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Multifidelity methods in machine learning (ML) have seen an increasing usage for the prediction of
quantum chemical properties. These methods, such as ∆-ML and multifidelity ML, have been shown
to significantly reduce the computational cost of generating training data. This work implements
and analyzes several multifidelity methods including ∆-ML and multifidelity ML for the prediction
of electronic molecular energies at DLPNO-CCSD(T) level, i.e., at the level of coupled cluster theory
including single and double excitations and perturbative triples corrections. The models for small
organic molecules are evaluated not only on the basis of accuracy of prediction, but also on efficiency
in terms of the time-cost of generating training data. In addition, the models are evaluated for the
prediction of energies for molecules sampled from a public dataset, in particular for atmospherically
relevant molecules, isomeric compounds, and highly conjugated complex molecules.

I. INTRODUCTION

High accuracy quantum chemistry (QC) computations are integral to understanding day-to-day
processes. One of these is, for example, the use of high accuracy thermochemical calculations to
understand atmospheric chemistry. Coupled cluster theory with single, double, and a perturbative
treatment of triple excitations (CCSD(T)) is widely regarded as the “gold standard” in quantum
chemistry for accurately describing electron correlation in molecular systems [1]. By incorporating
perturbative triple excitations on top of the CCSD wave function, CCSD(T) achieves a higher
level of accuracy in predicting molecular properties such as reaction energies and potential energy
surfaces. However, this accuracy also comes at a high computational cost, as the CCSD(T) method
scales approximately as O2(N8) with the number of basis functions N and occupied orbitals O,
which makes it impossible to be applied to larger systems. Several approximations have been
employed to overcome this scaling problem[2], and one efficient approach is the domain-based local
pair natural orbital (DLPNO) approximation[3]. This method reduces the computational cost
by localizing electron correlation to spatially compact regions of the molecule, without significantly
compromising accuracy. Although it reduces computational cost by a factor of two to four compared
to ordinary coupled cluster calculations[4, 5], it is still computationally challenging for large systems.
The use of ML in QC has significantly reduced the computational cost for large chemical systems

[6–13]. The ML models learn a mapping between the Cartesian coordinates along with the respective
atomic number, often converted to machine learnable input features called molecular descriptors or
representations, and the QC property of interest such as ground state energies. This allows them
to make predictions of the QC properties for molecules that the model has not previously been
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trained on. While ML in QC has provided a major respite to the cost of making costly calculations,
a new overhead has since been presented to the use-case of ML-QC pipelines. This is the cost of
generating the training data required for an ML model to achieve a certain accuracy. It is a common
observation that the more training samples one uses, the better the model is able to predict the
QC property of interest [11, 14].

One method to reduce the cost of training data is the ∆-ML method [15]. In ∆-ML, training
data from two different fidelities are used to train an ML model on the difference between the two
fidelities. It is observed with the application of ∆-ML based methods that it is easier to learn the
difference rather than the explicit value at the highest fidelity [11, 12, 14, 15]. The final prediction
with an ∆-ML model involves the QC calculation of the cheap fidelity and the prediction of the
difference. Since its introduction in the QC community, it has become a ubiquitous tool for a vast
array of applications, including excitation energies, potential energy surfaces, electronic spectra,
and isomerization enthalpies [11, 12, 14–20]. The method demonstrated that a smaller number of
training samples could be used to achieve a higher level of accuracy in the model. Previously, in
Ref. [20] some of the present authors used the ∆-ML approach to learn the CCSD(T) corrections
over the CCSD energies for a collection of small organic molecules. In another related work, the
∆-ML was employed to predict the CCSD(T) energies of small organic monomers based on DFT
results [21]. It is to be noted that ∆-ML is slightly different from transfer learning (TL)[22] which is
another common approach used in ML-QC to reduce the use of costly data and has been employed
in diverse applications such as thermochemistry and material analysis [23–25]. The key difference
is that while ∆-ML trains on the explicit difference between two fidelities, TL first trains an ML
model on the low fidelity and uses that to train for model parameters such as in the case of a neural
network, the weights of the different hidden layers. The model parameters from this cheap-fidelity
network are then ‘transferred’ to a new model, which is trained on the sparsely available high fidelity
data.

A systematic generalization of the ∆-ML method towards the use of data from multiple fidelities
in machine learning, named CQML, was introduced in Ref. [26]. In this method, an ML model is
trained on several fidelities which lie between the top fidelity, also termed target fidelity, and the
cheaper fidelity. In addition, this approach eliminates the need to perform QC calculations at the
cheapest fidelity, also called the baseline fidelity. CQML is hence a method for multifidelity machine
learning (MFML). MFML methods have been used in several applications such as the prediction
of atomization energies at the CCSD(T) level for a diverse range of molecules [26], predicting
bandgaps [27, 28], and excitation energies along molecular trajectories [29] among others [30, 31].
In the following, we will refer to the multilevel method discussed in [29] as the MFML method.
Alternative variations of the ∆-ML and MFML method have been introduced. Hierarchical-ML
(hML) builds several ∆-ML like models for different fidelities in a manner similar to an MFML
approach, however, with the number of training samples chosen to use an ad hoc optimization
scheme [32]. The method has been shown to be effective in predicting ground state potential energy
surfaces for CH3Cl. Optimized MFML (o-MFML), was recently introduced as a methodological
improvement over the conventional MFML approach by optimally combining the sub-models used
for MFML [33]. The o-MFML method uses a validation set computed at the target fidelity to
optimize the combination of the sub-models and has been shown to provide better accuracy for
the overall prediction for both excitation energies and atomization energies [33] and in cases where
training data might be heterogeneous [34].

