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ABSTRACT: Vinyl boronates are highly valuable intermediates in chemical synthesis, extensively used in C‒C bond-forming 
reactions such as catalytic cross-coupling. Transition metal-catalyzed hydroboration of alkynes has emerged as a key method 
for synthesizing these building blocks. While classical approaches rely on noble metals like rhodium and iridium, copper-
catalyzed hydroboration offers a sustainable and cost-effective alternative. This strategy utilizes bench-stable reagents under 
mild conditions, delivering highly stereoselective trans-vinylboronates. However, predicting regioselectivity remains a chal-
lenge due to the complex interplay of ligand structures, alkyne substitution patterns, and reaction conditions. To address this, 
we employed a combination of experimental data, high-throughput computational calculations, and machine learning (ML) 
to develop predictive models for regioselectivity. Ligand and catalyst descriptors were derived from DFT calculations and 
literature databases, forming a robust dataset used to train ML algorithms. Further optimization proved effective in guiding 
experimental efforts by identifying promising ligands and improving hydroboration yields. This workflow integrates experi-
mental and computational tools to achieve a stereocontrolled synthesis of substituted alkenyl boronates from alkynes. As a 
case study, we demonstrate the successful application of ML-guided optimization, reducing copper catalyst loading while 
improving yields and regioselectivity. 

INTRODUCTION 
Vinylboronates are widely employed in a range of C‒C bond-
forming reactions, including catalytic cross-coupling pro-
cesses, and are considered highly valuable entities in chemical 
synthesis.1,2 One of the most important methods for the synthe-
sis of these building blocks is by transition metal catalyzed hy-
droboration.3 Traditionally, metals such as rhodium or  iridium 
and boranes have been employed for these transformation, but 
the emergence of copper-catalyzed hydroboration has pro-
vided a powerful alternative to classical approaches. Copper-
based catalysis enables the hydroboration of alkynes under 
mild conditions, often using bench-stable reagents like B2(pin)2  
(Bis(pinacolato)diboron) or HBpin (Pinacolborane)4,5. This 
strategy, which involves nucleophilic boron species, offers ex-
cellent stereoselectivity, typically delivering trans-vinyl-
boronates with high precision. Additionally, Cu catalysts are 
cost-effective and earth-abundant, representing an environ-
mentally sustainable alternative to more expensive noble 
metal systems.6 Compared with the traditional cross-coupling 
reactions, this strategy, in which the vinyl copper species is 
formed by migratory insertion of the Cu‒B across a C‒C unsat-
uration, has the following advantages: (a) abundant and stable 
boranes are used instead of air- and moisture-sensitive organ-
ometallic reagents; (b) the vinyl-Cu intermediate can be further 
transformed by subsequent reaction with suitable electro-
philes; and (c) two different products can be obtained from the 
same starting materials if a regiodivergent hydroboration is 
achieved.7 

However, predicting regioselectivity remains challenging due 
to the complex interplay of factors such as ligand structure, 
substrate substitution patterns, and reaction conditions.8 The 
regioselectivity of hydroboration reactions is not solely gov-
erned by electronic and steric factors of the substrate but is 
also heavily influenced by the ligand environment around the 

Cu center and the reaction conditions employed.9 This com-
plexity is further compounded by the vast diversity of ligands, 
including phosphines, N-heterocyclic carbenes (NHCs), and 
chiral bidentate ligands like bis-oxazolines, each capable of 
modulating the reactivity and selectivity of the copper catalyst 
in distinct ways.10 The factors providing a greater stabilization 
in the transition states are the steric hindrance and the elec-
tronic properties of the ligand, along with the electronic char-
acteristics and substitution pattern of the alkyne, which govern 
the boron insertion on the insaturation.11 Thus, remarkable dif-
ferences have been observed between ligands: for example, 
NHC type ligands promote one selectivity while phosphine lig-
ands the other. Furthermore, the different substitution on the 
alkyne seems to guide the insertion process, as depicted in Fig-
ure 1. 

 

Figure 1. Ligand and reactant controlled regioselective hydroboration.  
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Given this multifaceted problem, a traditional empirical ap-
proach to predict regioselectivity by testing individual ligands 
and substrates in an experimental setting is both time-consum-
ing and resource-intensive. As a result, alternative methodolo-
gies capable of systematically analyzing and predicting regiose-
lectivity are of great interest. Among these, machine learning 
(ML) has emerged as a powerful tool to address complex prob-
lems in chemical synthesis. By utilizing ML algorithms, one can 
develop predictive models that correlate structural and exper-
imental parameters with reaction outcomes, thus streamlining 
the design and optimization of regioselective hydroboration re-
actions.12,13,8,14,15,16 In particular, the calculation of variables 
has evolved to incorporate diverse,17,18,19,20 refined proper-
ties,21 which can be scaled to produce databases.22 The result-
ing descriptors can then be fed into a range of data science 
workflows to optimize a particular objective such as yield, ste-
reoselectivity,23 or regioselectivity.24 For simplicity, molecular 
descriptors will be referred to as "descriptors" throughout this 
work, and they will be treated as variables in the context of data 
analysis. This terminology does not specifically refer to de-
scriptors used in machine learning models but is adopted here 
for linguistic simplicity. 

