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Abstract 

Context 

Organic solar cells (OSCs) represent a promising renewable energy technology 
due to their flexibility, low production cost, and environmental sustainability. To advance 
OSC efficiency and stability, Density Functional Theory (DFT) has emerged as a 
powerful computational tool, enabling the prediction and optimization of critical 
properties at the molecular and device levels. This review highlights the key properties of 
bulk heterojunction solar (BHJ) solar cells and dye-sensitized solar cells (DSSCs) that 
can be accurately computed using DFT, including electronic structure properties 
(HOMO-LUMO energy levels, bandgap energies, and exciton binding energies, which 
influence charge separation and transport); optical properties (absorption spectra and 
light-harvesting efficiency, essential for maximizing photon capture); charge transport 
properties (reorganization energies, electron, and hole mobilities, and charge transfer 
rates that govern carrier dynamics within devices); interfacial properties (energy 
alignment at donor-acceptor interfaces, contributing to efficient charge separation and 
minimizing recombination) and chemical reactivity descriptors (ionization potential, 
electron affinity, chemical hardness, and electrophilicity, which facilitate material 
screening for OSC applications). We also show how to compute OSCs' power conversion 
efficiency (PCE) from DFT. 

 

Methods 

The review also discusses the importance of selecting appropriate exchange-
correlation functionals and basis sets to ensure the accuracy of DFT predictions. By 
providing reliable computational insights, DFT accelerates the rational design of OSC 
materials, guides experimental efforts, and reduces resource demands. This work 
underscores DFT’s pivotal role in optimizing OSC performance and fostering the 
development of next-generation photovoltaic technologies. 

Keywords: Organic Solar Cells (OSCs); Bulk heterojunction (BHJ) solar cells and 

Dye-sensitized solar cells (DSSCs); Density Functional Theory (DFT); Optoelectronic 

properties; Charge transport dynamics; Exciton Dissociation; Energy level alignment. 
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Introduction 

The availability of energy has been a transformative factor in human history. 

Given the substantial increase in global consumption in recent years, transitioning to a 

more sustainable energy matrix has become crucial to mitigate climate change and ensure 

global energy security (Fig.1) [1–3]. According to the 2024 "Statistical Review of World 

Energy," global primary energy consumption reached a new record high for the second 

consecutive year. Renewable energy generation saw significant growth, with a 13% 

increase in electricity production from renewable sources such as solar and wind [3–6]. 

Consequently, much research has focused on developing clean fuel technologies and 

alternative energy sources [6]. In this context, research on solar energy has become 

particularly attractive, given the abundant daily influx of sunlight reaching the Earth's 

surface, which far exceeds the planet's annual energy needs [2, 6]. 

 

 

Fig. 1. Global primary energy consumption in the last 100 years by source type [3]. 

 

Solar energy is an attractive power source, the most abundant renewable resource 

available, and can be harnessed directly and indirectly. The solar radiation that reaches 

the Earth's surface amounts to approximately 3400000 exajoules (EJ) per year, which 

surpasses all estimated non-renewable energy resources, including fossil fuels and nuclear 

energy [7].  Considering the vast potential of solar energy, photovoltaic technologies have 
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evolved significantly over different technological generations, with each advancement 

aiming for greater efficiency, flexibility, and cost reduction, from conventional silicon 

cells to modern third-generation organic cells, such as bulk heterojunction (BHJ) and dye-

sensitized solar cells (DSSCs). 

 

Photovoltaic devices directly convert solar energy into electricity and encompass 

many photovoltaic cell technologies [8–10]. Depending on the component materials, 

these technologies are classified into three generations. First-generation photovoltaic 

systems utilize crystalline silicon technology, already commercially available. Second-

generation systems are based on thin-film photovoltaic technologies, which cells are 

deposited on flexible substrates, allowing for greater applicability on irregular surfaces. 

Finally, third-generation photovoltaic systems include organic photovoltaic technologies, 

still not widely commercialized [8, 9]. 

 

Organic optoelectronic materials have been known since the 1910s. Interest in 

these materials grew significantly during the 1960s and 1970s driven by the discovery of 

electroluminescence in anthracene crystals, reported by Pope in 1963 [11, 12] and by 

Helfrich and Schneider in 1965 [13], and with the discovery that π-conjugated polymers, 

such as hydrocarbon chains with alternating bonds, can achieve high conductivities when 

doped [14–18]. Currently, these materials are widely studied for applications in electronic 

and optoelectronic devices, such as organic light light-emitting diodes (OLEDs), organic 

solar cells, organic transistors, and sensors [19–25]. Organic photovoltaic materials used 

in organic solar cells (OSCs) for light absorption and charge transport are based on 

conjugated organic semiconducting molecules, such as oligomers and polymers [26, 27]. 

