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Abstract

High-throughput density functional theory (DFT) calculations have become a

vital element of computational materials science, enabling materials screening,

property database generation, and training of “universal” machine learning mod-

els. While several software frameworks have emerged to support these compu-

tational efforts, new developments such as machine learned force fields have in-

creased demands for more flexible and programmable workflow solutions. This
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manuscript introduces atomate2, a comprehensive evolution of our original atomate

framework, designed to address existing limitations in computational materi-

als research infrastructure. Key features include the support for multiple elec-

tronic structure packages and interoperability between them, along with gener-

alizable workflows that can be written in an abstract form irrespective of the

DFT package or machine learning force field used within them. Our hope is that

atomate2’s improved usability and extensibility can reduce technical barriers for

high-throughput research workflows and facilitate the rapid adoption of emerging

methods in computational material science.

1 Introduction

Over the past decade, high-throughput (HT) density functional theory (DFT) calculations

have become increasingly popular to the point where they now represent a standard tool

within computational materials science. Such calculations serve multiple roles: they enable

the screening of materials with specific targeted properties for materials discovery campaigns,

enable the development of general-purpose databases of materials properties, and provide

foundational data for training machine learning models.

Deploying HT calculations in a generic manner requires a robust software infrastruc-

ture. In response to this need, a variety of software frameworks, including AFLOW,1 AiiDA,2–5

Atomic Simulation Environment (ASE6), pyiron,7 qmpy,8 and our previously developed atomate,9

have been developed. Such frameworks have not only made it possible to run DFT calcu-

lations at an unprecedented scale, but have also as a side effect made such calculations

much more accessible to a larger audience. This is because full automation necessitates

the development of automatic parameter decisions, automatic error detection and recov-

ery, and automated execution on heterogeneous computing resources. Such advancements

have ultimately resulted in more user-friendly programming interfaces to complex materials

calculation procedures.
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In this manuscript, we introduce atomate2, an evolution of our earlier work with atomate.

Atomate2 is designed to enhance the programmability of computational workflows, offer

greater flexibility with respect to different simulation models (including those based on

MLIPs), support various workflow execution engines, and accommodate a broader spectrum

of materials properties with less re-coding. Atomate2 represents a comprehensive overhaul of

atomate, building on its predecessor’s successful application in numerous materials design

projects and its integral role in the Materials Project (MP)10 database. In the following

sections we detail the enhancements and capabilities of atomate2, emphasizing its improved

usability and flexibility, which we anticipate will significantly benefit the next wave of HT

DFT calculations.

2 Atomate2 design philosophy and overview

Atomate2 has been designed with the following principles in mind: standardization of in-

puts and outputs, interoperability between computational methods, and composability of

workflows. These goals were informed based on the development and extended usage of the

original atomate. Previously, there was not a consistent approach to modify the key pa-

rameters of workflows such as inputs and calculation settings. This meant changing default

parameters was often an involved process that required the user to inspect the source code

for each workflow they intended to run. In atomate2, consistency is enforced by design. For

example, all workflows that run using the Vienna ab initio Simulation Package (VASP)11–14

have the same base set of common options. Changing calculation parameters such as the

exchange–correlation functional, modifying the approach used to execute VASP, or writing

additional files to the calculation directory, can all be achieved in the same manner irrespec-

tive of the specific workflow being performed. This standardization enables workflows to be

modified more easily and leads to a more streamlined user experience.

There exists a wide range of DFT packages, each with their own strengths and set of

unique features. The atomate package was centered around the use of VASP for periodic sys-
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tems and Q-Chem15 for molecular systems. In atomate2, we have expanded support to a wider

array of computational methods including FHI-aims,16 ABINIT,17–20 and CP2K,21,22 in addi-

tion to many state-of-the-art machine learning interatomic potentials (MLIPs). Throughout

this paper these methods and codes are termed Calculators. A key challenge is to enable

heterogeneous workflows where different parts of a workflow are performed using different

computational methods. Such workflows are necessary to take advantage of the range of

features implemented in different DFT packages. For example, hybrid DFT calculations in

CP2K can be significantly accelerated by the auxiliary density matrix method (ADMM), but

this implementation is currently limited to the use of a single k -point in reciprocal space.

Atomate2 enables chaining an initial fast hybrid relaxation using CP2K with a slower second

relaxation using VASP with denser k -point sampling for improved accuracy. Together this

simulation procedure can significantly accelerate the computation of complex structures and

is a key feature of the heterogeneous defect calculation workflow in atomate2. Achieving

interoperability between multiple DFT packages and MLIPs is facilitated by the standard-

ization of workflow inputs and outputs through use of a common application programming

interface (API).

Together, standardization and interoperability enable composable workflows. This is a

unique feature of atomate2 whereby the substituent parts of a workflow can be seamlessly

substituted without impacting the overall workflow execution. This has been facilitated

through the use of the jobflow23 workflow engine explicitly designed to support “nested”

workflows. One example of composability is given by generalizable workflows. For example,

the calculation of elastic constants requires obtaining the energy and stress of a series of

strained cells before the results are compiled and elastic properties extracted. In atomate2,

the elastic constant workflow is defined in an abstract form, where the various parts of

the workflow are linked together independent of the computational method used to obtain

energies and stresses. The implementation of the workflow for a specific Calculator is as

simple as defining the method for a static calculation using that Calculator. The rest of
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the workflow remains unchanged. Another aspect of composability is the ability to modify

workflows in non-trivial ways. For example, the default workflow for point defect in atomate2

is designed to use a single calculation to relax the defect geometry. This calculation can easily

be replaced by a sub-workflow that first runs CP2K and then runs VASP as described in the

previous paragraph. Again, the workflow definition remains unchanged and is agnostic to

the specific sequence of steps, provided the final calculation yields a relaxed structure and

the associated energy.

Another aspect of composability is defined by workflow optimization. For example, the

FHI-AIMS calculator facilitates the creation of automatic convergence workflows, atomate2

contains a code-agnostic job that performs a series of consecutive code runs with changing

inputs, until the absolute difference between the selected result values in two subsequent

runs becomes smaller than a predefined value. This job has been used to achieve the k -point

convergence of energy in static point calculations, as well as the band gap value convergence

within the GW framework with respect to the number of frequency points, basis set size,

and k -point grid used for the self-energy calculation.

3 Calculators

All the supported calculators are mentioned in Table 1.

3.1 Atomic Simulation Environment

ASE is a widely used python package that permits the easy setup of atomistic simulations. ASE

simulations are driven by a Calculator class that, given a set of atoms and their positions

in 3D space, returns energies and possibly interatomic forces and stresses. This permits

structural and molecular relaxation, molecular dynamics (MD), and transition state finding.

Abstract ASE workflows for geometry optimization and MD have already been added to

atomate2; transition state finding via nudged elastic band (NEB)24 is currently being added.

We use “abstract” here to mean that the workflows require the user to define which ASE-
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Table 1: Calculators supported by atomate2

Calculators Periodic system Non-periodic system

ASE ✓ ✓
FHI-AIMS ✓ ✓
OpenMM ✓ ✓
ABINIT ✓ -
CP2K ✓ -
JDFTx ✓ -
MLIPs* ✓ -
VASP ✓ -

Q-Chem - ✓

* MLIPs include: CHGNet, M3GNet, MACE, GAP, NEP
and NequIP.

calculator drives the workflow. As examples of how to do this, atomate2 includes concrete

implementations of abstract ASE workflows using the Lennard-Jones 6-1225 and GFNn-xTB

tight-binding Hamiltonian.26–28 Note that while ASE is not a Calculator itself, it interfaces

with many electronic structure codes, including some directly supported by atomate2.

To take advantage of the rich library of atomistic simulations supported by ASE, atomate2

implements a generic AseMaker class in atomate2 which allows users to define ASE-dependent

jobs via a Calculator attribute and a run ase method. This Maker supports both periodic

and non-periodic structures as input. The Calculator attribute can be any ASE-compliant

Calculator. The run ase method defines what operations are performed on the input

atomic configuration, for example, structural or molecular relaxations via the AseRelaxMaker

class, or MD via the AseMDMaker class. As these classes are easily adapted to a given use

case, no workflows are currently implemented in the ASE library.

Outputs from ASE are stored in structured documents: the AseStructureTaskDoc for

periodic systems and the AseMoleculeTaskDoc for non-periodic systems. Both document

classes inherit from existing document schemas in emmet-core. By default, trajectories

(more generally, data for each ionic step) are stored in the user’s “large-object” database

(such as MongoDB’s GridFS) if established.
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3.2 FHI-aims

FHI-aims16 is a community driven, all-electron electronic structure code based on numeric

atom-centered orbitals. It supports DFT with a wide range of exchange-correlation func-

tionals, correlated methods beyond DFT (e.g. RPA and MBPT), and wave-function based

correlation methods (e.g. MP2 and CC), as well as ab initio MD. It enables first-principles

simulations with very high numerical accuracy for production calculations, with excellent

scalability up to very large system sizes (tens of thousands of atoms) and up to very large,

massively parallel supercomputers. While FHI-aims can treat isolated molecules, clusters,

surfaces, and solids on the same footing, it only has atomate2 support for periodic workflows

so far. The rest of the section describes the implementation details for the base FHI-aims

calculations, and highlights technical details for some workflows.

Currently, the FHI-aims interface to atomate2 can perform both single point and geom-

etry optimization calculations, as well as more complicated workflows. It is also integrated

into the phonon, elastic constants, equation of state, magnetic ordering (via Mulliken anal-

ysis), anharmonicity quantification, and MD workflows of atomate2. All of these provides

a template for integrating FHI-aims into other common workflows such as the anharmonic

and quasiharmonic phonons. For applications where symmetry is important, this can be

activated by using the rlsy refine structure keyword in FHI-aims. However, this should

not be used when performing calculations on displaced geometries.

All keywords needed to run the calculations are passed to atomate2 through the user parameters

argument and kpt settings, which are Python dictionaries. The default relaxation method

used is the trust radius method (trm) with a maximum allowed force of 1meV Å
−1
. When

running multiple related (same material or molecule) calculations, the atomate2 interface al-

lows for both parallel and serial execution of this job via the run aims and run aims socket

functions, respectively. The advantage of using the run aims socket function is that it uses

the i-PI interface29 in FHI-aims and the ASE SocketIOCalculator to initialize the electron

density to the converged value from the previous calculation when possible, reducing the
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total number of SCF iterations by a factor of two.