The workflow typically employed in projects of this nature is 
both well-defined and streamlined. The first step involves data 
collection, which can be achieved through various ap-
proaches.25 Experimental reactions may be conducted in the la-
boratory using high-throughput experimentation.26 Alterna-
tively, data can be sourced from the literature or generated 
through high-throughput computational calculations. The sec-
ond step requires comprehensive descriptor collection to char-
acterize ligands, catalysts, and reactants. This involves compu-
tational calculations at various levels to analyze the chemical 
properties and functionalities of the selected systems, includ-
ing catalysts, reactants, solvents, or additives.27 A notable ex-
ample of this methodology is the Kraken Monophosphines Data-
base, as reported by Sigman et al.28  The third step focuses on 
identifying relationships between the collected descriptors and 
the target variables by training machine learning models. 
These models are then employed to predict or classify ligands, 
catalysts, reactants, or additives based on the specified objec-
tive variable. Finally, validation is essential to assess the per-
formance of the predictive models or classification functions. 
This is achieved by employing error metrics, such as root mean 
square error (RMSE), to evaluate accuracy, and using cross-val-
idation techniques to ensure robust and unbiased assessments 
of the dataset. 

Lastly, optimizing a chemical reaction involves more than just 
regioselectivity, requiring the evaluation of multiple parame-
ters such as substrates, catalysts, reagents, additives, solvents, 
temperature, and reactor type. However, practical constraints 
in laboratories often limit the exploration of conditions, even 
with advances in high-throughput experimentation (HTE) that 
allow the collection of thousands of data points. The vast num-
ber of possible configurations makes it challenging to identify 
optimal conditions. In this context, artificial intelligence, partic-
ularly Bayesian optimization, has emerged as a powerful tool 
to streamline reaction optimization.29 By efficiently guiding ex-
perimental efforts toward the most promising conditions, 
these techniques enhance efficiency and reduce the need for 
exhaustive experimentation. Herein, we report a method for a 
predictive stereocontrolled synthesis of substituted alkenyl bo-
ronic esters from simple alkynes, that combines our experimental 
results and DFT calculations, along with data obtained from the 

literature. Further optimization led to increased yields of the hy-
droboration product, reducing the catalytic amount of Cu while 
achieving excellent yields.30 

RESULTS AND DISCUSSION 

1. Experimental data collection.  

1. 1. Regioselective synthesis of the -isomer. 

As a case study, we tackled the challenge of predicting the regi-
oselectivity of a reaction using only the SMILES representation 
of the ligand. Our initial focus was to understand how ligands 
influence the regioselectivity in copper-catalyzed hydrobora-
tion/carboboration reactions of internal alkynes. To achieve 
this, we conducted a detailed investigation of ligand effects in a 
model hydroboration reaction. The reaction was carried out at 
room temperature in toluene, employing CuCl (10 mol%), lig-
and (12 mol%), and NaOtBu (15 mol%) as the base (further de-
tails are provided in the ESI). For this study, we selected (3-
methoxyprop-1-yn-1-yl)benzene 1 as the model substrate due 
to its distinct advantage of showcasing regio-divergence when 
tested with various ligand families. This divergence, reflected 
in the α/β ratio expressed as ΔΔG‡, arises from the two distinct 
functional groups flanking the alkyne (OMe and Ph), each capa-
ble of directing the borylcupration step in opposite directions, 
and is essential for exploring the full spectrum of regioselective 
outcomes. The variable ΔΔG‡ (difference in activation free en-
ergies) is calculated to compare the energy barriers between 
two competing pathways in a chemical reaction. It quantifies 
how much one pathway is favored over the other and is directly 
related to the ratio of the product distribution (α/β). The rela-
tionship can be expressed mathematically as: 

𝛥𝛥𝐺‡ = −𝑅𝑇𝑙𝑛(
𝛼

𝛽
) 

In this specific case, the α/β ratio represents the relative regi-
oselectivity of the borylcupration step, which is influenced by 
the directing effects of the two distinct functional groups (OMe 
and Ph) flanking the alkyne. A positive or negative ΔΔG‡ indi-
cates which pathway is more favorable, with smaller magni-
tudes correlating to less pronounced selectivity. It is possible 
to calculate ΔΔG‡ using activation energies obtained through 
Density Functional Theory (DFT) calculations or by experi-
mental methods such as differences in integrals observed in 1H 
NMR spectra. DFT calculations provide activation free energies 
(ΔG‡) for each pathway, allowing direct comparison of their rel-
ative energy barriers. Alternatively, 1H NMR can measure the 
product distribution (α\β) by integrating the signals corre-
sponding to the regioisomeric products. Since the ratio α/β is 
linked to ΔΔG‡ through the equation ΔΔG‡=−RTln(α/β)), the 
experimental data enables calculation of the free energy differ-
ence without requiring detailed computational modeling. Both 
approaches provide complementary insights into the factors 
governing regioselectivity. 

We examined ligand families including phosphines, phosphites, 
and NHC carbenes, while excluding N-donor ligands due to the 
poor yields observed under these conditions. The results, de-
tailing both yield and regioselectivity, are summarized in Fig-
ure 2. As observed, the reaction yields exceed 90% in most 
cases, with regioselectivity ratios ranging from 99/1 for PCy3 
to 40/60 for the IPr ([1,3-Bis(2,6-diisopropylphenyl)-imidazol-
2-ylidene]) carbene. These results align closely with the ratios 
previously reported by Hoveyda et al.11 and our group.7 Nota-
bly, steric hindrance emerges as a critical factor influencing re-
gioselectivity, as demonstrated by the data for IPr and Imes ( 
1,3-Bis(2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-yli-
dene) carbenes. Additionally, electronic effects play a signifi-
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cant role, as evidenced by the differences in regioselectivity be-
tween triphenylphosphine and its para-substituted analogs. 
This information provides a valuable foundation for training 
predictive models.  

