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ABSTRACT: Heteroaromatic alkylations are indispensable 

reactions for synthesizing biologically active molecules. The anti-

Markovnikov hydroarylation of olefins using heteroaryl halides 

furnishes the product as a single regioisomer, however, catalytic 

variants are ineffective in controlling the stereochemical outcome 

of these reactions. Here, we report a synergistic photoenzymatic 

hydroarylation of olefins using flavin-dependent ‘ene’-reductases 

with ruthenium photoredox catalysts. Enzyme homologs were 

identified, which provide access to both product enantiomers in 

greater than 80% yield with up to 99:1 er. This method is effective 

for styrenyl and unactivated alkenes, highlighting the generality of 

this approach. Binding assay study revealed strong binding of the 

photocatalyst with the enzyme for superior catalytic activity. 

Mechanistic studies suggest efficient intermolecular coupling is 

possible because alkene binding accelerates the consumption of the 

aryl halide. 

Heteroaromatics are essential structural components of 

small-molecule pharmaceutical and agrochemical compounds 

(Figure 1a).1  As the percentage of sp3 hybridized atoms in drugs 

increases, there is an increased need for pyridyl structures with 

adjacent stereocenters.2,3  Benzylic and homobenzylic 

stereocenters are traditionally set via asymmetric reduction of the 

corresponding alkene.4,5  While these methods offer unparalleled 

levels of enantioselectivity, they do not build molecular 

complexity. Transition metal and Brønsted acid catalyzed cross-

couplings and conjugate additions to vinyl pyridines also provide 

access to alkylated heterocycles, however, there remains a need for 

alternative asymmetric reactions that use readily available starting 

materials.6–14   

Olefin hydroarylations are attractive for preparing 

structurally complex alkyl-substituted pyridines with benzylic and 

homobenzylic stereocenters. This general coupling reaction can be 

achieved using a few distinct catalytic strategies, including 

aromatic C–H activation,15–17  reductive Heck reactions,18  metal-

catalyzed hydrogen atom transfer to olefins,19–21  and reductive 

radical couplings using photoredox catalysts.22–25  Despite the bevy 

of synthetic methods, none of these reactions have been rendered 

asymmetric.  

Enzymes are ideal scaffolds for asymmetric synthesis 

because they can use numerous non-covalent interactions to control 

the reaction trajectories of highly reactive intermediates.26  Over 

the past decade, our group has pioneered the area of 

photoenzymatic catalysis, where photonic energy is used to drive 

biocatalytic transformations.27  Our group and others demonstrated 

that flavin-dependent ‘ene’-reductases (EREDs) could generate 

alkyl and nitrogen-centered radicals for olefin hydroalkylation and 

hydroamination reactions.28–43  Reactions occur with high levels of 

enantioselectivity because the protein can preferentially deliver a 

hydrogen atom to one prochiral face of the alkyl radical formed 

after C–C or C–N bond formation. Hydrogen atom transfer remains 

a challenging mechanistic step to render asymmetric, with reports 

only recently demonstrating the ability of small molecule thiols to 

achieve this feat.44,45  

 Based on the ability of EREDs to control HAT, we 

questioned whether they could catalyze asymmetric 

hydroarylations using aryl radicals (Figure 1b). Based on pioneered 

studies by Jui, we hypothesized that aryl halides could be 

photochemically reduced to generate an aryl radical.22–25  This 

ambiphilic intermediate can react with electronically diverse 

alkenes to afford an alkyl radical which is reductively quenched via 

HAT from the flavin cofactor.46   

Figure 1. Synthesis of Heteroaromatics with Stereocenters. A) 

examples of heteroaromatics in biologically active molecules. B) 

Olefin hydroarylation using aryl radicals. C) Synergistic 

photoenzymatic strategy for asymmetric hydroarylation.  