FHI-aims can run the GW calculation in a single shot, without having to restart the

calculation after completing an SCF cycle. Such a run will consist of an SCF part, during

which the ground-state electronic density is obtained, and a post-SCF part when the GW

self-energy is evaluated. However, the two parts can also be separated using FHI-aims restart

capabilities. The GW workflow for FHI-aims, implemented in the atomate2 package, dumps

the resulting SCF eigenfunctions and reads them at the beginning of the GW run. It helps

in several ways by: 1) making calculations more computationally efficient, 2) achieving

consistency in the results, and 3) allowing more flexible exploration of the parameters space.

3.3 ABINIT

ABINIT is an open-source first-principles software implementing a diverse range of formalisms

such as DFT, density-functional perturbation theory (DFPT), many-body perturbation the-

ory (GW approximation and Bethe-Salpeter equation), and dynamical mean-field theory

among others. Since it relies on plane waves to represent the wavefunctions, periodic bound-

ary conditions are imposed. ABINIT is thus particularly suited to deal with periodic struc-

tures, although this limitation can be circumvented by embedding non-periodic systems

in the appropriate supercell. Both norm-conserving pseudopotentials and the projector-

augmented wave method are supported. Numerous quantities can be calculated including

electronic, vibrational, optical, magnetic, mechanical, and thermodynamic properties.

At present, standard DFT tasks, that is, structural relaxation (atoms and / or cells),

SCF- and NSCF-calculation (uniform or bandstructure) as well as many-body perturbation

theory (MBPT) calculations such as quasiparticle energies within the GW approximation

and dielectric function calculation by solving the Bethe-Salpeter equation, are interfaced

within atomate2. The plan is to port the previously developed abiflows package, which

was among others used to calculate 1521 semiconductors in the harmonic approximation in

collaboration with the MP,30 to atomate2. In this regard, the abiflows DFPT workflow for

9

https://doi.org/10.26434/chemrxiv-2025-tcr5h ORCID: https://orcid.org/0000-0001-7346-4568 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-tcr5h
https://orcid.org/0000-0001-7346-4568
https://creativecommons.org/licenses/by/4.0/


calculating the static second-harmonic generation tensor31 (and the static dielectric tensor)

has been implemented in atomate2 and is under review.

The global machinery heavily relies on functionalities provided by abipy such as the auto-

matic input generation and outputs processing.20 Following the philosophy of atomate2, each

Maker or calculation type (inheriting from BaseAbinitMaker) has its own AbinitInputGenerator,

which in turn calls a specific abipy factory function to generate the proper AbinitInput.

Once a job is completed, the parsing capabilities of abipy are fully leveraged to retrieve

relevant outputs. Indeed, abipy provides a specific parser class for each file, whether text or

netcdf. The available methods of those parsers allow to construct an AbinitTaskDoc follow-

ing the same schema as for the other codes with common basic fields such as output.energy,

output.bandgap or output.forces. In addition, it is possible to directly store relevant files

such as the DDB or netcdf ones into a FileStore partition of the interacting MongoDB.

They can then be retrieved at will for further manipulation with abipy such as automatic

plots generation of bandstructure, density of state, or spectra. When possible, basic figures

are already saved to allow a quick inspection. By default, the ABINIT workflows will look

for pseudopotentials from the Pseudodojo32 in the default folder ( /.abinit/pseudos). It is

thus necessary to download them using the abipy abips.py command. The --help option

lists the valid subcommands such as avail, list, and install. Although difficult, it is

possible to use custom pseudopotentials. Active developments are focusing on improving

this aspect.

3.4 CP2K

CP2K is an open-source software package for performing atomistic simulations including elec-

tronic structure calculations using DFT and (post) Hartree-Fock (HF) methods as well as

MD simulations using classical force fields. CP2K uses analytic Gaussian-type orbitals to

form a local basis set, which can be used to simulate both periodic and non-periodic sys-

tems. Additional unique features include the auxiliary density matrix method (ADMM) for
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accelerating hybrid DFT calculations, the Gaussian and Augmented Plane Waves (GAPW)

method for scalable all-electron calculations, and linear scaling DFT methods. Basic DFT

tasks with CP2K21,22 have been interfaced with atomate2 using jobflow.

3.5 JDFTx

JDFTx33 is an open-source plane-wave DFT code that supports grand canonical DFT (GC-

DFT) and implements advanced implicit solvent models. GC-DFT and JDFTx are particu-

larly useful for studying solvated interfaces that are relevant in electrochemical applications.

DFT and GC-DFT structure optimization jobs with and without solvent are supported in

atomate2. Default solvation and DFT parameters are set in accordance with the BEAST

Database,34 a database of electrocatalysis GC-DFT data hosted by the National Renewable

Energy Laboratory.

JDFTx uses the GC-SCF and AuxH electronic algorithms, which outperform outer-loop

grand canonical electronic algorithms found in other codes.35 Advanced solvation models

are available including the non-linear non-local SaLSA implicit solvent model as well as

CANDLE, a linear implicit solvent model with asymmetric charge response.36,37 JDFTx

can also be integrated directly into excited state calculations in BerkeleyGW,38 although

atomate2 support for GW workflows with JDFTx is not expected soon. JDFTx output and

input files are parsed with code in pymatgen.io.jdftx. JDFTx log files, eigenvalue and

bandProjection files are currently supported by the parsers.

3.6 Force fields

MLIPs have become increasingly useful to computational materials scientists. At the time of

writing, several modern MLIPs have atomate2 interfaces including MACE-MP-0,39 CHGNet,40

M3GNet,41 NEP,42–44 NequIP,45 SevenNet,46 and GAP.47,48 MLIPs are currently accessible

in atomate2 via ASE Calculators and the infrastructure of the Section 3.1. These models

can be used either directly as Calculators or can be incorporated into hybrid workflows

that use the MLIPs to pre-relax a structure and then feed it into a DFT relaxation in VASP.
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This MLIP pre-relaxation can be implemented within several other DFT-based workflows to

reduce computational cost.

Moreover, fully MLIP-based workflows have been implemented as well. Specifically, one

can use any of the supported MLIPs to calculate the elastic constant tensor or harmonic

phonons of a material as recently demonstrated with MACE-MP-0. Other applications

of the force field Calculators and workflows include Ref. 49. Substituting DFT-based

Calculators with MLIPs allows faster and cheaper runs, and makes atomate2 an ideal

tool for easily reproducible benchmarking against DFT calculations. More details on the

respective implementations can be found in the corresponding workflow sections below. Ad-

ditionally, MLIP molecular dynamics (MLMD) calculations have been incorporated for the

micro-, grand-, and canonical ensembles, with more complex workflows using MLMD to,

e.g., rapidly equilibrate amorphous structures. Virtually all workflows which do not require

electronic properties can be adapted to MLIPs, such as quasi-/harmonic phonon calculations

and equation of state properties.

3.7 VASP

VASP is a licensed, pseudopotential, plane-wave electronic structure code. While VASP pri-

marily performs non-dynamical and ab initio MD (AIMD) DFT calculations, it is also ca-

pable of performing many-body perturbation theory (MBPT) calculations via the random

phase approximation, GW approximation, and Bethe-Salpeter equation (BSE). VASP pri-

marily uses projector augmented wave (PAW) pseudopotentials,50 but can also use ultrasoft

pseudopotentials, both of which are in a proprietary format.

VASP is the main code used by the Materials Project to generate structural, electronic, and

thermodynamic materials data, and thus has a wide breadth of workflow coverage. Within

atomate2, VASP-based tasks and workflows include: geometry optimization, single-point cal-

culations, AIMD, equation of state, band structure scans, phonon dispersion, amorphous

solid equilibration, etc. Transition state workflows based on nudged elastic band (NEB)24
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and ApproxNEB51 are currently being added for VASP.

The VASP Calculators in atomate2 rely on pymatgen52 to define input sets (minimally,

the INCAR, POSCAR, and POTCAR files) which are defined in the pymatgen.io.vasp.sets

library. The output of a VASP calculation is parsed by emmet53 into its TaskDoc schema.

This schema is sufficiently flexible to incorporate key electronic structure information from

non-dynamical DFT, AIMD, and MBPT calculations. By default, jobs are run with the

custodian package54 to monitor for VASP and computational resource errors and possibly

correct these on the fly.

In atomate2, VASP input files are represented as JSONable objects via the VaspInputGenerator

class. This class lightly wraps pymatgen’s VaspInputSet class with appropriate defaults set

for high-throughput calculations.52 These sets essentially determine which kind of calcula-

tion is run, for example: geometry optimization, static single-point energy calculation, band

structure calculation, or AIMD. A single VASP calculation is represented as a jobflow Maker

object, which can then be chained together to form workflows (jobflow Flow objects). At

present, nearly all legacy atomate VASP jobs and workflows have been ported to atomate2

and many new workflows have been added.

3.8 Q-Chem

Q-Chem is a comprehensive ab initio electronic structure software package designed to handle

molecular systems. It offers an extensive array of computational methods to enable the

calculation of ground and excited states with speed and accuracy. Among its capabilities,

Q-Chem supports density functional theory (DFT) with a wide variety of basis sets and

functionals, wavefunction-based methods like coupled cluster (CCD, CCSD) calculations,

and perturbation techniques such as MP2. Additionally, it accommodates Time-Dependent

DFT (TDDFT), ∆ SCF methods, and specialized techniques such as restricted and complete

active space (RAS and CAS) approaches. These advanced functionalities are invaluable for

examining excited states and calculating spectroscopic properties, such as core ionization
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energies.

The atomate2 Q-Chem integration supports several fundamental tasks, including ge-

ometry optimization, single-point energy calculations, and frequency analysis. More so-

phisticated tasks, like potential energy surface (PES) scans and transition state optimiza-

tions, are also available. The interface with pymatgen facilitates these tasks through the

InputGenerator and InputSet architecture. This design allows users to encapsulate all cal-

culation settings into a QCInputGenerator class, which, when provided with a molecule from

the pymatgen library, produces a complete set of Q-Chem inputs specific to that molecule.