 

Figure 2 Regioselectivity using different ligands (experimental). 

2. DFT data collection and initial ML models.  

To further enhance our understanding of regioselectivity, we 
aimed to expand the ligand dataset and perform DFT calcula-
tions. Accordingly, we computed DFT-level geometries for all 
Ligand-Cu-Bpin adducts and generated complete energetic 
profiles for 17 selected ligands.  

Based on the provided data for PPh3 case, which is one of the 
most correlated values between experimental and computa-
tion, the α insertion pathway is more favorable than the β path-
way due to key differences in the structural changes required 
to reach the transition state. In the α pathway, the distance be-
tween the boron atom and the α-carbon of the alkyne decreases 
from 3.092 Å in the intermediate to 2.219 Å in the transition 
state, a change of 0.873 Å. In contrast, the β pathway involves a 
slightly larger change, from 3.194 Å to 2.191 Å, corresponding 

to a difference of 1.003 Å. This indicates that the α pathway re-
quires less structural reorganization, suggesting a lower en-
ergy barrier for the reaction. Additionally, the transition state 
angle for the α pathway is slightly larger (68.89°) compared to 
the β pathway (67.10°). This difference, while subtle, may re-
flect improved orbital alignment in the α pathway, facilitating 
stronger interactions between the alkyne and the coordinating 
species. Combined with the smaller structural changes re-
quired along the reaction coordinate, the α pathway benefits 
from a more efficient and energetically favorable transition to 
the product. These factors explain why the α pathway is pre-
ferred over the β pathway under the studied conditions in this 
specific case. 

 
Figure 3. Molecular structure of the transition states TSα and TSβ and 
the previous intermediates for PPh3. Representative distances (Å) and 
angles (°) are indicated. 

These calculations contribute critical descriptors for capturing 
the nuanced interplay of steric and electronic effects in the re-
gioselectivity process. DFT calculations offer valuable insights 
for mechanistic investigations, providing access to information 
on reaction intermediates and transition state energies. In our 
study, we compared the calculated energies of the experi-
mental ligand scope with our energetic profile and observed 
that, despite the intrinsic error associated with DFT, the pre-
dicted major regioisomer generally aligns with the experimen-
tally observed outcomes. This consistency enables us to inte-
grate these computational data into the experimental dataset, 
enhancing its robustness. The primary results obtained in this 
regard are summarized in Figure 4. As illustrated in Figures 3 
and 4, the / ratios generated by DFT calculations closely 
match the experimental results. For instance, the P(p-tol)3 lig-
and produced an experimental value of -0.72, compared to -
0.718 from DFT calculations. Similarly, the dppe bisphosphine 
ligand yielded a ΔΔG‡ of -0.94, consistent between 1H NMR 
measurements and DFT predictions. However, some discrep-
ancies were observed, such as with P(C6F5)3, which provided an 
experimental value of -0.33 versus -0.55 from DFT. Overall, the 
observed trends are highly consistent across both methods, 
validating the incorporation of the entire dataset for training a 
machine learning model capable of predicting regioselectivity 
based on the ligand structure. 
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Figure 4. Stereodivergence using different ligands (DFT level, 
(B3LYP/6-31G+(d,p) (C,H,B,O,P,N,F), SDD (Cu), 298K, 1atm).  

2.1. Workflow for the calculation of ligand/complex parameters. 

To optimize the catalyst, we relied on calculated ligand features 
and developed a comprehensive descriptor library. This library 
includes commercially available or widely studied ligands such 

as monophosphines, bisphosphines, phosphites, and carbenes, 
along with synthetically accessible derivatives. Quantum me-
chanical methods were employed to calculate geometries and 
descriptors for a diverse range of ligands, using a linear Ligand-
Cu-Bpin complex as model system. 31 The computational work-
flow (depicted in Figure 5) began with a molecular mechanics-
based method to generate conformations of the model com-
plex. These initial conformations were subsequently optimized 
using DFT to obtain accurate structural representations. From 
these DFT-optimized structures, steric, electronic, and geomet-
ric parameters were extracted. Additionally, the software 
Morfeus,31 adapted to operate at the GFN2-xTB level of theory, 
was utilized to enhance descriptor collection, ensuring a robust 
dataset for subsequent analyses. 

2.2. Machine Learning models.  

Generating sufficient data is a significant challenge for chemists 
aiming to leverage Artificial Intelligence (AI) to enhance their 
systems. While modern High-Throughput Experimentation 
(HTE) and High-Throughput Calculations (HTC) enable the 
rapid acquisition of substantial datasets, these approaches re-
main uncommon outside the pharmaceutical industry. As a re-
sult, many studies operate under low-data regimes with fewer 
than 100 data points, making the development of accurate and 
robust predictive models particularly challenging. In our case, 
the application of experimental methods and computational 
calculations allowed us to compile a dataset containing de-
scriptors for 34 ligands (Figure 6). This dataset was subse-
quently used to train various predictive models to estimate re-
gioselectivity in our system. The models tested included ridge 
regression, support vector regression, random forests, and 
Gaussian processes. Among these, the Gaussian process model 
delivered the most accurate predictions, with the lowest error 
metrics. By contrast, while random forest and ridge regression 
models are widely used in similar projects,29 they produced 
predictions that deviated further from the experimental re-
sults. These findings underscore the importance of model se-
lection when working in low-data environments. 