We began by exploring the coupling of 2-iodopyridine 

with 𝛼-methylstyrene using a series of ERED homologs in the 

presence of a cofactor turnover system to reduce the enzyme to the 

hydroquinone (FMNhq) oxidation state while irradiating with blue 

LEDs (Table 1). While electron-deficient aryl halides are known to 

form charge transfer complexes with electron donors (amines, 

thiolates),47–50  no product was formed under these conditions 
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(Supplemental Table 24, entry 2). We hypothesized that the lack of 

product formation was due to back electron transfer from the aryl 

radical anion to the flavin semiquinone (FMNsq) being fast 

compared to mesolytic cleavage of the C–I bond.51,52  To slow back 

electron transfer rates, we explore using exogenous photocatalysts 

for radical initiation. Previous studies found that exogenous 

photocatalysts could generate radicals when the biological cofactor 

alone was ineffective.28,32,35,53,54  When catalytic quantities of 

Ru(bpy)3Cl2 were added to a reaction containing old yellow 

enzyme 3 (OYE3), the hydroarylated product was formed in 25% 

yield with 96:4 e.r. favoring the (S)-enantiomer (Table 1, entry 2). 

We hypothesized that superior yields could be achieved by 

modifying the photocatalyst structure. Adding two carboxylates to 

the 4,4 positions of one of the bipyridine ligands increased the 

yield to 54% with no change in enantioselectivity (Table 1, entry 

3). The (R)-enantiomer of the product can be formed in 29% yield 

using a previously identified variant of the ERED from 

Gluconobacter oxydans (GluER-T36A-Y177F) (Table 1, entry 4). 

 
Entry ERED Photocatalyst Yield 

(%) 

Enantiomeric 

Ratio (e.r.) 

1a OYE3 - 1 98:2 

2 OYE3 Ru(bpy)3Cl2 25 96:4 

3 OYE3 Ru(bpy)2(4,4-

CO2Hbpy) 

54 96:4 

4b GluER-

T36A-
Y177F 

Ru(bpy)2(4-

CO2Hbpy) 

25 3:97 

5c OYE3 Ru(bpy)2(4-
CO2Hbpy) 

81 98:2 

6d OYE3 Ru(bpy)2(4-
CO2Hbpy) 

59 96:4 

7e OYE3 Ru(bpy)2(4-
CO2Hbpy) 

29 91:9 

8f OYE3 Ru(bpy)2(4-
CO2Hbpy) 

41 97:3 

9g OYE3 Ru(bpy)2(4-
CO2Hbpy) 

36 97:3 

Table 2. Reaction Optimization. Reaction conditions: 2-

iodopyridine 1a (20 mol), 2a (5 equiv.), NADP+ (1 mol%), GDH-

105 (1.5 mg), Glucose (1 equiv.), MES buffer (pH 6, 100 mM, 750 

L), acetonitrile (250 L), Blue LEDs, 17 h. a 2a (3 equiv.), GDH-

105 (0.1 mg), Glucose (1 equiv.). b glucose (2 equiv.), acetonitrile 

(180 mL, 18% v/v). c 4-iodopyridine 1b (20 mol), 2a (3 equiv.), 

GDH-105 (0.1 mg), Glucose (1 equiv.). d OYE3 (0.5 mol%), 4-

iodopyridine 1b (20 mol), e OYE3 (0.1 mol%), 4-iodopyridine 1b 

(20 mol). f 4-bromopyridine was used instead of 1a, g  4-

chloropyridine used as a substrate instead of 1a. 

 

When exploring other iodopyridine isomers, we found 

that 4-iodopyridine was more reactive, affording the coupled 

product in 81% yield with 98:2 e.r. when using Ru(bpy)2(4-

CO2Hbpy) as the photocatalyst (Table 1, entry 5). Lowering the 

enzyme loading to 0.5 mol % and 0.1 mol % resulted in lower 

yields with a modest decrease in enantioselectivity (Table 1, entries 

6 and 7). We were pleased that 4-bromo and 4-chloropyridines 

were effective radical precursors, producing 41% and 36% yield, 

respectively (Table 1, entries 8 and 9). Reactions can be run on a 

preparative scale using crude enzyme lysate, affording product in 

30% yield with 97:3 er while reactions with purified enzyme 

formed the product in 60% yield with 97:3 e.r. (Supplemental 

Figure S2 and S3), With either 2-iodopyridine or 4-iodopyridine, 

control experiments confirmed that each reaction component was 

necessary for product formation (Supplemental Table 17 and 24).  