The infrastructure is highly customizable, making it amenable for advanced users to

implement new jobs and workflows. The Maker class in the jobflow library forms the

backbone for constructing and managing these computational jobs. A key component, the

BaseQCMaker, utilizes the QCInputGenerator to yield a QCInputSet from a given pymatgen

molecule while supporting additional parameters for job execution, error-handling, and result

documentation. Q-Chem calculators within atomate2 automatically archive inputs and out-

puts using a structured schema known as a Task Document, defined in the emmet.core.qc tasks

TaskDoc class. This schema ensures standardized data processing by storing specific results

(e.g., final energy) in predefined attributes (TaskDoc.output.final energy). The TaskDoc

is easily serialized for integration into a results database(e.g. MongoDB) or storage as a local

JSON file, ready for automated handling by tools such as the Builder classes in Emmet.

4 Workflows

A list of all the supported workflows are listed in Table 2. Each workflow covers the method-

ology, usage notes, and any existing use cases/papers using the workflow, and has a workflow

diagram covering all the steps. A template workflow diagram, providing a legend to enable

their interpretation is shown in Fig. 1.
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rü
n
ei
se
n

P
er
io
d
ic

-
△

-
-

-
-

✓
-

-
M
at
p
es

P
er
io
d
ic

-
-

-
-

-
-

✓
-

-
Q
u
as
ih
ar
m
on

ic
A
p
p
ro
x
im

at
io
n
fo
r
P
h
on

on
s

P
er
io
d
ic

-
△

-
-

-
-

✓
-

-
A
n
h
ar
m
on

ic
P
h
on

on
s

P
er
io
d
ic

△
⃝

△
△

-
✓

✓
-

-
M
P
M
or
p
h

P
er
io
d
ic

△
△

△
△

-
✓

✓
-

-
M
ag
n
et
ic

O
rd
er
in
g

P
er
io
d
ic

△
✓

△
△

-
-

✓
-

-
A
d
so
rp
ti
on

P
er
io
d
ic

△
△

△
△

⃝
△

✓
-

-
P
oi
n
t
D
ef
ec
t

P
er
io
d
ic

△
⃝

-
-

-
-

✓
-

-
A
n
h
ar
m
on

ic
it
y
Q
u
an

ti
fi
ca
ti
on

P
er
io
d
ic

△
✓

△
△

-
△

△
-

-
E
le
ct
ro
d
e
D
is
co
ve
ry

P
er
io
d
ic

△
-

-
-

-
-

✓
-

-
F
er
ro
el
ec
tr
ic

P
er
io
d
ic

△
-

-
-

-
-

✓
-

-
M
at
er
ia
ls
P
ro
je
ct

P
er
io
d
ic

-
-

-
-

-
-

✓
-

-
A
m
se
t

P
er
io
d
ic

-
-

-
-

-
-

✓
-

-

F
re
q
u
en
cy

F
la
tt
er
n
in
g
O
p
ti
m
iz
er

W
or
k
fl
ow

M
ol
ec
u
la
r

-
-

-
-

-
-

-
-

✓
C
la
ss
ic
al

M
ol
ec
u
la
r
D
y
n
am

ic
s
W
or
k
fl
ow

M
ol
ec
u
la
r

✓
-

-
-

-
-

-
✓

-

15

https://doi.org/10.26434/chemrxiv-2025-tcr5h ORCID: https://orcid.org/0000-0001-7346-4568 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/CederGroupHub/chgnet
https://github.com/materialsvirtuallab/matgl
https://doi.org/10.26434/chemrxiv-2025-tcr5h
https://orcid.org/0000-0001-7346-4568
https://creativecommons.org/licenses/by/4.0/


Template Workflow

Job

Optional job
Inputs

OutputsWorkflows formed of optional 
jobs, jobs & sub-workflows

Sub-workflow

Figure 1: Schematic of template abstract workflow including color legend.

4.1 Periodic systems

4.1.1 Geometry optimization and static

As a starting point, Atomate2 offers several essential DFT jobs, including structural opti-

mization and single-point (static) calculations. The crystalline structure can be provided in

various formats supported by pymatgen, including Crystallographic Information File (CIF),

POSCAR, and other commonly used structure file formats. Conveniently, pymatgen of-

fers the get structure by material id() function, which allows users to query a struc-

ture from the Materials Project database using its corresponding mp id. For structural

optimization, both HSE0655 and PBE56 regular relaxation and tight relaxation jobs are

available. Additionally, Atomate2 includes a powerups function, allowing users to cus-

tomize their input settings. For example, functions like update user incar settings,

update user kpoints settings, and update user potcar settings enable tailored con-

figurations for DFT calculations. Similarly, for static calculations aimed at evaluating the

total energy of compounds and generating the CHGCAR file for subsequent band struc-

ture calculations, Atomate2 provides support for both conventional functionals and hybrid

functionals. The subsequent sections delve into more advanced workflows, most of which

incorporate structure relaxation and static calculations as integral components of their pro-

cess.
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Dielectric Job

Outputs
• Static dielectric
• Ion-clamped 

piezoelectric tensor
• Born effective 

charges

Required inputs
• Tight relaxed

structure Static with 
LEPSILON = TRUE

Polarization Job

Outputs
• Electronic 

contribution to the 
polarization

Required inputs
• Tight relaxed

structureStatic with 
LCALCPOL = TRUE

Figure 2: Schematics of dielectric and polarization workflows.

4.1.2 Dielectric and polarization workflow

Atomate2 also supports other fundamental calculations including dielectric and polarization

jobs. It should be noted that a pre-relaxed structure is required as input for both calcu-

lations. This is to avoid imaginary modes. These calculations are currently available for

VASP and the workflow is summarized in Fig. 2. The corresponding workflows in atomate

have been widely employed, including the generation of of over 7,000 dielectric tensors in

the Materials Project database. This dataset is one of the core components of the Mat-

Bench57 benchmarking suite for comparing ML models on materials science tasks and has

been used to develop equivariant graph neural networks such as AnisoNet58 for predicting

the full dielectric tensors of crystalline systems.

4.1.3 Electronic Bandstructure Workflow

A fundamental and widely utilized application of DFT is the calculation of electronic band

structures and density of states (DOS) to characterize the electronic properties of materi-

als. To obtain the electronic band structure and density of states (DOS) in Atomate2, the

workflow (Fig. 3) begins with a precise structural relaxation, followed by a static calculation

to generate the CHGCAR file required for subsequent steps. Next, non-self-consistent static

calculations are performed using either k-points along a high-symmetry path or a uniform
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Electronic Band 
Structure Workflow

Outputs
• Electronic band 

structure
• Electronic density 

of states

Required inputs
• Structure Structure relaxation

NSCF

Static

Figure 3: Schematic of electronic bandstructure workflow.

k-point mesh.

4.1.4 Bonding analysis workflow with LOBSTER

Bonding analysis helps to understand the interactions between constituent atoms in materi-

als. Theoretical frameworks for bonding analysis usually rely on density-based or quantum-

chemical orbital-based approaches. One of the commonly used density-based approaches

is the Bader59 analysis. Orbital-based approaches typically rely on the Mulliken60 popula-

tion analysis, from which one can further derive the Crystal Orbital Overlap Populations

(COOP),61 the Crystal Orbital Hamilton Populations (COHP),62 and the Crystal Orbital

Bond Index (COBI).63 The Local-Orbital Basis Suite Towards Electronic-Structure Recon-

struction (LOBSTER)64–66 software package can perform quantum-chemical orbital-based

bonding analysis and can recover COOP, COHP, and COBI populations by projecting plane-

wave-based wave functions from modern density functional theory computations onto atomic

orbitals.

The workflow (Fig. 4) involves the following steps: (1) structural optimization, (2) calcu-

lating the number of bands based on available projection basis functions, (3) writing static

calculation inputs with the number of bands set equal to as evaluated in step 2, (4) perform-

ing a static self-consistent, plane-wave based DFT calculation with symmetry, (5) performing

a static non-self-consistent plane-wave based DFT run with symmetry switched off to com-
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Required inputs
• Structure

Optional inputs
• Lobster settings
• Max and min basis 

sets

Bonding Analysis Workflow

Outputs
• Bonding analysis 
• COHP data and plots
• Strongest ICOHP, ICOBI, 

ICOOP bonds
• Calculation quality 

summary

×N basis

Get basis info

Structure relaxation

LOBSTER run with basis n

Electronic structure

Delete WAVECARs

NSCF uniform

Static

Figure 4: Schematic of bonding analysis workflow.

pute the wave function, (6) generating a set of LOBSTER computations based on different

combinations of available atomic orbital basis functions for projection of the wavefunctions,

(7) running LOBSTER computations and analyze outputs automatically with LobsterPy for

each of the LOBSTER runs, (8) deleting the wavefunction files from the static calculation

and LOBSTER runs directories.

This workflow originates from a previously implemented workflow in atomate.67 The

latter was used to produce a database for about 1500 semiconductors and insulators.68 The

key methodological difference in the previous implementation and workflow in atomate2 is

that the wave function is now computed in a two-step procedure including a self-consistent

DFT run with symmetry and a non-self consistent DFT run without symmetry to speed up

the computation. In addition, now an analysis of the outputs via the LobsterPy67,69 package

is performed. Important to less experienced users of HT software, the atomate2 framework

enables efficient workflow execution on one computing node with a simple submission script

and only a minimal setup. Only the installation of atomate2 and the configuration of the

run commands for VASP and LOBSTER are required. This significantly lowers the barrier

to workflow usage in contrast to atomate. Structural optimization and static DFT runs are

19

https://doi.org/10.26434/chemrxiv-2025-tcr5h ORCID: https://orcid.org/0000-0001-7346-4568 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-tcr5h
https://orcid.org/0000-0001-7346-4568
https://creativecommons.org/licenses/by/4.0/


performed in this workflow using VASP. The automatic analysis via LobsterPy is performed

for symmetrically inequivalent sites in the structure for cation-anion and all bonds. This

analysis involves identifying the most relevant bonds along with coordination environments

based on Integrated Crystal Orbital Hamilton Populations (ICOHPs), numerical evaluation

of bonding-antibonding contributions, corresponding Crystal Orbital Hamilton Populations

(COHP) plots, a JSON summary, and text description of the bonding analysis. More details

about our automatic bonding analysis implementation can be found in the publications

associated with LobsterPy67,69 and its tutorials.