 

Figure 5. Computational workflow for the descriptors collection. 
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Figure 6. Actual vs predicted values of the obtained data from experi-
mentation and calculations using Gaussian process.  

Given the limited dataset of 34 data points, we utilized a Leave-
One-Out Cross-Validation (LOOCV) approach to validate the 
predictive models. This approach involves training as many 
models as there are data points, excluding one instance from 
the training set during each iteration and treating it as unseen 
data for prediction. This method closely simulates real-world 
scenarios and ensures that every data point is used for both 
training and testing. Once all evaluations are completed, the re-
sults are averaged to produce a final RMSE score for the model. 
Although LOOCV can be computationally intensive for larger 
datasets due to the high number of models it requires, it is par-
ticularly advantageous in low-data regimes, where splitting the 
dataset into distinct training and testing subsets could result in 
the loss of valuable instances. Using this approach, the Gauss-
ian process model demonstrated the best predictive perfor-
mance, achieving a Root Mean Square Error (RMSE) of 0.14. 
Our results, showcasing the relationship between actual and 
predicted values for each ligand across all cross-validation it-
erations, are compiled in Figure 7.  

 

Figure 7. Actual vs predicted values of the obtained data from experi-
mentation and calculations using Gaussian process with LOOCV. The 

ratio displayed on the Y-axis represents the value of ΔΔG‡ 

 
Figure 8. Heatmap of the selected descriptors of the ligand employed 
to estimate the α/β ratio.  
 

The heatmap illustrates variables with high correlations, which 
is attributed to the fact that certain variables are derived from 
the same molecular property calculated under different condi-
tions. For instance, the cone angle is represented in its mini-
mum energy structure, across a set of conformers, and as the 
maximum achievable cone angle based on conformational sam-
pling. This overlap in variable definitions naturally results in 
high correlations. The inclusion of these descriptors, despite 
their interrelation, is justified as they emerged as the most sig-
nificant after a thorough variable selection and cleaning pro-
cess. These descriptors were retained because they capture es-
sential structural or electronic characteristics of the system 
and exhibit strong predictive potential in the context of the 
analysis. Their redundancy can later be addressed using di-
mensionality reduction techniques or feature selection in sub-
sequent modeling stages, ensuring that their importance to the 
model is preserved while minimizing collinearity. 

Additionally, we analyzed the descriptors utilized in the Gauss-
ian process predictions to gain deeper insights into the factors 
influencing regioselectivity. By visualizing the data used by the 
predictive model in a heatmap, it becomes evident that the elec-
tronic properties and steric hindrance of the ligands significantly 
impact the regioselectivity of the insertion step. As illustrated in 
Figure 8, key parameters such as nucleofugality, cone angle, 
LUMO energy, and the Sterimol B5 descriptor are the most in-
fluential contributors. These findings align with prior studies 
on the insertion process in copper-catalyzed hydroboration 
and carboboration of alkynes, reaffirming the critical role of 
steric and electronic factors. However, this investigation pro-
vides a more detailed understanding of ligand contributions, 
offering valuable insights into how specific descriptors modu-
late the reaction outcome. Such knowledge underscores the 
utility of combining computational models with experimental 
data to refine our understanding of catalytic processes. 

2.3. Application of our model to the regioselective synthesis of the 
-isomer. 

Achieving a predominantly β-regioselective product poses a 
significant challenge due to the low levels of regioselectivity 
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observed in prior experiments with our model substrate. How-
ever, the integration of AI with advanced mechanistic insights 
should enable the identification of ligands capable of favoring 
the formation of this regioisomer with high selectivity. To ad-
dress this, we utilized AI-driven tools to guide the search for 
promising ligands. To that end, we evaluated over 100 com-
mercially available ligands, including carbenes and phos-
phines, to identify those predicted to optimize regioselectivity. 
Using predictions generated by the Gaussian process model, we 
identified the top-performing ligands based on ΔΔG‡ values 
(Figure 9 and 10). Consistent with expectations, the ligands 
predicted to enhance -regioselectivity were all carbene-type 
ligands characterized by high steric hindrance, highlighting 
their potential in directing the regioselectivity of the insertion 
step. Through this analysis, we identified several ligands based 
on the IPr carbene framework that hold potential for improving 
the regioselectivity achieved to date Among these, as illus-
trated in Figure 9, ligand L16 exhibited a predicted ΔΔG value 
of 0.6. This corresponds to an approximate regioselectivity ra-
tio of 30:70, representing a slight improvement over the results 
obtained with the IPr ligand, which yielded a ratio of approxi-
mately 35:65. 

 

Figure 9. Prediction on commercially available ligands and recom-
mended ligands (L2, L6, L12 and L16) based on the output. 

