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Abstract

Understanding the mechanism for the formation of metal nanoclusters is an open

challenge in the nanoscience field. Computational modeling can provide molecular de-

tails of nanocluster formation that are otherwise inaccessible. However, even with ad-

vanced computational resources, simulating the nucleation of a nanocluster in solution

presents significant challenges, including inaccurate energy predictions and limitations

on system size and timescale. This work addresses these challenges by integrating deep

neural networks (DNN) with well-tempered metadynamics (WT-Metad) to model the

nucleation of an Ag6(SCNH2)6 (a prototypical example) in solution. An unbiased neu-

ral network potential (NNP)–based molecular dynamics (MD) simulation captured the

cluster’s dynamic behavior, while WT-Metad simulations revealed an almost barrier-

less downhill transition from dispersed precursors to a nucleated state. Scaling up the

system to 30 randomly distributed precursors demonstrated spontaneous nucleation

at multiple sites, underscoring the method’s robustness. This study presents the first

successful DNN model of nanocluster formation in solution with DFT-level accuracy,

paving the way for advancements in the field.
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Atomically precise metal nanoclusters, comprising a small number of metal atoms, usually

Au, Ag, or Cu, ranging from a few to several hundred, represent a unique class of materials

between the atomic and nanoparticle scales.1 These nanoclusters have a metal core with

specific geometry protected by a monolayer of organic ligands stabilizing the core. Their

small size and high surface-to-volume ratio imbue them with distinct physical and chemical

properties, such as quantum size effects, unique optical characteristics, and enhanced cat-

alytic activities.2,3 These properties make nanoclusters highly significant for a wide range of

applications, including catalysis,4–6 energy storage,7 energy conversion,8,9 sensors,10–12 and

biomedical fields.13–15 Designing nanoclusters for specific applications is a critical focus in

this field, requiring a deep understanding of their formation and stabilization processes.16,17

This knowledge is essential for tailoring nanocluster properties, such as size, shape, and

composition, to meet the demands of various applications.18 For instance, precise control

over these attributes could lead to breakthroughs in developing more efficient catalysts or

highly targeted drug delivery systems.5,19 Thus, uncovering the mechanisms that govern

nanocluster formation remains a vital and active area of research.20–26

The formation of nanoclusters in solution typically involves nucleation and growth pro-

cesses, which are influenced by numerous factors such as temperature, concentration, and

solvent interactions.23 The nucleation stage is especially critical, as it determines the clusters’

initial structural and energetic characteristics. Understanding the mechanism of nanocluster

nucleation is therefore essential for controlling the synthesis process.20 Furthermore, such

insights enable the prediction and manipulation of nanocluster stability, morphology, and

functionality, paving the way for more efficient material design.27 Computational methods

have proven to be invaluable tools for understanding nanoclusters at the molecular level.28,29

However, despite their significance, modeling the nucleation of nanoclusters remains a chal-

lenging task.30 Conventional computational methods, such as classical molecular dynamics

(MD), cannot provide accurate results due to the lack of electronic degrees of freedom. More

accurate ab initio MD methods suffer from timescales and length-scale limitations associated
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with nucleation which are often beyond the reach of these methods and require significant

computational resources. In addition, the free-energy landscape involved in nucleation is

rugged and multidimensional, which hinders the accurate prediction of nucleation pathways

and barriers.

Recently, machine learning-based methods have been employed to predict various prop-

erties and processes of nanoclusters, including their structure, stability, synthesis, small

molecule adsorption, oxygen reduction, intercluster reactions, hydride locations, and force

fields.31–43 In a recent study by Häkkinen and coworkers,42 the atomic cluster expansion

(ACE) interatomic potential was employed to simulate the dynamics of gold nanoclusters in

the gas phase. To the best of our knowledge, no studies to date have focused on modeling

the formation and nucleation of nanoclusters in the solvent phase. In this work, we present

a machine learning model designed to study the solvent-phase nucleation of metal nanoclus-

ters using advanced approaches that integrate deep neural networks (DNN) with enhanced

sampling techniques such as metadynamics (MetaD) and on-the-fly probability-enhanced

sampling (OPES). These approaches have proven to be promising tools for understanding

gas-phase heterogeneous catalytic systems as well as solution-phase modeling of complex

chemical reactions.44–49 Neural network potentials (NNP) have emerged as powerful mod-

els to accurately describe complex systems with ab initio level of accuracy at much reduced

computational cost. When integrated with MetaD or OPES, NNP allows us to simulate a sys-

tem for the timescale of nanoseconds required to observe multiple barrier re-crossing events,

which was otherwise very difficult to obtain using standard ab initio models. In studying

the nucleation process, NNP-based ES simulations provide multiple nucleation events which

allow us to calculate the underlying free energy surface.