4.1.5 Excited states workflow

DFT, being an exact theory for ground state properties, often works well to compute struc-

tural properties but doesn’t provide accurate excited state properties such as band gaps. A

more rigorous framework for the description of excited states is provided by MBPT70,71 based

on Green’s functions and the concept of quasiparticles. The quasiparticle energies are the

energies for adding or subtracting an electron from a many-electron system. Using the same

Green’s function-based MBPT framework, neutral excitations, which can be directly com-

pared to experimental optical absorption spectra, can also be calculated from the solution

of the Bethe-Salpeter equation (BSE).72,73 The BSE represents one of the most accurate yet

computationally tractable approaches for the ab initio study of neutral excitations in crys-

talline systems by including the attractive interaction between electrons and holes (excitonic

effects) using two-particle Green’s function thus going beyond the single-particle picture of

DFT within random-phase approximation (RPA).

The GW and BSE workflows implemented in atomate2 are built for automating these

multistep and interdependent calculations. For example, the calculation of quasiparticle en-

ergies using Abinit involves a four-step calculation. First, one performs a standard DFT

(SCF) calculation to obtain self-consistent charge density which is then used to perform an

exact diagonalization calculation (NSCF) to generate a large number of unoccupied bands

required for the actual GW calculation. Once these bands are generated the inverse dielec-
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tric matrix is computed (SCR) and used to obtain the quasiparticle corrections to the DFT

eigenvalues (SIGMA). Similarly, the BSE calculation involves obtaining the inverse dielec-

tric matrix and quasiparticle corrections to compute the frequency-dependent macroscopic

dielectric function (ϵ(ω)). Workflows such as G0W0Maker and BSEFlowMaker perform such

standard calculations with a given crystal structure and input parameter set. In addition,

multiple workflows have been developed to check the convergence of desired output results

with any particular input parameter. For example, GWConvergenceMaker implements the

convergence test of the calculated quasiparticle gap with respect to parameters such as the

number of unoccupied bands or the number of plane waves. The BSEConvergenceMaker

checks the convergence of the frequency-dependent dielectric function calculated using BSE

with the number of k-points. Due to the enormous computational cost of these calculations,

a BSEmdfMaker has been developed that performs the BSE calculation with a model dielec-

tric function. One can also use a scissor shift to simulate the quasiparticle correction and

skip the SCR and SIGMA jobs mentioned earlier.

The implementation of the GW workflow for FHI-aims is simpler, as FHI-aims allows

the user to run a SCF calculation and all the post-SCF steps in one run. However, if one

wants to study the convergence of the quasiparticle energies on the parameters defining the

GW calculation, such as the number of frequency points used to expand the elements of

self-energy on the imaginary frequency axis, or the type of its analytical continuation on the

real frequency axis,74 they can effectively re-use the results of the SCF part of the calcula-

tion by restarting the calculations from the converged charge density. This functionality is

implemented in GWMaker for FHI-aims. GWConvergenceMaker, allowing the study of the con-

vergence of GW results with respect to calculation parameters, is also implemented similarly

to the ABINIT workflows.

In addition to the GW workflow for FHI-aims, atomate2 also implements the workflow to

compute G0W0 quasiparticles with VASP in the MVLGWBandStructureMaker class. It conducts

G0W0 calculations compatible with the parameters defined by MVLGWSet in pymatgen. First,
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a static DFT calculation is performed using the MVLStaticMaker by default, which can be

customized with a user-defined static maker. Next, a non-self-consistent calculation is carried

out with the MVLNonSCFMaker, starting from the CHGCAR produced in the static calculation.

Finally, the MVLGWMaker class builds the dielectric matrix, performs the G0W0 calculations,

and obtains the quasiparticle energies.

4.1.6 Ab initio and forcefield molecular dynamics workflows

Molecular dynamics (MD) simulations are important for sampling atomistic configurations

of systems at finite temperature and pressure, and have been widely used for calculating the

thermodynamic responses and properties of materials such as heat capacity, viscosity, and

thermal conductivity. Ab initio MD (AIMD) generally refers to the use of electronic struc-

ture methods (typically DFT) to dynamically update the positions of atoms in a system,75

whereas forcefield MD refers to any method that uses a model for interatomic forces to drive

the simulation. We will further distinguish classical MD, where the functional form of a

forcefield is constructed and fitted by hand, and machine-learned MD, where the forcefield

is represented by a trained ML model.

AIMD workflows are available for VASP via MDMaker, which allows easy selection of com-

mon options like the temperature and the ensemble (NV E, NV T , NpT ), with suitable

default choices for the thermostat and/or barostat. It is also possible to run AIMD us-

ing the ASE calculator interfaces to electronic structure codes, such as Q-Chem, SIESTA,

Quantum Espresso, VASP, and others. One could use the AseMaker class in atomate2 to

communicate with electronic structure codes and use their native AIMD implementations.

Alternatively, one could use the AseMDMaker to take energies, forces, and stresses from a

single-point electronic structure calculation, and perform AIMD using ensembles defined

internally in ASE.

One of the main challenges in MD simulations is the number of ionic steps that should

be performed to extract reliable information from the post-processing of the data. A total

simulation time of a few ps or a few tens of ps is usually required, with a time-step in the
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Required inputs
• Structure

Optional inputs
• Number of steps
• Temperature
• Time step
• Ensemble
• Number of MD runs

AIMD Workflow

Outputs
• Final structure
• Reference to last MD 

calculation
• Ids of all steps in the 

trajectory

Molecular dynamics #1

Molecular dynamics #2

Molecular dynamics #N

⋮ Aggregate

Figure 5: Schematic of multi-step molecular dynamics (MD) workflow.

order of the fs. Considering that simulation boxes often include up to hundreds of atoms,

this can be particularly challenging for AIMD, where the total simulation time can easily

exceed the maximum time per job allowed by computing centers. To address this issue,

a multi-step MD workflow (MultiMDMaker) has been implemented. This permits splitting

the total simulation time in a customizable number of chunks so that each separate MD

calculation can finish within the allotted time. A final job is added to summarize the output

and provide references to the different output chunks so that the total trajectory can easily

be reconstructed. In addition, the final document can be used as a starting point for a new

MultiMDMaker workflow, enabling the user to concatenate multiple such workflows. This

workflow is illustrated in Fig. 5.

The same MultiMDMaker workflow can also be used to concatenate trajectories with

different thermo- and barostat profiles, a feature that is not currently implemented in VASP.

For example, the workflow can define an initial chunk with a ramp-up of the temperature,

followed by additional steps at constant temperature.

MLMD is made possible by the MD ensembles (NV E, NV T , andNpT ), thermostats, and

barostats defined in the ASE python package. It is also possible to use the native MLIP func-

tionality of VASP to perform MD with the previously-mentioned atomate2.vasp.MDMaker

class. To make the ASE interface forward-looking, an AseMDMaker template has been de-
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Figure 6: Schematic of classical MD workflow.

fined, which defines the ensemble and various computational parameters for a generic ASE

Calculator object. The AseMDMaker supports both periodic and non-periodic systems. To

perform MLMD, users can access pre-defined CHGNet, GAP, M3GNet, MACE-MP-0, and

Nequip MD workflows, or they can load any force-field ASE Calculator by specifying the

package to import. Both temperature and pressure scheduling features have been added for

force field MD Makers. If arrays of temperature and pressure are input, the temperature

and pressure will be linearly interpolated across simulation steps, allowing users to customize

MD simulations with, e.g., temperature ramp, annealing, or cyclic expansion-compression

loading. The highly modular nature of the MLIP MD workflows makes them amenable

to inclusion in complex workflows, such as the MPMorph workflows76,77 used to simulate

quenched amorphous structures. This enables the rapid generation of amorphous structures

at a much lower cost than DFT and is being actively explored as an application of MLMD.

Last, classical MD is a popular technique for investigating electrolytes, polymers, pro-

teins, and a wide variety of other systems, particularly when bond breaking and formation is

not of interest. This module shown in Fig. 6 includes (1) an extensible MD engine-agnostic

schema and setup tools built on the open force field ecosystem and (2) MD workflows for en-

ergy minimization, NpT , NV T , and annealing. Together, these allow facile system construc-
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tion, atom typing, execution, and analysis. Representing the intermediate state of a classical

MD simulation is challenging. While the intermediate representation between stages of a pe-

riodic DFT simulation can include just the elements, Cartesian coordinates, and box vectors,

classical MD systems must also include the force field. This is particularly challenging be-

cause all MD engines represent force fields differently. Rather than implement our own repre-

sentation, the workflow uses the openff.interchange.Interchange object, which catalogs

the necessary system properties and interoperates between several MD engines. Alongside

this, the workflow tracks convenient metadata not critical to the simulation, like molecule

names and partial charge methods. For system setup, a generate interchange job in

atomate2.classical md.base has been implemented, which processes a simple input dictio-

nary into a task document. Though the task document is designed to be easily used by multi-

ple MD codes, the existing workflows are in OpenMM. OpenMM workflows are built around

the BaseOpenMMMaker, which includes shared logic to create a OpenMM.Simulation, attach

OpenMM.Reporters, and output a task document. Jobs subclass BaseOpenMMMaker and im-

plement a unique run openmm method, which evolves the system as needed. Several Makers

are implemented: NVTMaker, NPTMaker, TempChangeMaker, and EnergyMinimizationMaker.

Unlike other codes supported by atomate2, OpenMM is run through a python API and has

no notion of input files. Instead of building and writing input sets, the workflow implements

simulation logic directly in python.

4.1.7 Elastic constant workflow

The elastic tensor is a fundamental material property that describes the mechanical response

of a material to small external loads, offering a complete description of the material’s behavior

under such conditions. A variety of mechanical, thermal, and acoustic properties can be

directly derived from the elastic tensor. Computationally, there exist two major methods to

calculate the elastic tensor using first-principles calculations. The first is the energy–strain

approach, which relates the elastic tensor to the second derivative of the total energy with

respect to strain. The second is the stress–strain approach, where the elastic tensor C is
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obtained by leveraging the linear relationship between stress σ and strain ϵ, that is, σ = Cϵ.

The present workflow implements the stress–strain approach; a detailed explanation of this

approach can be found in Ref. 78.

The elastic workflow takes an atomic structure as input and produces the elastic tensor as

output. This is accomplished through a series of steps detailed below. First, as two optional

steps, the input structure can be further optimized and converted to a conventional cell.79

Using a conventional cell can help reduce numerical errors, particularly for crystals whose

primitive cell can be highly skewed, such as monoclinic and triclinic systems. Next, the

structure is strained along the six independent strain directions (xx, yy, zz, yz, xz, and xy),

with multiple strain magnitudes applied in each direction to deform the structure. To further

optimize the process, optionally, the set of strained structures can be reduced by symmetry,

which involves checking if a strained structure is equivalent to another using the space group

symmetry operations of the original structure. This can significantly reduce the number of

structures to be calculated, particularly for high-symmetry structures like cubic systems.