These devices are manufactured more simply and cost-effectively, and although OSC 

efficiency is still not comparable to traditional photovoltaic technologies, it has improved 

significantly in recent years [28–34]. OSCs are typically composed of thin films of 

electron donor (D) and acceptor (A) materials sandwiched between electrodes, one of 

which must be transparent to allow light to enter [35–37]. Due to the low dielectric 

constant of organic materials, photoexcitation generates tightly bound excitons (electron-

hole pairs), which must be dissociated into free charge carriers, a process that occurs at 

the D–A interface [26, 38]. The electron and hole carriers are then transported to the 
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electrodes, generating an electric current. However, charge dissociation and transport are 

limited by the short diffusion length of excitons in these materials [39]. 

 

Although OSC development has made significant advancements, their efficiency 

is still lower than that of traditional technologies, such as crystalline silicon. Additionally, 

the degradation of organic materials when exposed to light and oxygen can drastically 

limit their lifespan, thus requiring improvements in the material’s chemistry [40–43]. 

Devices with efficiencies exceeding 19% have already been reported [34, 44–46]. 

Recently, OSCs have been reported to achieve a record power conversion efficiency of 

20.8%, attributed to an active layer morphology based on an interpenetrating fibril 

network [47, 48]. The evolution of energy conversion efficiency in solar cells in recent 

years is summarized in Fig. 2, based on data extracted from annual solar cell efficiency 

tables, listing the highest confirmed efficiencies [49–68]. Scaling up production for large-

scale manufacturing also presents a challenge, as while OSCs can be produced more 

economically through methods like roll-to-roll printing, ensuring uniformity and quality 

across large surfaces remains a technological barrier [43, 69]. These challenges highlight 

the need for new approaches, including using theoretical calculations to optimize 

molecular design and improve the understanding of degradation and charge transport 

mechanisms. 

 

Fig. 2. Reports on energy conversion efficiencies of single-junction organic solar cells 

and crystalline silicon [49–67]. 
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Density Functional Theory (DFT) calculations play a fundamental role in 

predicting and evaluating the optoelectronic properties of materials for applications in 

photovoltaic devices, such as BHJs solar cells and DSSCs [24, 25, 70–75]. DFT provides 

detailed insights into the electronic structure and optical absorption properties, which are 

essential for optimizing the performance of these materials in light-harvesting and charge 

transport processes [76–78]. Compared to experimental methods, DFT offers a more cost-

effective and efficient alternative, enabling the rapid screening of potential candidates 

[78, 79]. Since the synthesis and experimental testing of new materials can be time-

consuming and expensive, DFT can be a valuable tool to guide experiments by identifying 

the most promising candidates in advance, reducing costs and saving time. As a result, 

DFT can accelerate the development process, optimize resource use, and expand the 

ability to explore a broader range of materials for photovoltaic applications. 

 

Given the growing interest in organic optoelectronic materials due to their 

versatility and potential to revolutionize various technologies, from lighting and energy-

harvesting devices to sensors and transistors, in this work, we present relevant 

optoelectronic properties related to efficiency and charge transport in bulk heterojunction 

and dye-sensitized solar cells and how to compute them using DFT. 

 

Basic working principle of an organic photovoltaic (OPV) device 

 

The fundamental operation principle of an organic photovoltaic device (OPV) is 

the direct conversion of solar energy into electricity through semiconducting organic 

materials [80]. These devices consist of an active layer, usually composed of an electron 

donor and acceptor material, sandwiched between two electrodes, one transparent to 

allow sunlight to enter [80–82]. When light hits the device, it excites electronically the 

organic molecules in the active layer, generating tightly bound electron-hole pairs 

(excitons). These excitons are separated into free charges at the interface between the 

donor and acceptor materials, allowing electrons to be transported to one electrode and 

holes to the other, generating an electric current. The efficiency of this process depends 
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on several factors, including the exciton dissociation capability and the effective transport 

of charges to the electrodes [81–84]. 

 

Organic electronic materials are conjugated polymers in which optical absorption 

and charge transport are governed by partially delocalized π electrons [83]. This property 

makes them promising candidates for various photovoltaic applications [24, 70, 71, 85–

87]. DSSCs and BHJ-type OSCs are photovoltaic devices that utilize organic materials to 

absorb sunlight and convert it into electricity, but they differ significantly in their 

architectures and operational mechanisms. In BHJs, the active layer consists of a blend 

of donor and acceptor materials, forming an interpenetrating network that facilitates 

exciton dissociation and charge transport [88] DSSCs, in contrast, employ a 

photosensitive dye adsorbed onto the surface of a semiconductor, typically TiO₂, to 

capture and transfer electrons [89, 90]. These structural differences influence molecular 

design strategies and the parameters that determine photovoltaic efficiency, highlighting 

the need for specific approaches to optimize each type of device. Both technologies offer 

flexibility, low production costs, and the potential for large-scale manufacturing, 

positioning them as sustainable and promising alternatives for solar energy generation 

[89, 91]. Therefore, BHJs and DSSCs can be used on flexible surfaces and portable 

devices, expanding their potential use in different scenarios. 