Other ML methods have also been studied in their effect to reduce the computational cost asso-
ciated with the generation of training data. Hierarchical-ML uses solves a minimization problem
for a use defined target error and a number of training samples to be used at the different fidelities
[32]. The method has been used to predict a full basis set approximation of the ground state poten-
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tial energy surface for CH3Cl. Multi-task Gaussian processes are yet another method introduced
recently and have been seen to reduce the overall cost associated with a multifidelity model [35].
The model was seen to be effective in the prediction of many-body interaction terms for water and
showed favorable results even in cases of heterogeneous training data. Another useful approach
to reduce the cost of training data is the recently introduced minimal multilevel machine learning
(M3L) method, an update of the MFML method. In this method, the number of training samples
to be used at each fidelity are optimally computed using Bayesian optimization of a cost function
for a target model error [36].
A recent study benchmarked different multifidelity models with respect to the time-cost associated

with them and the corresponding model accuracy [37]. This study revealed that the use of MFML
is beneficial when requiring large numbers of predictions. It also introduced a new multifidelity
approach, the multifidelity ∆-ML (MF∆ML) method. In this method, several ∆-ML like sub-
models are combined in a manner similar to that in MFML. This method was shown to be superior
to the conventional ∆-ML method in model error and overall efficiency. Ref. [37] performs these
benchmarks for models that are trained and evaluated across different fidelities restricted to the
DFT level of theory.
One possible application for high accuracy thermochemistry is the domain of atmospheric chem-

istry, also including large-scale climate models that consider chemical processes [38]. Atmospheric
chemistry encompasses a multitude of gas-phase radical reactions, most of which are not amenable
to experiment. Therefore, a precise prediction of their relative energies is paramount. In this
study, a database of small organic molecules containing multiple free radicals, and their hydrogen-
terminated counterparts were constructed. Several multifidelity methods were used to train ML
models and evaluated over this collection of monomers. Subsequently, these models were evaluated
not only on their accuracy of predictions but also on the cost associated with training them, in
particular, the cost of the training data required to achieve a certain error. Finally, all models were
assessed on supplementary validation datasets, comprising manually selected atmospherically perti-
nent molecules, highly conjugated molecules, and isomer structures. The latter category represents
a particularly challenging theoretical distinction.
The rest of the manuscript is structured as follows: the required methodological details are

provided in section II including QC methods and ML techniques. Section III assesses the different
ML methods discussed in this work for the prediction of the molecular energies at the DLPNO-
CCSD(T) target fidelity. A time-cost versus model accuracy assessment is presented to gauge the
effectiveness of each of the studied ML methods. Conclusions are drawn from the results, and special
cases are studied in detail and discussed in section IV. An outlook and key takeaway messages of
this work are delineated in section V.

II. METHOD

A. Dataset Construction

We extended the database from a previous study [21], where around 8000 monomers were ran-
domly selected from a public database which focuses on determining the enthalpies of radical reac-
tions for small organic molecules [39], and then geometry optimized at the B3LYP-D3(BJ)/cc-pVTZ
level of theory and then their single-point energies were computed using DLPNO-CCSD(T) theory.
More than 12000 additional molecules from the same quantum chemistry database were geometry
optimized at the B3LYP-D3(BJ)/cc-pVTZ level of theory. The free radicals in the database are
important intermediates in combustion and atmospheric chemistry and their energies are essential
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to determine the thermodynamics and kinetics of reaction pathways. In order to save the time cost
for advanced quantum chemical calculations, we only selected small molecules in the database (no
more than ten heavy atoms). The molecular energy and weight distributions of our dataset are
given in the supplementary information. After checking for duplicates via the generated SMILES,
12340 molecules remained in our database (4606 data points with DLPNO-CCSD(T) single-point
energies from the previous database and 7734 additional molecules) consisting of only hydrogen,
carbon, nitrogen, and oxygen atoms. All these molecules were then subjected to DFT single-point
energy computations using the B3LYP-D3(BJ) functional in conjunction with the STO-3G basis
set. Subsequently, 1500 data points with DLPNO-CCSD(T) energies were randomly selected as
the test set for our ML models, and all the rest were used for training. In addition, we validated
our models using three external validation sets containing atmospherically relevant species (includ-
ing radicals), highly conjugated molecules, and isomers, which were also used for validation in the
previous study [21].

B. Machine Learning Methods

This subsection discusses the ML approaches used in this work, including the single fidelity model,
the ∆-ML approach, and MFML and its variants, among others.