Next, a Calculator is employed to compute the stress tensor for each strained structure,

and any atomate2 Calculator that supports stress tensors, as mentioned in the Calculators

section, can be used for this computation. Finally, the sets of strains and stresses are used

to fit the elastic tensor using the strain-stress relationship, as implemented in pymatgen.

The output is a fourth-rank elastic tensor corresponding to the input structure, with

different crystal systems possessing different numbers of independent components according

to the symmetry in the crystal. Many other isotropic and anisotropic elastic properties can

be directly derived from the elastic tensor, such as Young’s modulus, shear modulus, bulk

modulus, Poisson’s ratio, linear compressibility, and sound velocity. Numerical values of

these derived properties can be obtained via, e.g. pymatgen, and visual exploration is made

possible via packages like elate.80

The present workflow is a direct adaptation of the original elastic workflow in the atomate

package. Aside from default settings such as DFT pseudopotentials and energy cutoffs,
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the main difference is that this workflow includes the option to further optimize the input

structure. The original elastic workflow has been widely employed to calculate the elastic

tensor of materials.78,81,82 Notably, the elastic tensor data provided in the MP database are

computed using this workflow. These data are driving the development of modern machine-

learning models for predicting the elastic properties of materials. For instance, derived

mechanical properties such as bulk modulus and shear modulus serve as key benchmarking

properties in the MatBench suite.57 Furthermore, the data have been utilized to develop

equivariant graph neural networks such as MatTen82 for predicting the full elastic tensors of

all crystal systems.

4.1.8 Harmonic phonons workflow with phonopy

Lattice dynamics govern thermal conductivity, phonon transport, heat capacity, and other

mechanical, optical, and electrical properties. High-accuracy phonon dispersion relations are

essential for understanding these relationships. The finite displacement approach is one of

the most widely used methods to obtain phonon dispersions, mostly because it is applicable

to any atomistic force Calculator. Density functional perturbation theory, in contrast,

needs to be derived and implemented for each DFT functional. The finite displacement-

based computation is time-consuming as it requires the calculation (and collection) of all

interatomic forces for a large number of supercells.

Using phonopy83,84 as the underlying framework, the atomate2 implementation of har-

monic phonon workflow requires forces that can be computed from DFT calculations (VASP or

FHI-aims), but also from (universal) MLIPs (e.g., M3GNet, CHGNet, MACE-MP-0, NEP,

NequIP). phonopy handles the creation of supercells with single displacements and subse-

quent calculation of the dynamical matrix. Based on DFT calculations, the non-analytical

term correction85 (NAC) can be included in the workflow to account for polarisation effects

on the force constants near Γ in non-metallic systems. This can be combined with both DFT

or MLIP Calculators. Unfortunately, current MLIPs model atomic structure only and have

no notion of electronic degrees of freedom. As such, they cannot be used to perform the
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Figure 7: Schematic of harmonic phonon workflow.

non-analytical term correction at the moment. Additionally, the FHI-aims interface does

not currently support these corrections, but will in the near future.

The workflow can be described as follows: in the first (optional) step, the structure is fully

optimized with a strict force convergence. This is essential to ensure that the forces from

the displaced supercells do not contain any spurious noise from residual forces. Next, the

supercell transformation is determined based on the minimum length of each lattice vector.

The supercell is generated such that it is as cubic as possible, to ensure that the forces

converge better with the supercell size. Supercells with displacements are created by phonopy

based on the unit cell symmetry (the number of displacements is determined dynamically)

and jobs for the computation of the forces created. In the last step, these forces are used by

phonopy to compute the force constants and subsequent band structure and density of state

plots. Fig. 7 shows a workflow diagram. In addition to the phonon dispersion, the workflow

also outputs the phonon density of states and thermodynamic properties such as the heat

capacity and free energy.

Similar workflows have been implemented in other frameworks. One noteworthy example

is the implementation in AiiDA, which can utilise force calculations from a variety of DFT

codes (VASP, Quantum ESPRESSO,86,87 FHI-aims, etc.). Other implementations are available
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in the pyiron framework and with the FHI-vibes package.88 All of these implementations

rely on phonopy for the calculation of the dynamical matrix.

Our implementation of the harmonic phonon workflow has been used in recent studies

on MLIPs.39,89 Instead of a DFT code, a universal MLIP was employed to calculate the

forces for the displaced supercells. The studies serve as a benchmark for the accuracy of

MLIPs and show that the workflow can create phonon dispersions from any force Calculator

implemented in atomate2. The workflow has been extended to run at different cell volumes

so that the thermal expansion and the Grüneisen parameter can be calculated (see below).

4.1.9 Equation of state workflow

The zero-temperature limit of a solid’s equation of state (EOS) is a frequently-used tool

to study its cohesion and response to compressive and expansive strain. The solid-state

EOS typically relates the energy E of a solid to its volume V , or to its pressure p. Both

formulations are in essence equivalent because the first law of thermodynamics indicates

that p = −(dE/dV )S (at constant entropy S). Various theoretical models for a “universal”

EOS have been developed. Their construction and utility as applied to sp-bonded solids is

discussed in Ref. 90, and are applied HT to diverse materials in Ref. 91. These theoretical

models enable one to extrapolate the energy and volume relation beyond those computed

directly and extract information such as the solid-state cohesive energy, equilibrium volume,

and bulk modulus.

To generate an EOS, one performs a set of fixed-volume relaxations of a crystal at different

volumes. By relaxing the atomic positions within a cell of fixed volume, one is typically better

able to fit the resultant energies to a model EOS. The base implementation in atomate2 is

abstract: the CommonEosMaker class defines only a workflow for computing a set of energies

for an input crystal at different volumes (by default, six volumes within a range of ±5% of the

input structure volume). Optionally, the user can relax the structure closer to its equilibrium

volume before performing the EOS-specific calculations. The workflow is illustrated in Fig. 8.

Concrete implementations of the EOS workflow exist for VASP, including MP-compliant
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Figure 8: Schematic of equation of state (EOS) workflow.

parameters, FHI-AIMS, and MLIPs. In the MLIP implementation ForceFieldEosMaker, a

convenience method called from force field name allows one to generate an EOS workflow

solely from the name of an atomate2-supported MLIP and input structure. By default, the

EOS data is then fit to a handful of theoretical models from authors including Murnaghan,92

Birch,93 Poirier and Tarantola,94 or Vinet and coworkers.95 The extrapolated EOS param-

eters (minimum energy, equilibrium volume, bulk modulus, etc.) are stored in a dictionary

for each model EOS alongside the original energy and volume data for later analysis.

4.1.10 Quasi-harmonic approximation workflow

To calculate the thermal expansion of compounds at finite temperatures, atomate2 has

an implementation of the quasi-harmonic approximation (QHA) workflow,96 integrating

both phonon and equation-of-state (EOS) workflows. The current QHA workflow relies

on phonopy to compute thermal properties, i.e., free energy, for determining the unique

minimum value of Gibbs free energy by varying volume. The workflow (Fig. 9) starts with

the equation of state workflow to apply linear strain to the structure and relax the struc-

ture under the constraint of constant volume. Subsequently, the harmonic phonon workflow

based on the finite displacement method is applied to each scaled structure. Based on the

temperature (T ) dependent free energies F (V, T ) computed at the different volumes V we

can evaluate the influence of anharmonicity based on the volume expansion on the thermal
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Figure 9: Schematic of quasi-harmonic approximation (QHA) workflow.

properties.

To obtain the free energies, we sum the total DFT energy E0(V ) to the vibrational part

of the free energy Fvib(V ;T ) at different volumes, V , according to

F (V, T ) = E0(V ) + Fvib(V ;T ). (1)

The current implementation does not consider contributions to the free energy beyond har-

monic vibrations and therefore might not be suitable for metals or alloys where electronic

or configurational entropy can be non-negligible. Our goal is to incorporate these impacts

in future versions. The Gibbs free energy as a function of pressure p and temperature T is

obtained as

G(p, T ) = F (V, T ) + pV = F (V, T )−
(
∂F

∂V

)
T

V, (2)

where the pressure is replaced by−
(
∂F
∂V

)
T
. This equation can be evaluated with the help of an

equation of state fit of F (V ) at fixed temperature, similar to the EOS workflow (Sec. 4.1.9).

Currently, implementations for MLIPs and VASP are available, with the goal to expand

support to other calculators in the near future.
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4.1.11 Mode Grüneisen parameter workflow

The mode Grüneisen parameter (MGP) is a key metric for quantifying the anharmonicity of

specific vibrational modes in a crystal. It plays a crucial role in determining lattice thermal

conductivity, driving thermal expansion, and enabling phase transitions. atomate2 includes

an implementation of the mode Grüneisen parameter workflow, which exclusively relies on

the changes in phonon frequencies at different volumes for a given compound.

The MGP workflow begins with an initial structural relaxation, followed by two addi-

tional relaxations conducted at slightly expanded and slightly compressed volumes (Fig. 10).

Subsequently, phonon computations are performed for all three structures using phonopy.

With the phonon frequencies of the three structures at hand, the mode Grüneisen parameter

γqν at the wave vector q and band ν is defined as

γqν = − V

ωqν

∂ωqν

∂V
(3)

= − V

2[ωqν ]2

〈
eqν

∣∣∣∣∂D(q)

∂V

∣∣∣∣ eqν〉 , (4)
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where V is the primitive-cell volume, ω is the phonon frequency, D is the dynamical matrix,

and e is the eigenvector. The above equation can be approximated using the finite differ-

ence method. In our workflow, phonopy is used to compute the mode-dependent Grüneisen

parameters on a regular mesh and along a high-symmetry path. The average Grüneisen

parameters are obtained following Ref. 97 as

γ =
√

γ̄2 =

√∑
q

∑
ν γ

2
qνCqν∑

q

∑
qν Cqν

, (5)

where C refers to the mode-specific heat capacity.

4.1.12 Electron phonon band-gap renormalization workflow

The electron–phonon interaction (EPI) is a fundamental determinant of the optical properties

of solids. It contributes to the temperature dependence and quantum zero-point renormal-

ization (ZPR) of critical point energies. atomate2 provides a workflow for electron-phonon

bandgap renormalization, following the methodology of Zacharias and Giustino98 (ZG) and

as implemented in VASP.