These results are in good agreement with both computational 
predictions and experimental trends, as well as with the key 
descriptors highlighted in the heat map in Figure 8. Particularly 
noteworthy are ligands L2, L6, L12, and L16, which strongly 
favor the formation of the -regioisomer. Conversely, ligands 
not previously encountered by the model, such as Buchwald-
type phosphines, display significant values favoring the -re-
gioisomer, although close to a statistical mixture. This behavior 
is likely due to the model's lack of prior data on this class of 
ligands, leading it to make conservative predictions. Lastly, it is 
striking that ligands L10 and L19, despite having steric profiles 
significantly larger than that of the IPr carbene (characteristics 
that would seemingly make them ideal for -regioisomer for-
mation) exhibit the opposite behavior, with predictions favor-
ing the -regioisomer as the major product. 

 

Figure 10. Regioselectivity using different ligands (predicted). 

2.4. Optimization: final adjustments 

Achieving high regioselectivity while reducing catalytic loading 
is a key challenge in Cu-catalyzed hydroborations. Traditional 
loadings of ~10% are necessary for acceptable rates and yields 
but lead to increased costs, environmental impact, and by-
product formation. Oxidative decomposition of copper cata-
lysts under reaction conditions likely contributes to this limita-
tion. To address these issues, we integrated experimental data, 
AI-assisted analysis, and a trained machine learning model. 
This approach reoptimized reaction conditions to enhance β-
regioselectivity and minimize catalytic loading without sacri-
ficing efficiency or selectivity, promoting more sustainable cat-
alytic systems for hydroboration reactions.  

Results compiled in Table 1 show that regioselectivity is influ-
enced primarily by the ligand, though solvent and temperature 
also play roles. Using the IPr ligand, tetrahydrofuran (THF) 
yielded the best combination of conversion and regioselectivity 
(30:70), outperforming toluene (35:65). Coordinating solvents 
like DMF showed similar regioselectivity but reduced yields, 
while chlorinated solvents like CH₂Cl₂ showed negligible con-
version, likely due to poor solubility of catalytic intermediates. 
Lowering temperature enhanced β-regioisomer formation 
(20:80 at 0°C in THF) but reduced overall conversion, dropping 
below 10% at -10°C. Further optimization allowed for a reduc-
tion in catalyst loading to 5% by extending the reaction time to 
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24 hours at 0°C in THF, maintaining the 20:80 regioisomer ra-
tio. Furthermore, the catalytic load can be reduced to 0.5 mol% 
by extending the reaction time to 24 hours at room tempera-
ture. Remarkably, this adjustment does not compromise the re-
gioselectivity of the reaction, maintaining the same high level 
of precision in product distribution. This highlights the effi-
ciency and robustness of the catalytic system, even under re-
duced catalyst concentrations, offering a more sustainable and 
cost-effective approach to the reaction. 

Table 1. Optimization process for hydroboration reaction using differ-
ent conditions. 

 

Entry Ligand Solvent T Time  Yield Ratio 

1 IPr Toluene 25 3 h 99% 35/65 

2 IPr CH2Cl2 25 3 h >1% - 

3 IPr DMF 25 3 h 70% 34/66 

4 IPr THF 25 3 h 85% 30/70 

5 IPr THF 10 6 h  70% 25/75 

6 IPr THF 0 6 h 72% 20/80 

7 IPr THF -10 12 h 31% 26/74 

8 Iodo-IPr THF 25 3 h 93% 30/70 

9 Iodo-IPr THF 0 4 h 70% 21/79 

10 IPr THF 25 3 ha 63% 31/69 

0.5 mmol scale in substrate. The yield was determined by 1H NMR from 
the crude mixture, using 1,3,5-Trimethoxybenzene as internal stand-
ard. a [Cu] = 0.5 mol% 

These results represent significant progress toward more sus-
tainable and efficient catalytic hydroboration processes. In the 
absence of a ligand, the reaction demonstrates significantly low 
conversion rates and yields, achieving only approximately 17% 
in THF at 25°C after 3 hours. Moreover, the regioselectivity ob-
served under these conditions shows an alpha/beta ratio of 
around 70/30. These suboptimal results can likely be at-
tributed to the poor solubility of the salt in the reaction me-
dium, which limits its availability for catalytic activity, as well 
as the inherent instability of the catalytic species under these 
conditions. These factors collectively hinder the efficiency and 
selectivity of the reaction, emphasizing the critical role of a lig-
and in stabilizing the catalytic species and improving the over-
all process. The introduction of the novel Iodo-IPr ligand, pro-
posed by the machine learning model, enhanced regioselectiv-
ity compared to the standard IPr ligand. While the IPr ligand 
achieved a regioselectivity of 35:65 under standard conditions, 
the Iodo-IPr ligand improved this to 30:70, representing a 
slight shift toward the desired β-regioisomer. Furthermore, a 
modest improvement in regioselectivity was observed by low-
ering the reaction temperature, with a more pronounced β-se-
lectivity (20:80) at 0°C, albeit at the cost of reduced conversion. 
The choice of solvent also proved critical, with THF consist-
ently delivering the best balance of conversion and regioselec-
tivity compared to other solvents such as toluene or DMF. No-
tably, it was demonstrated that the catalyst loading could be re-
duced tweentyfold (to 0.5 mol%) by extending the reaction 
time to 4 hours at room temperature, maintaining the high 

level of regioselectivity achieved with higher catalyst concen-
trations. These findings highlight the robustness and efficiency 
of the catalytic system, underscoring the potential of ML-
designed ligands, such as Iodo-IPr, to drive advancements in 
sustainable and efficient hydroboration processes. 