1. Molecular Descriptors

In the general ML-QC pipeline, an integral part of the process of learning a QC property is
to first convert the Cartesian coordinates and atomic numbers of atoms of the molecules into
machine learnable input features, which are called representation or molecular descriptors [11, 14,
40]. A variety of such descriptors exist in the literature with each suited for a specific application.
A molecular descriptor is expected to satisfy certain conditions such as uniqueness, rotational,
and translation invariance, and invariance under different indexing of the atoms. Rotation and
translation invariance can be understood as follows: if a molecule is moved or rotated in a global
coordinate system, it’s energy does not change. A good molecular descriptor should be able to
reflect this.
The use of unsorted Coulomb Matrices (CM) [6, 41] with geometries of different molecules while

being translation and rotation invariant lacks the index invariance [42]. This issue can be mitigated
by the use of row-sorted CM wherein the unsorted CM is built, then the rows are ordered by
their L2 norms [6, 40]. However, sorting of CM is generally considered to introduce undesirable
discontinuities [6, 41]. In order to combat the issues of index invariance, several variants of CM have
been suggested. Other alternatives that exist include using a different distance metric while building
the kernel function with unsorted CM, namely the Wasserstein distance, which is the lowest amount
of work done to change one distribution to another [43]. Even with unsorted CM, this metric has
lower ML model errors than the L2 and L1 distance metrics. Yet another proposition to overcome
the index invariance issues of unsorted CM is the use of Randomized CMs as shown to be effective
in prediction of molecular electronic properties [7]. Other molecular descriptors such as Spectral
London and Axilrod-Teller-Muto (SLATM) [44, 45], smooth overlap of atomic potential (SOAP)
descriptors[46], and the Faber-Christensen-Huang-Lilienfeld representation (FCHL) [47] satisfy the
index invariance in addition to the other requirements of a molecular descriptor. These descriptors
build more chemistry informed descriptors and have been employed in several used cases and shown
to be effective.
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Since the aim of this work is not to provide a thorough review of the descriptors, three com-
mon representations were initially studied, namely: CM , row-sorted CM, and the SLATM. All
three descriptors were generated using the qmlcode package [48]. The parameters for the SLATM
representation used in this work were set to the values prescribed in Ref. [44], namely: a cut-off
radius of 4.8 Å, a smear width of 0.05 Å for the radial terms and 0.05 rad as value for the angular
terms. In this work, the default London potential was employed in the generation of the molecular
representation. These values were chosen in order to prevent overfitting of the ML models to the
training dataset and make transfer of the models to the additional validation sets as feasible as
possible. The values employed in Ref. [44] indicate that these can be applied globally for most
simple molecules, as is the case for this present work.

2. Kernel Ridge Regression

The predictions of a kernel ridge regression (KRR) model for a given fidelity f is given as

P
(f)
KRR (Xq) :=

N
(f)
train∑
i=1

α
(f)
i k (Xq,Xi) , (1)

where k(·, ·) denotes the kernel function and N
(f)
train the number of training samples used at the

fidelity f . This work uses the Matérn kernel of second order with l2 norm which is computed as

k (Xi,Xj) = exp

(
−
√
3

σ
∥Xi −Xj∥22

)
·

(
1 +

√
3

σ
∥Xi −Xj∥22

)
, (2)

where the parameter σ is a length scale. In this work, using a grid search, the parameter σ was
optimized to values of 3, 200.0 for SLATM, 9000.0 for sorted CM, and 9500.0 for unsorted CM. The
hyper-parameter grid search for σ was carried out only for the target fidelity of DLPNO-CCSD(T).
The vector α(f) contains the coefficients of KRR, which are calculated by solving the linear system

(K + λI)α(f) = y(f). Here, K = (k(Xi,Xj))
Ntrain

i,j=1 is referred to as the kernel matrix. The vector

y(f) =
(
y
(f)
1 , y

(f)
2 , . . . , y

(f)
Ntrain

)T
is the vector of the QC properties, in the present case the energies,

from the training set denoted as T (f). The parameter λ restricts overfitting of the model and was
set to 10−10.

3. ∆-Machine Learning

Let T F := {(Xi, y
F
i )}

NF
train

i=1 be training data computed at some fidelity F which is supposed
to be the final prediction fidelity, that is, the target fidelity. Here Xi are molecular descriptors
with yi corresponding QC-properties. For the same molecular descriptors, let a training set of QC

calculations made at a cheaper fidelity fQC
b < F be given: T fQC

b := {(Xi, y
fQC
b

i )}N
F
train

i=1 . Notice

that the training set T fQC
b has the same number of samples as the set T F , by construction. With

these training datasets at two fidelities, the prediction of a ∆-ML model for the target fidelity is
given as

P
(F ;fQC

b )

∆ := P
∆F

f
QC
b

KRR (Xq) + y
fQC
b

q , (3)
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where, P
∆F

f
QC
b

KRR denotes the KRR prediction of the energy difference between the two fidelities, and

y
fQC
b

q is the QC-calculation for the query molecule.