The workflow begins with a structural relaxation using tight convergence criteria to

eliminate the presence of imaginary phonon modes (Fig. 11). A large supercell (> 15 Å)

is constructed to provide sufficient convergence of the renormalised properties. Next, the

phonon frequencies and eigenvectors are obtained using DFPT. Subsequently, the ZG special

displacement approach is employed to construct displaced supercells that yield accurate

thermal averages of the mean squared atomic displacements.98 We note, an alternative

approach is to employ Monte-Carlo sampling of displacements,99 however the ZG method

enables convergence of properties in a one-shot approach. The displaced supercells are

constructed using the implementation available in VASP, with one supercell generated for

each temperature of interest. For each structure, a uniform band structure calculation is

conducted, comprising a static calculation followed by a uniform non-self-consistent field

(NSCF) calculation. Meanwhile, a corresponding band structure calculation is performed on

the equilibrium supercell to serve as a reference for calculating the renormalized band gap.
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Figure 11: Schematic of electron-phonon band gap renormalization workflow.

Finally, the renormalized band gap at each temperate is obtained by comparing the band gap

of the equilibrium structure with the averaged band gap calculated from the temperature-

dependent displaced structures.

4.1.13 Anharmonic phonons workflow with hiPhive/Pheasy

Lattice dynamics is a critical field in materials science, describing key thermal properties

such as the thermal expansion coefficient, lattice thermal conductivity, and phase stability

at various temperatures. Historically, computing these properties accurately and efficiently

in a HT mode has been challenging, and a streamlined workflow for LD would significantly

advance materials engineering and contribute to computational materials databases. AIMD

is one of the more accurate ways to model lattice dynamics, however, it is time-consuming

and cost-ineffective. An alternate approach employs perturbation theory and interatomic

force constants (IFCs). These are defined by the Taylor expansion of the total energy with

respect to atomic displacements.

Second-order IFCs, which define phonons, can be calculated through DFPT, finite-

34

https://doi.org/10.26434/chemrxiv-2025-tcr5h ORCID: https://orcid.org/0000-0001-7346-4568 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-tcr5h
https://orcid.org/0000-0001-7346-4568
https://creativecommons.org/licenses/by/4.0/


Anharmonic Phonon Workflow

Structure relaxation

Harmonic outputs
• Phonon DOS
• Phonon dispersion
• Free energy, heat 

capacity, entropy

Anharmonic outputs
• Coefficient of 

thermal expansion
• Lattice thermal 

conductivity
• Renormalized free 

energy
• Gruneisen 

parameter

Required inputs
• Bulk structure
• Bulk 

modulus

Optional inputs
• Perturbation dist.
• Supercell options
• Body-order cutoffs
• Renorm. flag
• Error tol

Generate 
training 
data

Supercell perturbation

Phonon displacements
Static n/n

Static 2/n
Static 1/n

Supercell generator

HiPhive fitting

Phonon 
renorm.

300 K renorm
200 K renorm

100 K renorm

Phonon DOS & BS

Lattice thermal 
conductivity

if imaginary 
modes

else

if error 
> tol

Figure 12: Schematic of anharmonic phonon workflow.

displacements, or the random-displacement method. These calculations allow for the deriva-

tion of macroscopic thermal properties at the harmonic level (see Sec. 4.1.8). Anharmonic

IFCs, which are crucial for properties like thermal expansion and lattice thermal conduc-

tivity, are more difficult to compute due to combinatorial explosion of terms. Even at the

third-order level, high compute efficiency is necessary to achieve wide-scale deployment to

small and large systems. Recent advancements in sampling IFCs from high-information-

density configurations have made the calculation of anharmonic IFCs more feasible. Tools

such as CSLD,100,101 ALAMODE,102 hiPhive103,104 and Pheasy105 enable the fitting of IFCs to

any desired order with few training samples and have paved the way for HT computing of

thermal properties.

Our anharmonic phonon workflow106 automatically calculates interatomic force constants

up to 4th order from perturbed training supercells, and uses them to obtain lattice thermal

conductivity, coefficient of thermal expansion, and vibrational free energy and entropy. The

workflow starts with a primitive structure and adjustable parameters such as the force field
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Calculator, hiPhive/Pheasy fitting options, and temperatures of interest (Fig. 12). The

optimum supercell size is obtained following the same process as the harmonic phonon work-

flow. A series of random perturbations are performed and the energies and forces obtained

using a static calculation. This dataset is subsequently used for fitting force constants using

hiPhive or Pheasy. Harmonic phonon properties are calculated using phonopy, while lattice

thermal conductivity is obtained using FourPhonon107 and phono3py.83,108 There is also the

option to renormalization the phonon band structure using techniques from thermodynamic

integration. The workflow is dynamic: for example, if the fitting RMSE exceeds a certain

threshold, the workflow will automatically add a new displacement calculation to increase

the training set size, ensuring the accuracy and reliability of the results.

The atomate counterpart of the same workflow has been utilized for calculating lattice

dynamical properties from first principles, as detailed in Ref. 106. This paper demonstrates

the application of the workflow in calculating interatomic force constants, lattice thermal con-

ductivity, thermal expansion, and vibrational free energies. Deployment of either workflow

at a large scale would facilitate materials discovery efforts towards functionalities including

thermoelectrics, contact materials, ferroelectrics, aerospace components, as well as general

phase diagram construction.

4.1.14 MPMorph workflow

While determining the ground-state crystal structure of ordered materials is relatively straight-

forward, determining the equilibrium structure of disordered materials is challenging. Disor-

dered materials include glasses, amorphous materials, and alloys, and may exhibit different

structural motifs at different temperatures and physical conditions. Typically, one must

perform NpT-ensemble MD to equilibrate disordered materials. However, NpT-MD is quite

expensive, making it less appealing for HT applications such as amorphous material dataset

generation.109

The MPMorph workflow76,77 circumvents NpT equilibration by recursively fitting a set

of NVT-MD runs to an equation of state (EOS). After performing the minimum number of
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Figure 13: Schematic of MPMorph workflow.

fixed-volume calculations needed to fit a standard EOS, the code fits an EOS and determines

if the extrapolated equilibrium volume V0 lies within the range of volumes already computed.

If V0 lies outside this range, the workflow rescales the volume to V0 and repeats the fitting

and analysis steps until V0 is in range. As a fail-safe, the workflow terminates if an in-range

V0 cannot be determined after a set number of steps. A final NVT “production run” is

then performed at volume V0 with a quench temperature schedule to move the atoms into

their lower-temperature disordered configuration. A few different options for the quench

temperature schedule are available: a “slow” quench, which ramps down the temperature in

NVT, and a “fast” quench, which performs a T = 0 DFT relaxation of the structure.

The current MPMorph workflows, visualized in Fig. 13, have been generalized to a code-

agnostic framework that only requires the user to define MD jobs for the various stages of

the run (initial equilibration, and production). Code-specific implementations for VASP and

MLIPs are currently available.
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4.1.15 Magnetic ordering workflow

Magnetic materials are of great interest due to their technological applications (e.g., magnetic

refrigeration, data storage, spintronic devices) and role/relationship in complex physical

properties (e.g., superconductivity, multiferroics, etc). However, due to the combinatorial

complexity of identifying the ground-state configuration in the magnitude and direction

of magnetic spins in a lattice, magnetic orderings are often overlooked in HT DFT studies.

Unfortunately, this can sometimes lead to significant impacts on both the calculated ground-

state energy and properties of the material (e.g., bandgap), especially for transition metal

oxides and other commonly studied materials.110

Collinear magnetic spin configurations (i.e., up and down spins) can be modeled through

conventional DFT codes, such as VASP. Previously, Horton et al.111 established a scheme for

enumerating the likely collinear magnetic orderings for a given input structure, and, using

relaxation and static energy calculations performed with VASP, identifying the ground-state

collinear magnetic ordering for a given structure. This methodology was implemented as

an atomate workflow and has been adapted for atomate2. Unlike its implementation in

atomate, it is now written as a common workflow, allowing it to be easily adapted to other

DFT codes.

Figure 14 shows a schematic for the collinear magnetic ordering workflow, implemented

in atomate2 as MagneticOrderingsMaker. The workflow consists of three overarching jobs:

1) magnetic ordering enumeration, 2) relaxation and energy calculations with DFT, and 3)

post-processing to determine the ground-state ordering.

4.1.16 Adsorption workflow

Investigating surface adsorption is a crucial process in understanding electrode behavior

and heterogeneous catalysis. Surface adsorption is a complex process involving molecules

attaching to a material’s top layer, encompassing both physical and chemical reactions. DFT

calculations can be utilized in examining preferred surface facets, along with adsorption
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Figure 14: Schematic of collinear magnetic ordering workflow.

thermodynamics and kinetics. Due to the complexity of the adsorption process, special

attention must be paid to the relaxation of potential adsorption sites.

Montoya and Persson112 previously established a streamlined workflow for modeling sur-

face adsorption in atomate. The workflow involves constructing distinct adsorbate configura-

tions for arbitrary surface terminations to efficiently handle the extensive DFT calculations.

The workflow in atomate2 retains the core structure of the original workflow while inte-

grating jobflow for enhanced automation. This revised workflow supports the automated

generation of symmetrically distinct adsorption sites, calculating the enthalpy energies for

adsorbed surface configurations and the reference states, as well as returning the optimized

structures and their adsorption energies.

The workflow starts from the relaxation of a bulk structure and target molecule (Fig. 15),

followed by a static calculation to obtain a reference energy for the molecule. In the second

step, the workflow then performs the surface adsorption site searching to generate surface-

adsorbate configurations based on the Miller index. The workflow includes default parame-

ters for the thickness of the slab and vacuum, the length and width of the surface, and the

surface miller index. For each potential adsorption site, the workflow performs a relaxation

followed by a static to obtain the energy. A slab without any adsorbate is generated for the
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Figure 15: Schematic of adsorption workflow.

reference state of the surface. Finally, the adsorption energy for surface-adsorbate configura-

tions is calculated by subtracting the enthalpy from the two reference energies of molecules

and slab. The outputs of the workflow include the relaxed surface-adsorbate configurations

and energies, sorted by ascending adsorption energy. It is possible that during the relaxation

calculation, a reaction occurs that decomposes the original molecule structure. At present,

the workflow does not include additional analysis to determine whether this has occurred

and further validation of adsorption configurations is recommended, especially for complex

molecules.