3. Data extracted from scientific literature. 

3.1. Nature of the alkyne.  

Although the results obtained using different ligands with the 
same reactant are capable of correctly explaining the outcomes, 
it is well-known that the nature of the alkyne is critical in de-
termining the regioselectivity of such processes. Terminal and 
internal alkynes exhibit markedly different behaviors, further 
compounded by the complexity observed with different lig-
ands. For this reason, and considering the information gath-
ered over the past decades in the literature, we undertook the 
task of compiling regioselectivity data from the most relevant 
studies in this field.29,30,31 In this endeavor, we collected more 
than 100 examples involving diverse alkynes, aiming to cover 
the widest chemical space possible, ranging from terminal and 
internal alkynes to those with different functional groups, in-
cluding directing groups. This provided a comprehensive per-
spective on the borylcupration process. Among these varied ex-
amples, different ligands, such as IPr, IMes, P(p-Tol)3 or P(Cy)3, 
were employed. Generally, the dataset includes cases exhibit-
ing regiodivergent behaviors; however, to provide a complete 
view, we also incorporated some results demonstrating com-
plete regiocontrol over the reaction. It is worth noting that not 
all results showing complete regioselectivity could be included 
in the model, as the number of structurally diverse reactions 
exhibiting absolute regioselectivity towards the substrate is far 
greater than those showing regiodivergence. Including all 
these cases would result in an unrepresentative data distribu-
tion for the main objective of this study. Consequently, we pro-
pose a general distribution, as depicted in Figure 11, where we 
show a histogram of the number of instances in our dataset 
based on their ΔΔG‡ and grouped by terminal alkynes, internal 
alkynes with a methyl group and internal alkynes, categorized 
as aryl-aryl, aryl-alkyl, or alkyl-alkyl with varying degrees of 
substitution and functional groups.  

 

Figure 11. Diagram of the different nature of alkynes in our dataset.  

With all this information extracted from the literature, we re-
peated the workflow described above to generate molecular 
descriptors, this time focusing on the alkynes. Using molecular 
dynamics simulations and DFT calculations, we obtained vari-
ous steric and electronic descriptors for the different alkynes. 
This process allowed us to construct a comprehensive database 
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of alkynes and catalysts to explain the behavior of the reaction 
ratio.  

3.2. Machine Learning models.  

Once this phase was completed, we tested several machine 
learning models to explain the regioselectivity of each alkyne 
based on the ligand used in the insertion process. After extract-
ing the descriptors of each ligand and reagent, our final dataset 
consisted of 128 instances and 113 possible variables that can 
be used to predict the regioselectivity of the process. As such, 
given the high number of potential ligand and reactive de-
scriptors that can be used, each tested model underwent two 
subsequent feature subset selection methods: a Greedy For-
ward Selection and a Genetic Algorithm Selection. The greedy 
forward algorithm starts from an empty set of features and 
adds variables one by one based on the accuracies obtained 
with each one, until no variable can be found that improves pre-
vious results. This first selection serves as a baseline of some of 
the most important descriptors for each model. Afterwards, a 
genetic algorithm is applied to try to improve the subset of de-
scriptors found by the greedy forward algorithm. Once a prom-
ising subset of descriptors is found, a hyperparameter tuning 
based on differential evolution31 is performed for each model 
that allows it. Among all the models evaluated, the Random 
Forest (RF) algorithm provided the best results, achieving a 
RMSE of 0.4 and an R² of 0.89 as shown in Table 2 and in Fig. 
12. The instances distributed in vertical lines both at -2.3 and 
2.3 ΔΔG‡ values are different alkynes from the literature with 
reported 1 to 99 or 99 to 1 regioselectivity. This translates into 
the same ratio value for many alkynes with different de-
scriptors, which in turn makes models have inaccuracies with 
that specific shape in those extremes. 

 Ridge GP RF SVR 

RMSE 0.62 0.54 0.40 0.53 

R2 0.73 0.81 0.89 0.82 

Table 2. Prediction results for different models fitted to our dataset. 

  

Figure 12. Observed vs. predicted results for the Random Forest model 
using leave-one-out cross-validation. 

The Random Forest algorithm is particularly well-suited for 
modeling and explaining behaviors in metal-catalyzed chemi-
cal reactions using electronic and steric molecular descriptors 
of both reactants and catalysts. RF is an ensemble learning 
method that builds multiple decision trees during training and 
combines their outputs to improve predictive accuracy and ro-
bustness. Its ability to handle high-dimensional, non-linear, 
and complex datasets makes it an excellent choice for studying 
chemical systems, where multiple factors often interplay in de-
termining the outcome of a reaction. It is important to note that, 
in low data regimes like this one, we need to constraint the hy-
perparameters of the model so that it can be able to properly 
generalize its results to unseen instances and it does not end 
up overfitting. Parameters like the depth of the internal deci-
sion trees and the number of trees in the forest should be kept 
relatively low, while the minimum number of instances per leaf 
node and the minimum number of instances to perform splits 
should be reasonable in comparison with our total number of 
instances. 