4. Multifidelity Machine Learning

The MFML approach was introduced as a systematic generalization of the ∆-ML method [26].
The method iteratively uses sub-models of KRR. The sub-models are identified by the fidelity, f ,

and the number of training samples used in that fidelity, 2ηf = N
(f)
train for KRR. That is, sub-models

can be identified by a composite index s = (f, ηf ). The sub-models for a given MFML model
are chosen based on the choice of the number of training samples at the target fidelity and the
baseline fidelity, which is the cheapest QC fidelity that is included in the MFML model [26, 33].
The prediction from a MFML model is given as

P
(F,ηF ;fb)
MFML (Xq) :=

∑
s∈S(F,ηF ;fb)

βsP
(s)
KRR (Xq) . (4)

The summation runs over the set of MFML sub-models, S(F,ηF ;fb). Notice that the prediction of
a MFML model does not require any further QC calculations to be performed during evaluation,
unlike in the case of ∆-ML as seen in equation (3). The βs from equation (4) are coefficients of
MFML that are set to

βMFML
s =

{
+1, if f + ηf = F + ηF
−1, otherwise

. (5)

An alternative formulation of the coefficients is introduced in Ref. [33]. This results in the
optimized multifidelity machine learning approach (o-MFML). This method optimally computes
values of βs by solving the following optimization problem

βopt
s = argmin

βs

∥∥∥∥∥∥
Nval∑
v=1

yvalv −
∑

s∈S(F,ηF ;fb)

βsP
(s)
KRR

(
Xval

v

)∥∥∥∥∥∥
p

,

This optimization is carried out over a validation set given as VF
val := {(Xval

q , yvalq )}Nval
q=1 . The

validation set consists of geometries with the energies computed at the target fidelity. That is, the
training of the o-MFML model comes with the additional cost of the validation set. The prediction
of the o-MFML model for query descriptor Xq is given as

P
(F,ηF ;fb)
o−MFML (Xq) :=

∑
s∈S(F,ηF ;fb)

βopt
s P

(s)
KRR (Xq) , (6)

where βopt
s are the optimized coefficients.

5. Multifidelity ∆-Machine Learning

Consider an ordered hierarchy of fidelities, f ∈ {1, 2, . . . , F}, such as that used for MFML. With
such a hierarchy, all the training energies can be “centered” by the energies of the lowest fidelity,
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f = 1. These can then be used to build a MFML model. That is, the sub-models are now individual
∆-ML models. This formulation is referred to as the multifidelity ∆ machine learning (MF∆ML)
approach [37]. For a query representation Xq, the prediction of the MF∆ML model is given as:

P
(F,ηF ;fb,f

QC
b )

MF∆ML (Xq) :=
∑

s∈S(F,ηF ;fb)

βsP
(s)
∆ (Xq) , (7)

where, P
(s)
∆ are ∆-ML models from equation (3) where fQC

b is set to f = 1, and the target fidelity
for each sub-model would be fidelity f . Note that each evaluation of this model requires a QC
calculation on the lowest level.

6. Model Error Metrics

In order to determine the accuracy of the ML models studied in this work, the mean absolute
error (MAE) of the predictions over a holdout test set was studied. Consider the test set of
query molecular descriptors and corresponding energies computed at the target fidelity, Ttest :=
{(Xq, y

test
q )}Ntest

q=1 . The MAE of ML predictions over this test set is computed as

MAE :=
1

Ntest

Ntest∑
q=1

|ytestq − yML
q | , (8)

where yML can be the predictions from any of the ML models discussed above. The MAEs of
the different ML models are discussed in the form of learning curves, which plot the MAE values
as a function of the number of training samples used at the target fidelity for a given ML model.
In addition, MAE of the different models are studied as a function of the time-cost incurred in
generating the complete training data for the model. Consider the case of single fidelity KRR.
The cost of training data is explicitly related to the number of training samples used at the target
fidelity. For the case of the multifidelity methods, this cost will include not just the cost of the
target fidelity training samples, but also the cost of the training data used at the subsequent cheap
fidelities. For o-MFML the cost also includes the expense of the validation dataset at the target
fidelity. For the ∆-ML variants, the cost of the ML model also includes the cost of making the
QC-baseline calculations. The resulting analysis for this is provided in Section III.

Fully trained MFML and MF∆ML models with N
CCSD(T)
train = 512 are also evaluated on addi-

tional validation sets of atmospheric molecules (Atmos), conjugated compounds (Conjugated), and
isomeric compounds (Isomers). In these cases, the model error is reported as a single MAE value
and the distribution of the difference between reference and predicted energies are studied with
kernel density plots (see Section IV). A simple scatter of the reference and predicted energies is also
provided for the sake of completeness.

III. RESULTS

A preliminary assessment of molecular descriptors was made to prepare for the use of multifidelity
methods to the dataset. Unsorted CM, row-norm sorted CM, and SLATM molecular descriptors
were tested since these are the most common descriptors for such applications. The results of the
assessment are shown in Figure 1 for a single fidelity KRR model trained only on the target fidelity
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FIG. 1: Comparing representations for single fidelity KRR at the DLPNO-CCSD(T) fidelity.
Results are shown for an average of ten runs with shuffled training data. The SLATM

representation performs the best out of the three, and the sorted Coulomb Matrices (CM)
performs better than the unsorted CM.