4.1.17 Point defect workflow

The physical properties of semiconductor and optoelectronics materials are often dominated

by the presence of point defects in the material.113,114 Simulating point defects in an HT

manner presents some fundamental challenges that are difficult to overcome and is an active

area of research.115–117 Defect calculations are typically more computationally expensive due

to the need to use large supercells to describe point defects in a dilute limit, as supercells that
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Figure 16: Schematic of point defect workflow.

are too small can suffer from inadequate descriptions of the atomic relaxation around the

defect site(s) and their impact on the host electronic structure. Second, simulating charged

point defects using a periodic basis set will introduce spurious interactions between the defect

and its periodic images, and finite-size corrections are needed to account for this effect.118,119

Furthermore, if one is interested in more quantitatively calculating the electronic and optical

behavior of defects, more expensive methods like hybrid functionals (e.g. HSE0655) that

can describe charge localization better than conventional workhorse exchange-correlation

functionals like PBE or SCAN are required to accurately capture the electronic structure of

the defect,120 leading to even higher computational costs. Additionally, since many defects

exhibit nontrivial spin configurations, there is usually no guarantee that the ground-state

electronic configuration is achieved, and multiple calculations with different initial conditions

might be required.

Addressing all of these challenges simultaneously is not feasible given current computa-

tional approaches and resources. As such, we have focused on developing a flexible workflow

with two requirements in mind:

1. The workflow must be modular and allow the user to use any combination of structure
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and electronic optimizer to obtain the ground energy of a charge defect supercell.

2. Since we cannot guarantee that the ground-state electronic configuration is achieved,

we must design some system to aggregate the results of multiple defect calculations.

This allows the user to perform defect simulations in an HT manner to obtain an ini-

tial database of defect properties but also allows users to update the atomic and electronic

optimization if lower-energy configurations are found. The composable nature of our work-

flows and the variety of DFT and MLIPs Calculators supported by atomate2 allows us to

thoroughly address (1). Addressing (2) is more challenging, since there is no one-to-one cor-

respondence between the isolated defect you are trying to simulate and the defect supercell

used to perform the calculation. There are multiple valid choices for the defect supercell,

but they all represent the same isolated defect. To address (2), a structure-based defect

object defined using only the unit cell of the host material has been developed, providing

a supercell-independent representation of the defect.121 This defect object is used as the

primary input of the workflow and is also stored alongside each charged-defect supercell cal-

culation to facilitate aggregation of the results from multiple runs of the same defect charge

state.

The defect workflow (Fig. 16) requires the users to first define a supercell relaxation

workflow which will take an automatically generated defect supercell and a charge state as

input and return the relaxed atomic structure and total energy. By default, these supercell

cell relaxations will be composed of a less expensive structure optimization step with a PBE

functional, followed by a high-quality HSE06 static calculation. We note that care must be

taken with this approach, as local minima for more symmetric and charge-delocalized states

favored by PBE may not be able to be overcome by HSE06 calculations initialized with such

configurations, which also motivates the need for accessible databasing in (2) for enabling

extensible potential energy surface sampling. The full defect workflow will take a defect

object as an input and automatically generate the initial defect supercell and determine the

possible charge states from formal oxidation states of the species involved in the creating the
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defect. The supercell relaxation & static workflow will be performed for each charge state

and a post-processing step will be called to apply the finite-size corrections and populate,

tabulate the energies and other metadata for constructing persistent defect databases.

4.1.18 Anharmonicity quantification workflow

While the harmonic model provides a good approximation to the vibrational frequencies and

modes of a material, it is incapable of predicting properties that arise from purely anharmonic

effects such as thermal conductivity or the lattice expansion coefficient.122 There are multiple

approaches to include these effects, ranging from third-order perturbative approaches to fully

anharmonic molecular dynamics trajectories, with varying degrees of accuracy and compu-

tational cost. Quantifying the level of anharmonicity in a material is therefore necessary to

ensure efficient calculations of these materials properties.

The anharmonicity quantification workflow uses the output of the harmonic phonon work-

flow (Section 4.1.8) as a starting point to calculate the anharmonicity metric σA first intro-

duced by Knoop and coworkers.122 σA estimates the anharmonicity of a material at a tem-

perature, T , by taking the ratio between the root mean square error of the forces calculated

by the harmonic model and the standard deviation of the actual forces in a thermodynamic

ensemble average, assuming the mean force is zero. It is defined as

σA(T ) =

√√√√√∑
I,α

〈(
FI,α − F ha

I,α

)2〉
(T )∑

I,α

〈
F 2
I,α

〉
(T )

, (6)

where FI,α is the α component of the DFT-calculated forces for the I th atom, F ha
I,α is the same

force estimated by the harmonic model, and ⟨.⟩(T ) represents a thermodynamic ensemble

average at T . This metric is widely used in the community, and has been demonstrated to

be correlated to properties such as the lattice thermal conductivity.122

The workflow to calculate σA is shown in Figure 17. The first step is to calculate the

harmonic force constants using phonopy and the workflow shown in Figure 7. From here a

set of thermally displaced structures are generated by either by harmonic sampling or via a
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Figure 17: Schematic of anharmonicity quantification workflow.

one-shot approximation.88,122 The one-shot approach approximates the complete thermody-

namic ensemble as a single structure, where all atoms are displaced to the classical, harmonic

turning points for each vibrational mode.99 All generated structures have the same supercell

size as the harmonic phonon workflow for consistent results. Next, the forces for each struc-

ture are evaluated using the same methodology as the harmonic phonon maker. The sample

generation and force evaluations can also be combined with a single molecular dynamics job,

but this has not yet been implemented. The calculated forces and displacements are then

used to calculate σA for the full structure using Eqn. 6. The force components can also

be masked onto individual element types, lattice sites, or vibrational modes to generate an

element-, site-, or mode-resolved σA vector, respectively.

4.1.19 Electrode discovery workflow

Since solid-state batteries can utilize cathode materials that do not contain lithium in the

as-synthesized state, the exploration of materials systems through iterative insertion of ions

into an atomic structure is an important step in identifying new materials for energy storage

applications. Effective intercalation electrodes require “topotactic” ion incorporation where

working ions (WIs) are integrated into the atomic structure without major perturbations to

the host lattice. Recent studies123,124 have demonstrated that analysis of the electronic charge
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Figure 18: Schematic of electrode insertion workflow.

density can reliably predict symmetry-distinct ion insertion sites in the atomic structure

which are reliable initial guesses for the ion insertion position. The ion insertion workflow

takes advantage of the dynamic workflow generation capabilities of jobflow to iteratively

add WIs into an atomic structure based on candidate ion insertion sites identified from the

electronic charge density. The output can be aggregated to provide estimates on the voltage

profile of the electrode material, which is a key metric for electrochemical performance. Since

the workflow only requires standard outputs from any DFT simulation engine, it supports

any DFT simulation engine that can compute and store the electronic charge density.

The electrode workflow (Fig. 18) is composed of a series of repeatable ion-insertion steps

that produce the most energetically favorable new structure containing one additional WI.

Each ion-insertion step begins with an atomic structure that is topotactically matched to the

host lattice or the host lattice itself. The workflow firstly performs a static DFT calculation

to obtain the electronic charge density. From the electronic charge density, the workflow

identifies symmetry-distinct ion insertion sites and ranks them based on the integrated charge

density in a small sphere around the insertion site. For a subset of sites with the least

integrated charge density, the workflow performs a DFT structure optimization calculation
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to obtain the relaxed atomic structure and total energy. Finally, it aggregates these results

and filters them to find the lowest energy structure that is topotactically matched to the

host lattice, resulting in the input structure for the next ion-insertion step.

The starting structure and the WI species are the only required inputs to the workflow,

however, the behavior of the workflow is flexible and can be controlled by additional pa-

rameters. The maximum number of insertion steps and the maximum number of distinct

sites to consider at each step can be specified by the user. If not specified, the workflow will

continue to insert WIs until none of the new structures are topotactically matched to the

host lattice. We note that charge balance could also be used to define maximum insertion,

however this functionality has not yet been implemented in the workflow. The final output is

a voltage profile of the material in question. However, when the workflow is applied to a large

number of structures and chemical compositions, this workflow serves as a systematic way to

explore lower symmetry configuration spaces. In these cases, the insertion workflow is used

to populate a database with a new structure, and relegate the aggregation of topotactically

matched structures and the computation of the voltage profile to a separate post-processing

step.

4.1.20 Ferroelectric workflow

Ferroelectrics are insulating materials with a nonzero electric polarization switchable by an

applied electric field. Ferroelectric materials have been extensively studied using DFT and

the modern theory of polarization.125 In this framework, the electronic polarization of a

periodic crystal is computed from the Kohn-Sham wavefunctions as a Berry phase. This

polarization is a multivalued quantity, defined only modulo a quantum of polarization. The

quantum of polarization is an integer multiple of a lattice vector, multiplied by the ratio

of charge and unit cell volume. In short, the polarization is a lattice.126 In practice, only

polarization differences are experimentally relevant, and the spontaneous polarization of a

crystal is defined as a change in polarization relative to a nonpolar structure. Therefore, in

computing the difference in polarization between two structures, one must select polariza-
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Figure 19: Schematic of ferroelectric workflow.

tions that are on consistent lattice points, sometimes called branches. A standard approach

is to compute the polarization of the polar structure, and a nonpolar reference structure

from which it is continuously deformable, as well as several linearly-interpolated structures

between polar and nonpolar structures. Then, the polarization values from each of these cal-

culations can be adjusted so that they are consistent and belong to the same smooth branch.

Upon identification of this common branch, the polarization difference, or spontaneous polar-

ization, is then computed by simply subtracting the polar and nonpolar polarizations. The

spontaneous polarization calculated in this way is directly comparable to experiments.126

The present workflow implements this procedure. The workflow inputs are the polar

structure of interest and a nonpolar reference structure that is in the same low-symmetry

setting of the polar one. In addition, the atoms in both structures have to be in the same

order so that the intermediate structures between the nonpolar and polar endpoints can be

generated using a linear interpolation. The workflow begins by calculating the polarization

of the polar and nonpolar structures (Fig. 19). This includes an optional relaxation followed

by a static calculation before the the dipole moment is obtained using the Berry phase ap-

proach.126 In the next stage, the polarization of a number of structures linearly-interpolated
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between the polar and nonpolar structures are obtained following the same process. Finally,

the output of all calculations is collected and the polarization is computed by finding the

common branch. Other outputs include the electronic and ionic contribution to the polariza-

tion and the quantum of polarization. The workflow is in principle general and any ab initio

DFT code can be used, however at present only VASP implementation exists. The workflow

was originally developed in atomate by Smidt et al.127 and extensively used to build two

databases of candidate ferroelectrics.127,128

We note that determining an appropriate nonpolar reference structure for a given polar

structure can be obtained by using the PSEUDO tool129 in the Bilbao Crystallographic Server

(BCS), as recently done to build the ferroelectrics database in Ref. 128. Alternatively, if a

nonpolar reference is already known, it can be transformed into the polar setting by using

the Structure Relations tool in BCS, as was done to build the ferroelectrics database in

Ref. 127.