In the context of metal-catalyzed reactions, electronic and ste-
ric descriptors provide critical information about the nature of 
the reactants, intermediates, and catalysts, as well as their in-
teractions. These descriptors often exhibit non-linear relation-
ships with the reaction outcome, such as yield, regioselectivity, 
or stereoselectivity. These non-linear relationships between 
descriptors and objective variables go beyond the traditional 
understanding of reaction mechanisms due to the complexity 
of their associations. For this reason, the implementation of 
such studies is of vital importance to further advance and delve 
into the complexity of reaction mechanisms. With the inclusion 
of the literature data, the shape of our dataset changed drasti-
cally. When instances share the same ligand or reactive, they 
share the same descriptors too, which in turn means that now 
there are blocks of instances where values from a continuous 
space remain constant. In a continuous space like that of our 
descriptors, we explore a kind of discrete space mapped from 
each one of the studied alkynes. An ensemble model like RF is 
particularly well suited to this kind of scenario, and can capture 
the non-linearities effectively due to its tree-based architec-
ture. Its underlying decision trees perform similar cuts in the 
space to those already present in our data due to its unique na-
ture, and this helps in obtaining the best predictive results of 
all the tested models. Another advantage of RF is its robustness 
to overfitting, especially when the number of samples is rela-
tively low compared to the number of descriptors, a common 
scenario in reaction datasets. This robustness arises from the 
bootstrap aggregation technique, which reduces variance by 
averaging predictions from multiple trees.  

3.3. Mechanistic lessons extracted from the more relevant de-
scriptors. 

Furthermore, RF inherently evaluates feature importance, al-
lowing researchers to identify which descriptors—such as 
electronic charge distributions, steric hindrance parameters, 
or coordination geometries—have the most significant influ-
ence on the reaction. This allowed us to uncover certain expla-
nations for the reaction behavior by considering the nature of 
the predictive model employed. For instance, some of the most 
utilized descriptors in our RF model’s decision trees to explain 
the regioselectivity of the hydroboration are: i) The ligand's 
electronegativity, directly related to its electron-donating or 
electron-accepting character, highlighting significant differ-
ences between phosphines and carbenes. ii) Steric factors of 
the ligand derived from Sterimol parameters. iii) The dipole 
moment of the alkyne, which is directly related to the degree of 
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substitution of the alkyne and the presence or absence of func-
tional groups. iv) The HOMO energy of the alkyne, associated 
with its electronic density. In the following paragraphs, we rep-
resent the ΔΔG‡ relative to these descriptors. 

3.3.1. ΔΔG‡ vs.  electronegativity of the ligand. 

  
Figure 13. Ratio vs. ligand electronegativity grouped by alkyne. 

Firstly, considering the ligand’s electronegativity in Fig. 13, we 
observe that terminal alkynes exhibit an almost linear relation-
ship with this descriptor. This shows how an apparently non-
linear space can give rise to simpler subspaces that can be fitted 
by the RF algorithm, and it indicates that for electronegativity 
values above 0.10, the results -regardless of the nature of the ter-
minal alkyne- show a clear dominance of the -regioisomer over 
the -regioisomer. In cases of higher electronegativity, the -re-
gioisomer is exclusively formed. Conversely, for lower electroneg-
ativity ranges, the opposite behavior is observed. 

Additionally, this behavior is exclusive to this descriptor. As 
shown in Fig. 14, it cannot be simplified to the nature of the lig-
and by merely dividing them into carbenes and phosphines, as 
no clear relationship is observed. 

 

Figure 14. Ratio vs. ligand electronegativity grouped by ligand type. 

 

 

 

3.3.2. ΔΔG‡ vs. alkyne structure.  

On the other hand, certain trends can be observed in the case 
of internal alkynes substituted with a Me group or internal al-
kynes with varying degrees of substitution when exclusive re-
actant descriptors, such as dipole moment or HOMO energy, 
are used. Again, the data demonstrates a clear linear correlation 
between terminal alkynes and the ligand's electronegativity, as 
shown in Figure 13 by the red points in the graph. This strong 
correlation likely arises from the electronic asymmetry of ter-
minal alkynes, where one carbon in the triple bond exhibits a 
partial negative charge. This inherent charge distribution 
makes the regioselectivity of terminal alkynes particularly sen-
sitive to the electronic properties of the coordinating ligand, 
leading to straightforward predictive trends. 

For internal alkynes, however, no such correlation is observed 
with ligand electronegativity. Instead, trends emerge when mo-
lecular descriptors such as dipole moment and HOMO energy 
(Figures 15 and 16, respectively) are employed. The variability 
of these descriptors in internal alkynes is heavily influenced by 
the nature of their substituents, highlighting the interplay be-
tween electronic and steric effects. Methyl-substituted internal 
alkynes generally introduce minor steric hindrance and mod-
est electronic effects, resulting in relatively subtle modulations 
of dipole moment and HOMO energy. In contrast, bulkier sub-
stituents or different functional groups with strong electron-
donating or electron-withdrawing capabilities (e.g., ethers, 
amines, amides, or esters) significantly alter these descriptors. 
Functional groups like ethers and esters tend to increase the 
dipole moment due to their polar nature, while amines and am-
ides can act as electron-donating groups via inductive or reso-
nance effects, shifting the electronic environment around the 
triple bond. Larger, sterically demanding groups can also influ-
ence the spatial accessibility of the reactive site, adding further 
complexity to the regioselectivity prediction. 