 

Bulk heterojunction (BHJ) organic solar cells 

 

The operation of BHJ solar cells relies on the architecture of their active layer. The 

active layer of a BHJ (Fig. 3a) consists of a highly interconnected blend of donor and 

acceptor materials, forming an interpenetrating amorphous network that maximizes the 

interface between these components. This architecture enhances exciton dissociation 

efficiency, generating a more significant electrical current. Despite ongoing challenges 

related to efficiency and stability, BHJ-type OSCs have shown significant potential to 

emerge as a competitive alternative to conventional photovoltaic technologies [43, 88, 

92]. 

 

The operation of a BHJ solar cell involves four main steps (Fig. 3b): (1) light 

absorption, where electron-donor molecules absorb photons incident on the active layer; 
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(2) formation of tightly bound excitons in the donor material; (3) dissociation of these 

excitons at the interface between the donor (D) and electron acceptor (A) materials in an 

electronic charge transfer state, resulting in free electrons and holes; and (4) charge 

transport taking place in an electronic charge separation state, where the electrons are 

conducted through the acceptor material to the cathode, while the holes are transported 

through the donor material to the anode. Once the electrons and holes reach their 

respective electrodes, an electric current is generated in the external circuit [43, 93–95].  

 

Fig. 3. (a) Active layer of a bulk heterojunction (BHJ) organic solar cell; (b) Diagram 

illustrating the operating mechanism of a BHJ cell, highlighting the processes of light 

absorption, exciton generation, charge dissociation at the donor/acceptor interface, and 

charge transport to the electrodes. 

 

To achieve high power conversion efficiency (𝑃𝐶𝐸) in BHJ solar cells, the active 

layer must have a sufficiently broad absorption spectrum in the wavelength range between 

250 nm (4.96 eV) and 3000 nm (0.413 eV) [96] of the solar spectrum to maximize the 

capture of photons from sunlight. Additionally, the active layer should present appropriate 

energy levels in the highest occupied molecular orbitals (HOMO) and the lowest 
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unoccupied molecular orbitals (LUMO) for both the donor and acceptor materials. After 

photon absorption, an electron is excited from the donor's HOMO to its LUMO and then 

transferred to the acceptor's LUMO, which has a lower energy level (Fig. 3b) [43, 92]. 

For this process to be efficient, an appropriate energy offset between the donor's LUMO 

and the acceptor's LUMO, typically in the range of 0.1–1.4 eV, is crucial to overcome the 

Coulomb attraction and ensure exciton dissociation into free charges [43, 97]. 

Furthermore, the efficiency of a solar cell is directly influenced by the open-circuit 

voltage (𝑉!"), which is linearly related to the energy difference between the donor's 

HOMO and the acceptor's LUMO [92, 98]. Thus, the more significant this difference, the 

higher the theoretically-predicted value of 𝑉!" . However, the overall device efficiency 

also depends on minimizing energy losses through processes such as charge 

recombination and internal resistance, to achieve optimized performance [98]. The active 

layer must also exhibit good charge mobility, which promotes efficient exciton separation 

and facilitates the effective transfer of electrical charges [24, 87, 99–102]. 

 

Dye-sensitized solar cell (DSSC)  

 

DSSCs have become a promising alternative for photovoltaic solar energy 

generation [89, 90, 103, 104]. This is due to the exceptionally low-cost materials, 

mechanical flexibility, ease of fabrication and assembly, and environmentally friendly 

nature [105–108]. The basic working principle of a dye-sensitized solar cell (Fig. 4a) 

involves a photosensitive dye adsorbed onto the surface of a semiconductor material, 

typically titanium dioxide (TiO₂) or Zinc Oxide (ZnO) [109–111]. When sunlight strikes 

the device, photons are absorbed by the dye, promoting electrons from the ground state 

to an excited state. These excited electrons are quickly injected into the conduction band 

of the semiconductor. In contrast, the dye, which has lost an electron, is regenerated by 

an electrolyte in the cell, usually composed of the I₃⁻/I⁻ redox couple [112–115]. The 

semiconductor transports the injected electrons to the conducting electrode, known as the 

photoanode, generating an electric current. Simultaneously, the electrolyte completes the 

cycle by transferring electrons to regenerate the dye, thus closing the circuit. This process, 

shown in Fig. 4b, efficiently converts sunlight into electricity, with the dye absorbing 

light and generating electrical charges [89, 90, 116, 117]. 
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Fig. 4. (a) Operation diagram of the operation of a dye-sensitized solar cell (DSSC) and; 

(b) Energy level diagram, highlighting the processes of light absorption by the dye, 

electron injection into the semiconductor, and dye regeneration by the electrolyte. 