4.1.21 Materials Project workflow

The bedrock of the MP database is an extensive library of about 150,000 DFT-relaxed

structures with corresponding thermodynamic and electronic properties. To generate these

structures, two sets of workflows were developed in atomate to relax an input structure and

obtain its total energy: one for PBE and PBE+U56 and one for r2SCAN.130 The PBE/+U

workflow has been used since the inception of MP, whereas the r2SCAN workflow was more

recently introduced131 and used to study the properties of about 33,000 materials in MP.

These workflows have been rewritten in atomate2 with minor modifications to improve

their robustness. In both cases, the atomate2 workflows consist of two sequential relaxations

followed by a static total energy (single-point) calculation. This is due to a quirk of VASP,

wherein electronic properties, such as the density of states, are not physically meaningful

after a relaxation, as they are averaged over previous ionic configurations, and do not cor-

respond to the final relaxed structure. To both speed the workflow and potentially stabilize

complex calculations, the wave function from a given step is used to initialize the subsequent
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calculation in the workflow. Note that neither atomate flow used this initialization scheme,

and that the atomate r2SCAN flow did not perform a final static calculation.

In the PBE/+U workflow, two relaxations with PBE/+U are performed followed by a

PBE static. When a material containing Co, Cr, Fe, Mn, Mo, Ni, V, or W and either

O or F is studied, PBE+U is automatically used; otherwise PBE without a +U is used

10, 132. In the r2SCAN workflow, consistent with Ref. 131, a coarser PBEsol relaxation

(at a larger force convergence tolerance) is followed by a finer r2SCAN relaxation (at a

smaller force convergence tolerance), followed by an r2SCAN static at its self-consistent

relaxed geometry. Thus the outputs of the flows are a structure corresponding to an energy,

eigenvalue spectrum, and density of states. This information is then used to build material

entries within MP, which include also formation enthalpy (relative to a set of elemental

reference configurations) and thus convex hull distance.

The MP input sets are also used to define workflows for determining equations of state

(EOS), and other flows. Such a workflow also exists in atomate, and was used in Ref. 91.

However, the computational demands of this workflow are quite high. For compatibility

with Ref. 91, a set of “legacy” EOS MP-compatible flows exist in atomate2, along with a

set of PBE/+U and r2SCAN EOS flows which are more tractable in HT, and have recently

been used to generate numerous equations of state to aid in benchmarking computational

parameters used by the Materials Project.133

4.1.22 MatPES workflow

The Materials Project potential energy surface (MatPES) workflow (Fig. 20) is designed to

strike a good balance between low computational cost and generating high-quality energy,

force and stress labels for training foundational MLIPs. It is solely intended to run static

calculations at both PBE and r2SCAN level of theory where the PBE wavefunction is used as

the initial guess to facilitate SCF convergence of the subsequent r2SCAN static, significantly

reducing the number of electronic steps needed at the more expensive meta-GGA level. This

workflow structure also permits multi-fidelity or difference learning between different levels of
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MatPES Workflow

Outputs
• PBE and r2SCAN 

energy, forces, 
stresses, magnetic 
moments

Required inputs
• Structure PBE static (coarse)

r2SCAN static (fine)

Figure 20: Schematic of MatPES workflow.

DFT approximations. The consistent generation of training data across two levels of theory

enables systematic comparison of MLIP accuracy with respect to their training data and

to experiment. Its development involved carefully tuning VASP convergence settings across

chemical systems to ensure high-quality training labels and, most importantly forces.

To date, datasets of O(105) MatPES calculations have been generated and used to train

and/or finetune foundational MLIPs including CHGNet and M3GNet. An initial release of

a MatPES-compliant dataset through the Materials Project is forthcoming.

4.1.23 Electronic transport workflow with AMSET

The electronic transport properties of solids determines their use in technological appli-

cations, including photovoltaics, thermoelectrics, and power electronics. A wide range of

approaches have been developed to model band-like transport in semiconductors, with the

linearized Boltzmann transport equation (BTE) being the most commonly used.134 Here, a

key computational challenge is to accurately obtain the lifetime of charge carriers (electrons

or holes) under a range of perturbations (phonons, impurities, grain boundaries, etc). For

electron–phonon scattering, the most reliable approach is density-functional perturbation

theory often combined with Wannier or Fourier interpolation of matrix elements onto dense

k- and q-point meshes.135 Unfortunately, this approach incurs a high computational cost

which limits its use to relatively small systems or those with high degrees of symmetry.

An alternative approach, termed AMSET,136 employs semi-empirical models for the scattering

matrix elements based on first-principles inputs. AMSET includes contributions from defor-
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mation potential, ionized impurity, piezoelectric, and polar optical phonon scattering. The

method provides band and k-point resolved insights into the scattering physics of materials.

A benchmark on ∼20 compounds revealed an accuracy within 20% of DFPT at three orders

of magnitude less computational expense.136

The AMSET workflow in atomate2 automates the calculation of all materials properties

required to obtain electronic transport. The main inputs are a structure and the tempera-

ture and doping concentrations of interest. The workflow begins with an initial structural

relaxation with tight convergence settings to avoid the presence of imaginary modes. The

elastic tensor, dielectric tensor, piezoelectric tensor, and band structure are obtained using

the workflows described above. Deformation potentials are calculated by applying a series

of strains to the unit cell, followed by static calculations, and the comparison of the band

energies to a reference unperturbed static. The wavefunction coefficients are extracted from

a dense band structure calculation, while an averaged polar optical phonon frequency is ob-

tained from the Γ-point DFPT calculation used to obtain the ionic dielectric constant. As

with all BTE implementations, the resulting transport properties are highly sensitive to the

density of the k- and q-point sampling used to integrate the matrix elements. The work-

flow includes automated convergence checking to sequentially increase the interpolated mesh

density until transport properties converge. Two versions of the workflow are provided, one

based on GGA inputs and another more accurate but more expensive version using HSE06.

The main outputs of the workflow include the temperature-dependent electronic mobility,

conductivity, Seebeck coefficent and electronic contribution to the thermal conductivity. An

early version of the workflow was used to obtain the transport properties of 23,000 materials

using machine learned materials inputs.137
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Required inputs
• Molecule coordinates
• Spin multiplicity
• Charge state

Frequency Flattening Optimization Workflow

Outputs
• Optimized molecule 

coordinates
• Vibrational 

frequencies & modes

Geometry 
optimization

Move atoms
along smallest 

frequency mode  

Frequency 
calculation

1 or more 
imaginary freqs.

Frequency 
calculation

No imaginary 
frequencies

Figure 21: Schematic of frequency flattening optimizer workflow.

4.2 Molecular systems

4.2.1 Frequency flattening optimizer workflow

Quasi-Newton methods like L-BFGS are the most commonly used iterative optimization

methods for geometric optimization in DFT due to their superlinear convergence. Quasi-

Newton methods usually approximate the Hessian with a sequence of gradients and steps.

This is performed to avoid the computational burden of calculating the exact Hessian at

each step, which is the expensive part in most cases. Since the Hessian is approximate, the

converged stationary point might be a higher-order saddle point instead of a global minimum

on the PES. To guarantee the convergence to global minima on the PES, the frequency flat-

tening optimizer (FFOpt) workflow performs a sequence of geometry optimizations followed

by frequency calculations until we reach a global minimum (Fig. 21. Since a higher-order

saddle point on the PES is usually characterized by at least one imaginary vibrational mode,

examining the output of the frequency calculation provides a straightforward means of as-

sessing whether or not the saddle point geometry is a true minimum on the PES. If it is

not, the saddle point geometry is perturbed along the direction of the imaginary vibrational

frequency mode, and the optimization is restarted. This process is repeated until all the
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vibrational frequencies are positive. The workflow allows one negative vibrational frequency

of less than 15 cm−1 in order to account for numerical noise in the frequency calculation.

5 Conclusions and future work

The atomate2 software package incorporates several new features that broaden its capabil-

ities and simplify its use. From a fundamental standpoint, workflows are now built on top

of the newly created jobflow library which makes it easier to reuse workflow components

and also simplifies data passing between jobs and input/output operations. While not em-

phasized in the current work, the jobflow library also makes it possible to employ different

workflow execution engines, including FireWorks and jobflow-remote, to distribute jobs

over computing resources. This change makes it easier to circumvent some issues faced by

users of FireWorks, including difficulty running with certain network firewall configurations

as detailed in the original FireWorks paper.

The fundamental improvements introduced in atomate2 have facilitated the expansion

of the software’s scope to encompass a broader array of calculators, including machine-

learning based calculators, and to include a larger set of workflows. The framework also

allows for workflows that employ a mix of different calculators, which may become more

commonplace in the future as MLIPs are used prior to accurate physics-based simulations.A

combination of DFT and MLIP calculators within a single workflow has already been used

to automatically train MLIPs through random structure searches.138 We expect that the

capabilities of atomate2 will continue to improve over time. Such potential improvements

could simply be the expansion of Calculators and workflows, or may additionally include

usability improvements such as calculation dashboards and materials design and submission

frameworks. As the user community for atomistic and electronic structure calculations grows

and calculation methods continue to evolve, software tools must also adapt to meet the

changing needs of this community. The improvements implemented in atomate2 represent

a path forward to adapting to and accommodating these changes.
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102. T. Tadano, Y. Gohda, S. Tsuneyuki, J. Phys. Condens. Mater. 26, 225402 (2014).

103. F. Eriksson, E. Fransson, P. Erhart, Adv. Theor. Sim. 2, 1800184 (2019). DOI:

10.1002/adts.201800184.

104. E. Fransson, F. Eriksson, P. Erhart, npj Comput. Mater. 6, 135 (2020). DOI:

10.1038/s41524-020-00404-5.
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