We explored the alkene scope and limitations of the 

reaction using 4-iodopyridines as a radical precursor (Figure 2, 3b-

3v). We tested different substituted -methylstyrenes and found 

that the enzyme tolerates varying electron-donating groups on the 

arene (Figure 2, 3b-3f). Halogen substituents are also tolerated on 

the alkene, affording the product a good yield with high levels of 

enantioselectivity (Figure 2, 3g-3l). While ortho-substitution 

affords product in diminished yield, the high enantioselectivity 

indicates that these substituents impact the C–C bond formation 

more than the radical termination event (Figure 2, 3c, and 3f). The 

enzyme tolerates unprotected allylic alcohols, highlighting the 

functional group tolerance of the reaction (Figure 2, 3m). Vinyl 

pyridines were efficient coupling partners for this reaction, 

providing the product with up to 98% yield with excellent 

enantioselectivity (Figure 2, 3n-p). Importantly, this reaction also 

accepts non-styrenyl substrates, significantly expanding the types 

of products that can be accessed using this method. Protected 

piperidines bearing exocyclic methylenes were reactive. 

Spirocyclic cyclobutanes were also reactive but afforded products 

with lower yields. Finally, unprotected allylic alcohols are 

tolerated, producing products in good yield but low levels of 

enantioselectivity. 

 

Figure 2. Scope of olefins: Reaction conditions for the S 

enantiomers: Aryl iodide (20 μmol, 1 equiv.), olefins (60 μmol, 3 

equiv.), purified OYE 3 aliquot (200 nmol, 1 mol%), photocatalyst 

(2 mol%), NADP+ (1 mol%), GDH-105 (0.1 mg), glucose (1 

equiv.), acetonitrile (250 μL, 25% v/v), MES buffer (pH 6, 100 

mM, 750 μL). The reaction mixture was stirred at 360 rpm and 

irradiated,  

 

Next, we explore the scope and limitations of 

heteroaromatic halides (Figure 3, 3aa-ar). This reaction accepts a 

diverse range of substituted iodopyridine decorated with electron-

donating and withdrawing groups on the pyridine ring (Figure 3, 

3aa-aj). Notably, the reaction accepts 2-, 3-, and 4- iodopyridines, 

forming the product in good yield and selectivity, suggesting that 

the locations of the basic nitrogen relative to the radical do not 
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significantly impact the reaction. Beyond pyridines, the reaction 

also accommodates various iodoquinolines. While the yields are 

more modest, the enantioselectivity remains high (Figure 3, 3ak-

an). 2-bromoquinoline can also afford the corresponding product 

in modest yield and selectivity (Figure 3, 3am). 2-iodopyrazine and 

2-bromopyrimidine are also reactive and provided the 

corresponding products in good yields and excellent 

enantioselectivity (Table 3, 3ao and 3ap). Finally, electron-

deficient non-heteroaromatic aryl iodoide provided the products in 

moderate yield but with high enantioselectivity (Table 3, 3aq and 

3ar). As halopyridines have a similar reduction potential (between 

-1.85 and -2.29 V vs SCE) to 4-iodoacetophenone (-1.85 V vs 

SCE),22  these results suggest that reduction potential is a better 

predictor of reactivity than the presence of a basic nitrogen.   

