future research that can address these 

aspects as well. 

(3) We used general purpose pre-trained Matryoshka embeddings, without additional training or 

fine-tuning embedding models. However, there is still potential to fine-tune the embedding model using 

sentence transformers for RAG to explore more advanced LLM embeddings.[77,78] Alternatively, 

introducing material-specific latent vectors through unsupervised learning of text taken from abstracts 
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in the materials science literature,[79,80] Robocrystallographer structure descriptions,[81,82] or 

directly on the text of CIF files[83] could be further approaches. 

As our goal was to propose the approach of leveraging LLMs for predicting structure-based 

synthesizability and inferring its chemical explanation, there are many possible ways to improve the 

performance. In the future, more advanced LLMs can be utilized for developing fine-tuned LLMs, as 

we demonstrated through the performance comparison between fine-tuned GPT-3.5 and fine-tuned 

GPT-4o-mini. Designing detailed prompts or combining external functional tools could also contribute 

to further development. Finally, we hope that ongoing rapid advancements in LLMs will enhance 

performance. 
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We utilized LLMs for structure-based general synthesizability prediction along with their 

explanations. Fine-tuned LLMs and LLM-embedding-based bespoke ML models showed promising 

performance compared to the traditional graph-based bespoke ML models. Furthermore, fine-tuned 

LLMs can provide explainability by inferring the reasons for determining the synthesizability with 

simple prompts. 
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