These effects are particularly challenging to capture through 
simple linear correlations because the relationships between 
substituent properties and regioselectivity are highly non-lin-
ear. This is where the strength of the RF model becomes evi-
dent. RF models are ensemble learning techniques that operate 
by constructing multiple decision trees, each trained on ran-
dom subsets of the data, and then aggregating their predictions. 
Unlike linear regression models, RF does not assume any spe-
cific functional form of the relationships between variables. In-
stead, it relies on decision boundaries determined by splitting 
the data iteratively based on the most significant features at 
each step. This structure allows RF to account for complex in-
teractions between multiple descriptors, such as steric and 
electronic effects, without requiring explicit linear dependen-
cies. As a result, while the trends in dipole moment or HOMO 
energy provide valuable insights, the RF model integrates these 
descriptors alongside other features to uncover nuanced pat-
terns that may not be immediately apparent from the individ-
ual graphs. This also explains why the predictions for internal 
alkynes reflect subtle shifts influenced by substituent effects, 
even in the absence of clear linear relationships. Conversely, 
the simpler electronic behavior of terminal alkynes leads to 
more straightforward trends that align closely with ligand-
based descriptors like electronegativity, making their behavior 
easier to interpret directly. 

In sharp contrast with these observations, no relationships are 
observed for terminal alkynes: the impact of substituents on di-
pole moment or HOMO energy is minimal due to the absence of 
adjacent substituents on the triple bond. The regioselectivity in 
terminal alkynes is thus governed primarily by the electronic 

https://doi.org/10.26434/chemrxiv-2025-1b0jp ORCID: https://orcid.org/0000-0002-3116-2534 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-1b0jp
https://orcid.org/0000-0002-3116-2534
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

interactions between the ligand and the alkyne, rather than by 
internal structural modifications. This distinction underscores 
why ligand-based descriptors like electronegativity yield ro-
bust correlations for terminal alkynes, while internal alkynes 
require a more detailed analysis of substituent effects to pre-
dict regioselectivity effectively.  

 

Figure 15. Ratio vs. dipole moment of the alkyne.  

 
Figure 16. Ratio vs. HOMO energy of the alkyne.  

3.3.3. Real vs. predicted ΔΔG‡ of phosphine and carbene ligands. 

The results above not only highlight the complexity of de-
scriptors and the linear and non-linear relationships that exist 
when attempting to explain the behavior of a chemical reaction 
but also demonstrate the promising potential of AI-based pre-
dictive tools for elucidating complex processes. Furthermore, 
this opens the door to mechanistic explanations that are much 
more intricate than those traditionally used in such processes, 
providing richer information and offering a more nuanced and 
comprehensive perspective on chemical processes. In this way, 
it is shown that with just over 40 distinct ligands and 100 dif-
ferent alkynes, a better understanding of a complex process 
such as the borylcupration of alkynes can be achieved. The final 
results obtained show that the fitted RF model is able to predict 
the regioselectivity of the reaction accurately for both phos-
phine and carbene ligands, whose performance can be seen 
separately in Fig. 17. 

 

 

Figure 17. Real vs. predicted ratios of phosphine and carbene ligands. 

CONCLUSION.  

This study demonstrates the feasibility of predicting the regi-
oselectivity of organometallic transformations, i.e. the Cu-cata-
lyzed hydroboration of alkynes, using Artificial Intelligence 
tools. A Random Forest machine learning model was developed 
and trained with experimental regioselectivity data for a di-
verse set of ligands, enriched with information from the exist-
ing literature. The results reveal that regioselectivity can be ef-
fectively explained and predicted using simple molecular de-
scriptors, such as electronic and steric parameters, easily ob-
tained through established computational protocols like mo-
lecular dynamics and DFT-based approaches. The key findings 
of this study on the insertion mechanism and behaviour are as 
follows:  

1. The electronegativity of the ligand emerges as a crucial pa-
rameter, particularly for terminal alkynes, where its influ-
ence is paramount.  

2. In contrast, the behaviour of internal alkynes is better ex-
plained using descriptors such as the dipole moment and the 
energy of the HOMO orbital, reflecting the impact of substit-
uents or functional groups on both sides of the triple bond.  

https://doi.org/10.26434/chemrxiv-2025-1b0jp ORCID: https://orcid.org/0000-0002-3116-2534 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-1b0jp
https://orcid.org/0000-0002-3116-2534
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

3. Furthermore, the nature of the ligand proves to be deci-
sive; descriptors related to electron density and steric hin-
drance, such as the cone angle or ligand size, play a pivotal 
role in determining the regioselectivity of the process.  

This highlights a clear and direct relationship between simple 
molecular descriptors and complex catalytic phenomena. 
Without the advanced tools of AI, uncovering these intricate re-
lationships would have been impossible, as they require pro-
cessing and analysing vast amounts of data far beyond tradi-
tional methods. 

This model not only provides a deeper and more comprehen-
sive mechanistic understanding compared to traditional meth-
ods but also highlights the transformative potential of AI-
driven methodologies in chemistry. By enabling synthetic 
chemists to access predictive tools, it becomes possible to sys-
tematically select the optimal ligand for a specific substrate or 
predict the outcome for any ligand-substrate combination, sig-
nificantly reducing trial-and-error experimentation. This ap-
proach accelerates the discovery and optimization of catalytic 
systems while fostering a deeper understanding of reaction 
mechanisms, ultimately contributing to the development of 
more efficient and sustainable chemical processes. 
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