In this work, we study the nucleation of a prototypical nanocluster, Ag6(SCNH2)6 in

methanol solvent. To enhance the efficiency of computational modeling, a smaller ligand

(S-CH=NH) was used instead of the one employed in the experiment.50 This simplification

was justified by the observation that the removal of the non-functional part of the ligand
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has minimal impact on the nucleation process. The selection of M6 (M = metal) nuclearity

was motivated by its compact size and its role as a critical intermediate frequently observed

during the early stages of nanocluster synthesis.20,22 It also serves as the basic building

units in high-nuclearity gold clusters such as Au20(SR)16, Au25(SR)18−1, Au28(SR)20, and

Au36(SR)24, etc.20,22,23 Notably, Luo et al.20 proposed a mechanism for the formation of

Au11(SR)9—an intermediate in the synthesis of Au25(SR)18−1—via the reduction of Au6(SR)6

in the presence of carbon monoxide (CO). Furthermore, recent studies have increasingly

focused on the synthesis of low-nuclearity complexes due to their enhanced properties and

diverse applications.51–56

Using NNP-based MD and ES simulations, we investigated the dynamics of nanoclusters

in solution, calculated the free energy landscape associated with the nucleation process, and

simulated the spontaneous formation of multiple nanoclusters in methanol solution.

To train DNN potentials, we utilized the Deep Potential Molecular Dynamics (DeepMD)

method.57,58 The training dataset was generated through a combination of single-point den-

sity functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simula-

tions, both performed using CP2K software.59 DFT calculations employed the PBE-D3 func-

tional60 for exchange-correlation effects, Goedecker-Teter-Hutter (GTH) pseudopotentials to

model core electrons, and a double-ζ valence basis set (DZVP) for valence electrons. The

initial training data were extracted from AIMD simulations conducted in a canonical (NVT)

ensemble at temperatures ranging from 300 to 450 K. This dataset was iteratively expanded

by incorporating single-point calculations derived from NNP-based MD and WT-MetaD61

simulations. Over the course of 8–10 iterations, this approach ensured a comprehensive and

diverse training set, capturing the relevant configurations and interactions required for ac-

curate potential. We validated our potential in unseen configurations, achieving excellent

accuracy with RMSEs of ∼ 0.3 meV/atom for energies and ∼ 50 meV/Å for forces. Fur-

ther details of the system, DFT calculations, DNN potential training and validation, and

NNP-based MD simulation are given in the supporting information.
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We carried out a 25 ns unbiased simulation of Ag6(SCNH2)6 in methanol (Figure 1a,b)

to evaluate the robustness of our neural network potential (NNP). From the simulation

trajectory, we analyzed the distances between Ag-Ag, Ag-S, and Ag-N and obtained the

probability density maxima for these distances using kernel density estimation (KDE) at 2.97

Å, 2.54 Å, and 2.28 Å, respectively (Figure 1c-e, blue curve). These values were compared

with the data from the reference crystal structures of Ag6(SR)6 from two studies, labeled

as exp_150 and exp_2.62 In the crystal structure of Ag6(SR)6, the silver atoms adopt a

distorted octahedral arrangement rather than a perfect octahedral symmetry, resulting in

variations in distances and angles among Ag, S, and N atoms. Therefore, the reference values

are represented as ranges, depicted by red dotted lines for exp_1 and gray dotted lines for

exp_2. The simulated distances align well with the reference crystal structures. A slight

deviation is observed for the Ag-S distance, where the maximum lies at the upper end of the

reference range (Figure 1d). Similarly, we analyzed various angles, with probability density

maxima for Ag-Ag-Ag, S-Ag-S, (N-Ag-Ag)1, (N-Ag-Ag)2, and N-Ag-S angles found to be

59◦, 126◦, 81◦, 138◦, and 100◦, respectively. These values are generally consistent with the

reference ranges, although the (N-Ag-Ag) angle exhibits a slight deviation. The deviations

in distances and angles are not quite unexpected as our simulations were conducted in the

solution phase, whereas the reference values are derived from solid-state structures.

Next, we modeled the nucleation process of the Ag6(SCNH2)6 nanocluster in methanol.

The nucleation of metal nanoclusters typically proceeds through the initial formation of

staple motifs, which subsequently assemble to form the complete nanocluster.20 Similarly,

the nucleation of this nanocluster can be conceptualized as a two-step process. In step

1, monomeric units combine to form a dimeric staple motif. In step 2, these dimeric staple

motifs aggregate in a specific orientation, forming a complete nanocluster with an octahedral

silver core, as illustrated in Figure 2. The formation of dimeric staple motifs during the

nucleation of hexanuclear silver clusters was recently observed experimentally by Yao and

coworkers.56 Here we have modeled both steps separately, which have been discussed in detail
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Figure 1: (a) Representation of the system comprising an Ag6(SCNH2)6 nanocluster and 150
methanol molecules within a cubic box of 20 Å length. (b) Top (left) and side (right) views
of the Ag6(SCNH2)6 nanocluster, with silver, sulfur, and nitrogen atoms labeled. Kernel
density estimation (KDE) plots for distances: (c) Ag-Ag, (d) Ag-S, and (e) Ag-N, and for
angles: (f) Ag-Ag-Ag, (g) S-Ag-S, (h) N-Ag-Ag, and (i) N-Ag-S.Color code for atoms: Ag
(yellow), S (green), N (blue), O (red), C (gray), and H (white).

in subsequent sections.