 

Figure 3. Scope of heterocycles: Reaction conditions for the S 

enantiomers: Aryl iodide (20 μmol, 1 equiv.), olefins (60 μmol, 3 

equiv.), purified OYE 3 aliquot (200 nmol, 1 mol%), photocatalyst 

(2 mol%), NADP+ (1 mol%), GDH-105 (0.1 mg), glucose (1 

equiv.), acetonitrile (250 μL, 25% v/v), MES buffer (pH 6, 100 

mM, 750 μL). The reaction mixture was stirred at 360 rpm and 

irradiated with blue LEDs for 17 h. Reaction conditions for the R 

enantiomers: Aryl iodide (20 μmol, 1 equiv.), olefins (60 μmol, 3 

equiv.), purified GluER T36A Y177F aliquot (200 nmol, 1 mol%), 

photocatalyst (2 mol%), NADP+ (1 mol%), GDH-105 (0.1 mg), 

glucose (2 equiv.), acetonitrile (200 μL, 20% v/v), MES buffer (pH 

6, 100 mM, 800 μL). The reaction mixture was stirred at 360 rpm 

and irradiated with blue LEDs for 17 h. a Yield (average of three 

runs) determined using LCMS relative to an internal standard 1,3,5-

tribromobenzene. be.r. was determined using HPLC on a chiral 

stationary phase. c 2-bromoquinoline used as a radical precursor. 

 

Next, we investigated the improved performance of the 

carboxylated photocatalysts compared to Ru(bpy)3. We initially 

hypothesized that the difference was due to enhanced binding of 

the photocatalyst to the protein. We began by conducting steady-

state and time-resolved fluorescence quenching experiments and 

observed static quenching, indicating a binding interaction between 

the photocatalyst and OYE3. From binding assay experiments 

(Supplemental Figures 12-15) we found that dissociation constant 

of Ru(bpy)2(4,4-CO2Hbpy) for OYE 3 to be Kd = 6.7 nM, 

indicating that the carboxylated photocatalyst is a strong protein 

binding than Ru(bpy)3.28  This result suggests that enhanced 

photocatalyst binding accounts, in part, for the reactivity 

differences between the two photocatalysts. Next, we questioned 

whether there was a difference in the reduction potential of the 

photocatalyst. Indeed, we found that Ru(bpy)3 was less reducing 

(RuII/I = -1.175 V vs Ag/AgCl in acetonitrile) than Ru(bpy)2(4,4-

CO2Hbpy) (RuII/I = -1.25 V vs. Ag/AgCl in acetonitrile) 

(Supplemental Figures 10 and 11), potentially accounting for its 

improved performance with 2-iodopyridine. 

Another striking observation was the correlation between 

the conversion of 2-iodopyridine and product yield, indicating that 

the aryl halide was not unproductively consumed throughout the 

reaction. This observation suggests that the alkene and aryl halide 

are bound within the protein active site prior to radical formation. 

To determine whether the presence of alkene accelerates the 

consumption of aryl halides, we explore the kinetics of the reaction 

with and without alkene. During the initial rate of the reaction, we 

found that 2-iodopyridine is consumed 1.6 times faster in the 

presence of alkene than in its absence. This observation suggests 

that the alkene either attenuates the reduction potential of the aryl 

halide or helps to facilitate mesolytic cleavage of the aryl radical 

anion. This observation is consistent with our observations with 𝛼-

bromoketones and alkenes.55  As the magnitude of this effect is 

relatively small with aryl halides, we hypothesize that the alkene 

must bind to the hydrophobic ERED active site with higher affinity 

than the aryl halide. 

 

Figure 4. A) Kinetics of 2-iodopyridine consumption with and 

without alkene. B) Deuterium incorporation study 

 

 Finally, we conducted isotope incorporation experiments 

to determine the mechanism of radical termination. When using 4-

iodopyridine with D-Glucose-1-d1 to isotopically label the N5-

position of the flavin cofactor, the product is isolated with 59% 

deuterium incorporation. In contrast, when using a buffer made 

with D2O to isotopically label the O–H bonds of tyrosine phenols, 

we observe 11% deuterium incorporation. These results suggest 

that flavin is terminating the reaction via hydrogen atom transfer 

from flavin. 

 In conclusion, we have developed a photoenzymatic 

system to catalyze an asymmetric hydroarylation of alkenes using 

aryl halides as radical precursors. This work expands the types of 

reactive intermediates that EREDs can use for alkene 
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functionalization. We expect this reactivity mode to be compatible 

with other photoenzymes for other non-natural catalytic functions.   
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