DLPNO-CCSD(T). The learning curves indicate that the SLATM representation performs the best
out of the three. The sorted CM performs better than the unsorted CM. This could be due to
the fact that the sorted CM and SLATM representations retain index invariance of the descriptor,
which is missing in the unsorted CM descriptor. For a use case such as the one presented here
where the models are trained and evaluated on different molecules as opposed to training on a
trajectory of the same molecule as in Ref. [29], the retention of indexing invariance is pertinent
[6, 11, 40, 49]. At the same time, the sorted CM performs worse than the SLATM representation.
This could be due to the fact that the sorting of the CM results in undesirable discontinuities [6, 40]
which potentially deter the ML models from being able to learn anything meaningful. Based on
this assessment, for the remainder of this work, the SLATM representation is used throughout for
all ML models. The preliminary data assessment of the training data as prescribed in Ref. [29] is
given in the supplementary information associated with this manuscript in Figure S2. The analysis
indicates that the chosen hierarchy of the fidelities is indeed conducive to effective working of the
multifidelity models. The mean absolute difference in the energy values of the fidelities shows a
systematic decrease and is a first indicator of the abilities of MFML model in predicting the target
fidelity with good accuracy.

MFML and o-MFML models were built with varying baseline fidelities for the prediction of
energies for the monomers. The resulting learning curves are presented in Figure 2 for both these
models. The single fidelity KRR built with only DLPNO-CCSD(T) training samples is shown for
reference. With the addition of cheaper fidelities, the learning curves of the models show a constant
lowered offset. That is, for the same number of training samples as used for the single fidelity KRR
model, the MFML models result in a lower MAE. While the o-MFML model is a methodological
improvement over the MFML method, in this case the difference is not very pronounced and the
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FIG. 2: MFML and o-MFML learning curves with varying baseline fidelities. The learning curve
for the single fidelity KRR model built with only DLPNO-CCSD(T) training data is also shown

for reference.

model MAEs for MFML and o-MFML are rather similar.

2 8 32 128 512
NCCSD(T)

train
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102

M
AE

 [k
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l/m
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fb
CCSD(T)
DFT/STO 3G-ML

CCSD
DFT/cc-pVTZ

FIG. 3: Learning curves for MF∆ML. The QC baseline is DFT/STO-3G. The different baseline
fidelities of the MF∆ML model are shown in the legend. The learning curve of ∆-ML model built

with DFT/STO-3G as QC-baseline and DLPNO-CCSD(T) target fidelity is also plotted.

In this work, we also assess the ∆-ML and MF∆ML methods. The reader is referred to Figures
S3-S4 in the supplementary information for results of ∆-ML with different values of QCb. The
overall trend is as expected based on the study from refs. [15, 37]. That is, with a QCb that is
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closer to the target fidelity, the ∆-ML model shows a higher accuracy in prediction. However,
as Figure S4 indicates, the time-cost incurred in using higher QCb far outweighs this benefit. As
described in section II B 5, the MF∆ML method builds a multifidelity model consisting of various
∆-ML models. The resulting learning curves are shown in Figure 3. In addition to the learning
curves for MF∆ML, the learning curve for the standard ∆-ML model built with the DFT/STO-3G
as QC-baseline is shown as well. Once again, as for the case of MFML, the addition of a cheaper
fidelity to the basic ∆-ML model results in a lower offset of the learning curve. However, for large

enough training set sizes, N
CCSD(T)
train = 512, this offset is not very pronounced vis-á-vis the ∆-ML

model. Furthermore, the learning curve for MF∆ML with fb CCSD and fb DFT/cc-PVTZ converge
at this point. This convergence could be an indication of the saturation of the model due to the
very similar structures of the monomers.
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FIG. 4: Distribution of difference in model prediction and computed reference DLPNO-CCSD(T)
energies over the holdout test set of 1,500 samples for MFML and MF∆ML models with varying

values of fb.

Figure 4 depicts the difference between ML model prediction and reference DLPNO-CCSD(T)
energies for the holdout test set used for the study of learning curves. The results are shown for both
the MFML and MF∆ML models with varying baseline fidelities. The error distribution of the single
fidelity KRR with only DLPNO-CCSD(T) energies and the standard ∆-ML model with DFT/STO-
3G as the QC-baseline are also shown for reference. Consider the left-hand side plot of Figure 4
which is the case for the single fidelity KRR and MFML models. It is seen that all the ML models
predict with a difference centered around 0 kcal/mol. However, the single fidelity KRR model has
a wide spread of the difference between reference and prediction. With each additional cheaper
fidelity that is added to create the MFML model, the peak of the differences gets tighter around
0 kcal/mol meaning, the MFML models predict the DLPNO-CCSD(T) energies with increasing
accuracy as one decreases the baseline fidelity. This agrees with the study of learning curves that
was presented in Figure 2.