To investigate the monomer-to-dimer transitions, we developed an NNP for a system con-

taining two monomeric units and 120 methanol molecules. We carried out a Well-Tempered

Metadynamics (WTMetaD) simulation using two collective variables (CVs): s1, defined as

the solute coordination number, which combines the Ag-Ag and Ag-N coordination; and s2,
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Figure 2: Illustration of formation mechanism of Ag6(SCNH2)6 nanocluster.

representing the number of solvent molecules coordinated with the center of mass (COM) of

the silver atoms (see Section 4.2 of ESI for further details). Multiple back-and-forth transi-

tions were observed between the monomeric (D) and dimeric (A) states within 4.5 ns of the

WTMetaD simulation (Figure 3a). The reweighted free energy surface (FES) was calculated

and plotted as a function of s1 and s2 (Figure 3b). The convergence of FES was confirmed

by two methods: (i) plotting the block-averaged FES with associated errors along s1 (Figure

S4a) and (ii) tracking the free energy difference (∆G) over the simulation time (Figure S4b).

The distinct states, marked as A, B, C, and D, observed in the FES, were classified based

on the number and coordination mode of the solvent molecules (Figure 3c).

The dimerization free energy surface indicates an almost barrierless transition from the

monomeric dispersed state D to the dimeric state A, indicating the facile formation of

dimeric staple units from the monomers. The dimeric state A is stable by ∼ 30 kcal/mol

compared to the monomeric D unit. Interestingly, in the state D, the H1 proton interacting

with N1 nitrogen often shuttles between the oxygen of methanol and the nitrogen of the

nanocluster, leading to protonated (N-H ∼ 1.0 Å) and deprotonated (N-H ∼ 1.5 Å) ligand

states (Figure S5c, blue curve). The number of solvents gradually decreases from state D to

C, in which two methanol molecules hold the two MPC monomeric units. Here, at each end,

the methanol proton (H1) interacts with N1 (dN1−H1 ∼ 1.5 Å), while oxygen (O1) interacts

with Ag1 (dAg1−O1 ∼ 2.5 Å) (Figure S5a), keeping the two MPC monomers separated by

solvent molecules. In state B, one methanol remains bridged between the MPC units. Finally,

the dimeric state A is formed when the two MPC units attach by fully removing the solvent

molecules. The transition from monomers to a dimer has been monitored by calculating the
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Figure 3: (a) Time evolution of collective variable (s1) for monomer-dimer transition, (b)
free energy profile as a function of s1 and s2, (c) representative structures of intermediates
from free energy surface (FES), (d) Ag-Ag and Ag-N distance evolution along the represen-
tative structures from different states, (e) variation in partial atomic charge calculated using
DDEC6 analysis on silver (Ag) atoms in different states from monomer to octahedral.

distances Ag1-Ag2, Ag1-N1, and Ag2-N2 (Figure 3d). The Ag1-Ag2 distance in structures

A, B, and C remains similar (∼ 3.0 Å), while the distance increases beyond 3.5 Å in the

monomeric state D.

To further investigate the driving force for the barrierless nucleation process, we per-

formed DDEC6 charge analysis63,64 and calculated the charge distribution in the monomeric

and dimeric states (Table S3). This analysis revealed a systematic decrease in the charge

of silver atoms as the system transitions from the monomeric to the dimeric state (Figure

3e). This reduction in charge is mainly attributed to the change in the interaction part-

ners, moving from the more electronegative oxygen atoms of the methanol solvent to the

less electronegative nitrogen atoms of the ligand. In contrast, the charges on the sulfur and

nitrogen atoms remained relatively unchanged throughout the transition (Figure S1b). An

interplay between the charges on solutes and those in solvents mediates the early stage of

MPC nucleation.

Having realized that the dimeric state is significantly more stable than the monomers,
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we conjecture that the dimeric units could be the basic building blocks for nanocluster

formation. Thus, in the second set of simulations, we investigated the formation of octahedral

nanoclusters from the dimeric staple motifs. With an NNP, we carried out WTMetaD

simulations with two CVs: s3 and s4. The first CV, s3, is the sum of the coordination number

of Ag atoms with the nucleation point (c) and Ag atoms with S atoms. The nucleation point

is located near the center of the simulation box. To maintain the system’s proximity to

this point, we applied a restraint to the center of mass (COM) of the Ag atoms, ensuring

it remained near the nucleation point throughout the process. The second CV, s4 is the

number of solvents coordinated around the nucleation point (see Section 4.2 of ESI for

further details).