The right-hand side plot of Figure 4 depicts the distribution of the difference between reference
DLPNO-CCSD(T) energies and the energies predicted by the different ∆-ML models that were
studied in this work. These are built with the DFT/STO-3G fidelity as the QC baseline as explained
in Section II B 5. Note that the x-axis, marking the differences, is different from that for the MFML
models on the left-hand side plot, almost by an order of magnitude. On comparing the distribution
of differences for the different ∆-ML models, the standard ∆-ML model (denoted in the legend
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by the DLPNO-CCSD(T)) has the widest distribution range with a peak that is shifted towards
the left of 0 kcal/mol. With the addition of cheaper baselines to create the MF∆ML models, the
peak becomes narrower and centered around 0 kcal/mol. This is once again in agreement with the
analysis of the learning curves for MF∆ML models from Figure 3 performed above.
The outliers in the plots of Figure 4 warrant some discussion of possible reasons. The large

difference in predictions could arise due to lack of diversity in the training data. Homogeneity in
the training data results in the ML models ending up being overfitted to the simplistic training
data and struggling to make predictions for out of sample data. Alternatively, outliers in prediction
could be due to the complexity of certain molecules being under-represented in the training dataset,
e.g., cyclobuta-1,3-diene. Even so, as expressed above, the majority of the predictions are close to
the reference values as seen by the peaks being centered around 0 kcal/mol.
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FIG. 5: Model MAE versus the time to generate the training data. Three test set sizes are
compared.

While these are interesting results about the capabilities of both MFML and MF∆ML methods,
it becomes pertinent to also account for the time cost associated with these different models when
predicting DLPNO-CCSD(T) energies. Figure 5 depicts the model MAE as a function of generating
the training data for the collection of ML models that are compared in this work. This comparison
is made for the single fidelity KRR, MFML and o-MFML models built with DFT/STO-3G baseline
fidelity, the ∆-ML model with the QC-baseline fidelity, and the MF∆ML model with the DFT/cc-
PVTZ fidelity. For the MFML model, the training data cost accounts for the complete multifidelity
training structure, similar to what is discussed in Ref. [29]. That is, the cost of training data at all
the fidelities used in the MFML model. For o-MFML model, the time-cost also includes the cost
of generating a validation set over which the optimization procedure is carried out. For ∆-ML and
MF∆ML models the cost includes the time to make the QC-baseline calculations.
Figure 5 compares the time cost versus MAE for three hypothetical test set sizes, i.e., 1.5k, 15k,

and 150k samples. The actual MAE values are calculated over the fixed test set of 1.5k samples.
However, since the MAE values reported are for an average over ten runs, it is expected that the
model MAE would be similar for a larger test set. The interesting thing to note is the time cost
of generating the training data. In cases where one needs to predict energies for a few geometries,
1.5k in this case, the MF∆ML model performs the best. As one increases the test set size, the
time cost of making the QC-baseline calculations for the ∆-ML and MF∆ML models outweighs
the potential benefit of the method. In contrast, the MFML model is unaffected by the size of the
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Evaluation
Size

DLPNO-
CCSD(T)

KRR ∆-ML MFML o-MFML MF∆ML

1500 1.64×105

5.61×104 (13.64)

5.66×104 (1.59)

1.11×105 (3.46) 2.04×105 (3.44)

1.11×105 (1.28)

15000 1.64×106 5.95×104 (1.59) 1.14×105 (1.28)

150000 1.64×107 8.85×104 (1.59) 1.43×105 (1.28)

1500000 1.64×108 3.79×105 ( 1.59 ) 4.33×105 ( 1.28 )

TABLE I: Time-costs (in minutes) for different sizes of the test set. The reference cost on using
DLPNO-CCSD(T) conventional computation is contrasted alongside. For the ML models, the

time cost is computed for N
CCSD(T)
train = 29 with remaining multifidelity data structure being

accounted for as expressed in the main text. The values in the parenthesis denote the MAE of the
ML models. It is to be noted that the ∆-ML and MF∆ML models also have the cost of the

QC-baseline fidelity.

test set. This is due to the fact that the MFML approach also predicts the baseline fidelity rather
than using QC computed values. In large test set size regimes, this sets the MFML to be the more
efficient method. The o-MFML method, across the different test set sizes, is the most expensive
model to build. This is expected since the cost of the validation set is affected by the target fidelity,
which in this case is the DLPNO-CCSD(T), an expensive QC method. Table I reports the time-
costs in minutes for the different ML models in contrast to using conventional QC computations
for the DLPNO-CCSD(T) fidelity. The ML models are built with 29 training samples at the target
fidelity of DLPNO-CCSD(T). It is evident that the use of any ML method is better than the use
of conventional QC computational methods. Notice that the time-costs for KRR, MFML, and
o-MFML are fixed regardless of the size of the test set. The ∆-ML and MF∆ML, although lower
in model MAE are sensitive to the size of the test set. To make this clearer, we also present in the
table a test set size of 1.5 million samples. In contrast, the MFML model is unaffected by the size
of test set since even the fb fidelity is predicted with an ML model.

IV. DISCUSSION

After the time-cost assessment of the different ML models, these can be further used to study
their predictive capabilities over certain datasets. To this end, the trained MFML model with
DFT/STO3G baseline fidelity, and the MF∆ML models with the DFT/STO3G QC-baseline and
DFT/ccpvtz baseline fidelity were evaluated over three specific datasets, i.e., atmospheric molecules
(Atmos), Conjugated molecules, and Isomers, which were also used in the previous study for valida-
tion [21]. It is important to note that some of the configurations in these additional evaluation sets
were already present in the training set due to the extension of the previous dataset. We visualized
all these duplicate molecules using VMD package [50], and removed identical conformations from
the validation sets. However, since the optimization of structures at the DFT level does not always
yield the global minimum structure, the same molecule may appear in different conformations in
the training and test sets. These conformations have different energies and are still retained for

evaluation, especially for the isomer test set. The ML models are trained with N
CCSD(T)
train = 512

with the remaining multifidelity structure built as explained in Section II B 4. The training samples
are chosen at random from the training dataset, ensuring that a proper multifidelity structure is
retained. The model MAE for this set-up on the original test set is reported in Table II along with

https://doi.org/10.26434/chemrxiv-2024-9zz16-v2 ORCID: https://orcid.org/0000-0001-8333-3422 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-9zz16-v2
https://orcid.org/0000-0001-8333-3422
https://creativecommons.org/licenses/by-nc/4.0/


13

3 2 1 0
yref [kcal/mol] 1e5

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

y M
L [

kc
al

/m
ol

]
1e5 Atmos

MFML (STO-3G)
MF DFT/STO 3GML
(DFT/cc-pVTZ)
Identity Map Line

4 3 2 1
yref [kcal/mol] 1e5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

1e5 Conjugated

2.0 1.5 1.0
yref [kcal/mol] 1e5

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

1e5 Isomers

FIG. 6: Reference versus ML-predicted DLPNO-CCSD(T) energies for the three special test sets
for MFML and ML∆ML models. Due to the large values of the energies, the axis values are

reported in scientific notation. Each axes’ tick is to be multiplied with 105 for the actual values of
the energies, as depicted on the margins.

its performance on the additional datasets.

Dataset MFML MF∆ML

Original Test Set 3.01 1.28

Atmos 9.60 3.47

Conjugated 8.78 1.69

Isomers 1.48 0.42

TABLE II: MAE in kcal/mol of predictions for the MFML and MF∆ML models built with

N
CCSD(T)
train = 512 for the original test set of 1500 samples and for the additional validation

datasets. A random selection of training samples were chosen from the training dataset used to
generate the learning curves from Figure 2 and 3.

The predictions of the MFML and MF∆ML models for the Atmos, Isomers, and Conjugated
datasets are compared to the reference DLPNO-CCSD(T) values in Figure 6 in the form of a
scatter plot with the x axis representing the reference energies while the y axis reports the ML
predicted values. For all cases, an identity mapping line, which is the ideal prediction-reference line,
is provided for easy reference. For the three unseen test datasets that the MFML and MF∆ML
models are tested on, the predictions and reference energies show good agreement, with all the
scatter points being on the identity map line. Since the Atmos, Isomers, and Conjugated datasets
have very few data points, it is to be estimated from the discussion of Figure 5 that the MF∆ML
would be more beneficial due to the smaller number of QC-baseline calculations needed.
To better assess this benefit, the distribution of difference in reference and predicted DLPNO-

CCSD(T) energies are presented in Figure 7 for the MFML and MF∆ML models from the above
discussion. Consider the case of the Atmos dataset shown in the left-hand side plot of the figure. The
prediction of the MFML model shows a wider plateau skewed towards the negative x axis, indicating
an over-estimation of the DLPNO-CCSD(T) energies. However, with the MF∆ML model, the
distribution is symmetric around 0 kcal/mol with a distinct peak with most of the deviation from
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FIG. 7: Distribution of difference between reference and predicted energies for MFML and
MF∆ML models studied in this work. Note that the different distribution plots have different

scaling of the x and y axes to aid better visualization of the distributions.

predictions being within ±10 kcal/mol. Similar observations can be made for the Conjugated and
Isomers datasets. MF∆ML results in narrower distributions of the difference in comparison to
the MFML model. This is anticipated since the MF∆ML method explicitly contains information
about the molecule, albeit at a lower fidelity, in this case the STO-3G fidelity. This results in good
agreement between the DLPNO-CCSD(T) reference and the MF∆ML model predictions. In order
to assess the sensitivity of the composition of the training dataset on the accuracy of the ML models
for these additional validations, the models were trained for 5 random training data compositions.
Figure S5 in the supplementary document plots the MAEs for each of the additional validation
datasets. Acceptable standard deviations of the MAE values are observed and therefore one can
safely rule out high sensitivity to the composition of the training dataset.