Figure 4: (a) Free energy profile as a function of s3 and s4 along with the representative
structures from different regions of the FES [(b), (c), (d) and (e)]

The free energy surface (FES) was calculated using the same protocol as that of the

monomer-dimer case and plotted as a function of s3 and s4 (Figure 4). The FES shows a
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downhill nucleation process. Unlike the monomer-to-dimer transition, the lowest free energy

path for the dimer-to-octahedral transition is not diagonal. Instead, it follows an L-shaped

landscape from the dispersed dimer state to the nucleated octahedral state (Figure 4). The

first step involves the removal of solvent molecules from the nucleation point, referred to as

the "drying step". This step facilitates the aggregation of dimers to form an intermediate

state, which in the subsequent "reorganization step", undergoes a reorganization in a specific

orientation, resulting in the formation of the perfect octahedral nanocluster. This stepwise

nucleation closely resembles the standard two-step nucleation mechanism in atomic and

molecular crystals.65

The facile generation of dimers from MPC monomeric units followed by their aggregation

leading to the formation of an octahedral nanocluster motivated us to investigate whether we

could simulate the spontaneous nucleation of nanoclusters. We prepared a system consisting

of a cubic box with a 5 nm edge length, containing 30 randomly dispersed dimer motifs in

methanol (Figure 5a).

Within 350 ps of simulation using an NNP model, two perfectly nucleated nanoclusters

(labeled C* and D* in Figure 5b, Video S1) were observed along with other aggregated

structures (Figure 5c). We analyzed the time evolution of the Ag-Ag coordination number

(Figure 5d, top) to monitor the nucleation process. A stepwise increase in Ag-Ag coordi-

nation was observed, indicating different stages in the nucleation process. The first steep

rise (A) corresponds to the aggregation of multiple dimers. Around 100 ps, several dimers

aggregate in a larger intermediate state B (Figure 5c, left). By approximately 180 ps, we

observed the formation of nanocluster C* and shortly afterward, around 220 ps, nanocluster

D*. Subsequently, another group of three dimers led to the formation of a slightly disordered

nucleus E (Figure 5c, right). To further investigate the mechanism of nanocluster formation,

we analyzed the time evolution of coordination numbers around the nucleation point (Fig-

ure 5e). Specifically, we analyzed the coordination number of Ag atoms near the nucleation

point (Figure 5d, middle) and the coordination number of solvent molecules surrounding
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Figure 5: Spontaneous nucleation from 30 dispersed dimeric staple motifs in methanol. (a)
Initial dispersed state of the motifs, (b) final nucleated state displaying two perfectly formed
nuclei (C* and D*) alongside partially aggregated states (B and E), (c) structural represen-
tations of aggregates B (left) and E (right), (d) time evolution graph illustrating changes in
Ag-Ag coordination number (top), Ag-c coordination number (middle), and solvent-c coor-
dination number (bottom), (e) schematic representation of the nucleation point (c) defined
as the center of mass (COM) of Ag atoms.

the nucleation point (Figure 5d, bottom). These analyses highlight the two distinct steps

of nanocluster formation: "drying" and ‘reorganization’ as discussed earlier. This simula-

tion of spontaneous nucleation further supports the previously discussed two-step nucleation

mechanism, where aggregation and reorganization occur as distinct steps in the formation

of nanoclusters.

This study elucidates the nucleation mechanism of Ag6(SCNH2)6 nanoclusters in methanol,

highlighting a two-step process involving intermediate aggregation followed by structural re-

organization into an octahedral nanocluster. Both monomer-to-dimer and dimer-octahedral

transitions were nearly barrierless, underscoring the ease of forming stable nanoclusters.
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The dimer-to-octahedral transition follows a L-shaped free energy path, which emphasizes

solvent removal as the initial “drying step" followed by reorganization into the final struc-

ture. Furthermore, spontaneous nucleation simulations confirm the aggregation of dimers

into intermediates and their transformation into ordered nuclei, providing dynamic insights

into the nucleation process. Our findings align with the two-step nucleation model, where

intermediate states play a critical role in cluster formation. This work enhances our under-

standing of metal-ligand nanocluster formation and offers a framework for studying similar

mechanisms in other nanostructured systems.

Data availability

All input files required to run the simulations presented in this work can be found in a pub-

lic GitHub repository (https://github.com/vikast282/Ag6L6_nucleation) and PLUMED-

NEST? (ID: ).
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• Video_S1.mp4: Spontaneous formation of multiple nucleated nanoclusters.
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