A visual representation of the performance of the multifidelity models can be studied on the these
additional validation datasets. In particular, one can visualize the best and worst performances of
the two multifidelity models in terms of the largest deviation the models predict with respect to
the reference DLPNO-CCSD(T) energies on the Atmos, Conjugated, and Isomers datasets. Figure
8 depicts such a visual for the MFML model. For each of the additional datasets that the model is
evaluated on, the three molecules with the lowest MAE and three molecules with the largest MAE
are reported in units of kcal/mol. A similar analysis is presented in Figure 9 for the MF∆ML model.
The two models show a certain consistency here. For the structures that are difficult to predict by
one model, the other model usually also gives a large difference between prediction and reference.
In general, both models performed best in the isomer set. It should be noted that although this
test set contains molecules which are also part of the training set, their conformations are not the
same. Moreover, these molecules are actually not always the ones with the best energy comparison
to the reference energies.

In addition to the above comparisons, we picked an example from the original test set to further
demonstrate the ability of the present model in distinguishing isomeric structures. As shown in
Figure 10, compared with the reference C10H13 molecule, B3LYP-D3(BJ)/STO-3G unexpectedly
overestimates the energies of the remaining three isomers, even resulting in an incorrect relative
energy order. In particular, the two isomers with the lowest relative energies have an energy
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FIG. 8: Three best (green background) and three worst (red background) MFML model
predictions of each validation set. The differences (true value minus predicted value) are given in

the units of kcal/mol.

FIG. 9: Three best (green background) and three worst (red background) MF∆ML model
predictions of each validation set. The differences (true value minus predicted value) are given in

the units of kcal/mol.

difference of 3.1 kcal/mol, while the energy gap at the DLPNO-CCSD(T) level of theory is 11.6
kcal/mol. However, the STO-3G basis set serves as the baseline for our ML model and provides
general information on molecular energies at very low cost, although it does not provide precise
energies. The present MFML model based on this lowest fidelity, however, is able to correct the
relative energy trend. Furthermore, the MF∆ML model not only restores the correct relative order,
but also obtains results that are numerically close to those of the DLPNO-CCSD(T) reference. This
finding showcases the potential of the present multifidelity models in distinguishing and identifying
isomers.
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FIG. 10: Relative energies of four C10H13 isomers. The energy of one of the isomers is selected as
the reference (shown in yellow), and the relative energies of the other three isomers obtained using

different methods are shown in green, red, and blue, respectively.

V. CONCLUSIONS

In this work, different ML approaches starting at the single fidelity KRR and including the
MFML, o-MFML, ∆-ML and MF∆ML schemes were studied in their efficiency to predict DLPNO-
CCSD(T) energies of small organic molecules. The time cost of generating the training data and its
effect on the overall model accuracy was studied for the different ML models. This study indicates
that the MFML method is preferable when a large number of evaluations of the ML model are
required. For a smaller number of predictions, the MF∆ML method was seen to be more effective.
Moreover, the MFML and MF∆ML models were evaluated on validation datasets of atmospheric,
conjugated, as well as isomeric molecules. In all these cases, the MF∆ML method showed good
agreement with the reference DLPNO-CCSD(T) energies, resulting in a positive outlook on the use
of the method for further application. Overall, this work provides a strong footing for the use of
multifidelity methods in the application to coupled cluster energy predictions of thermochemistry.
In addition, this work demonstrates that the use of multifidelity methods increases overall model
accuracy. In cases such as predicting energies for a very large dataset, the use of MFML can be more
efficient. The results of this work are comparable to previous work by some of us in Refs. [20, 21]
with the MFML being a cheaper alternative to the ∆-ML method described therein. Here, we
utilized a cheaper and smaller basis set size to further decrease the computational cost associated
with the training data for ML models.
A challenge of the existing work is the sensitivity of the ML models used herein to training data.
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This is a general challenge for ML methods and certainly work is progressing to produce generalized
ML-potentials which can be used for several applications [51–53]. Another possible limitation
of the work presented herein is the sensitivity of the ML models to the geometry optimization
procedure carried out to generate the training data itself. Research in the future could attempt
to study this relation and provide key insights in the use of fine-tuned optimization for the ML-
QC pipeline. Further, since the multifidelity hierarchy structure assumed in this work is one-
dimensional, a possible direction that can be pursued is the effect of building fidelity hierarchy with
several dimensions, as was demonstrated in Ref. [26] wherein both the level of theory and basis set
choice were used to construct a multi-dimensional multifidelity model. A time-cost assessment of
such an approach combined with training set size optimization, such as the one in Ref. [32, 36] can
potentially provide a better understanding of how the multifidelity method works across this form of
a fidelity structures and its efficiency thereof. Yet another area of focus can be understanding how
different forms of geometry optimization in the pre-processing stage would affect the overall model
accuracy, since the mapping from the coordinates to the property to be learned would change based
on how the geometries are produced. Furthermore, a systematic study of the outliers from Figure
4 can be performed to better gauge whether this is due to model artifacts or special chemistry of
the molecules themselves. Such a study would also need to assess the molecular descriptors, such
as varying several parameters of the SLATM representation.
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