 

DFT-based methods for evaluating organic photovoltaic efficiency 

 

Although BHJ-type OSCs and DSSCs are emerging photovoltaic technologies 

with distinct architectures and mechanisms, both share the need for precise 

characterization of optoelectronic properties to optimize performance. For example, for 

BHJs the energy alignment at the donor-acceptor interface is essential for efficient charge 

separation [73, 118], whereas in DSSCs, dye properties such as light-harvesting efficiency 

and regeneration potential are critical for device operation [79, 119]. DFT can assist in 

developing materials for organic photovoltaic devices because it provides an efficient and 

cost-effective way to assess critical properties [24, 25, 70, 71, 120–124]. Through 

accurate DFT calculations, it is possible to predict and optimize critical characteristics of 

OPVs, such as light absorption and HOMO-LUMO energy levels, which determine the 

energy conversion efficiency of the devices [118, 125]. DFT enables correlating 
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molecular structure with electronic properties, such as HOMO and LUMO energy levels 

and energy gaps, which are essential parameters for the performance of photovoltaic 

devices [126–129]. Combined with time-dependent (TD)DFT, it is possible to compute 

excitation energies, oscillator strengths, and absorption characteristics and explore the 

structure of the involved excited states, thus producing atomistic data on the optical 

properties of materials [129–131].  This approach can provide rapid material screening 

and fine-tuning of properties, reducing the need for extensive experimentation and saving 

resources. Additionally, (TD)DFT provides detailed insights into the electronic structure 

and behavior of materials at the molecular level, guiding the selection of promising 

candidates and accelerating the innovation process in photovoltaic devices. 

 

Although DFT and TDDFT have achieved widespread success in describing 

electronic and structural properties, their limitations remain significant, motivating the 

development of various exchange-correlation functionals [132–134]. Selecting the 

appropriate functional is critical for accurately capturing specific system properties, as 

not all functionals incorporate essential effects, such as long-range ones. For instance, 

hybrid functionals, while popular, often struggle to adequately describe long-range 

effects, which are essential for accurately describing the typical charge-transfer excited 

states of OSCs [71, 135–137].  

 

TDDFT, widely employed to study excited states, has additional limitations, 

particularly in predicting the properties of excited states with strong charge-transfer 

character or having a sizeable electronic correlation. Alternative methods, such as ab 

initio wave functions, can offer greater accuracy in these cases [138–140]. For instance, 

the ab initio method ADC(2) (algebraic diagrammatic construction through second order) 

has shown notable capabilities in describing excited states. However, like other ab initio 

methods, it remains limited to smaller systems due to their high computational cost [24, 

85, 139]. Additionally, they have limitations in describing the energies of molecular 

orbitals that are Hartree-Fock-type, which does not include electronic correlation effects 

[141–144]. To overcome these limitations, strategies that combine DFT with ab initio 

methods and the use of long-range or meta-GGA functionals present promising avenues 

for improving the description of optoelectronic properties in complex systems [71, 145, 

146]. 
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Evaluation of the performance of organic photovoltaic devices 

 

To theoretically assess the performance of OSCs, it is essential to examine 

different properties that directly impact their efficiency. Among the key parameters for 

measuring the efficiency of these devices, the power conversion efficiency (𝑃𝐶𝐸)  

quantifies the device's ability to convert incident solar energy into electricity. The 𝑃𝐶𝐸 is 

influenced by the short-circuit current (𝐽#$), the open-circuit voltage (𝑉!"), and the fill 

factor (𝐹𝐹). The latter reflects the quality of the cell by indicating internal losses and the 

efficiency of charge transport [43, 79, 147]. The device's ability to absorb light across 

different wavelengths is also crucial to maximize 𝐽#$ and enhances overall performance 

[43]. Another critical factor is charge mobility, given that high transport and low 

recombination rates ensure the efficient motion of electrons and holes, contributing to a 

more significant current generation [148, 149] 

 

Understanding the relationship between the frontier orbital energy levels in donor-

acceptor systems is essential because they directly affect the parameters that determine 

device efficiency. The frontier molecular orbitals, HOMO (Highest Occupied Molecular 

Orbital) and LUMO (Lowest Unoccupied Molecular Orbital), play a central role in light 

absorption and charge transfer processes in organic photovoltaic devices, as the energy 

difference between these levels affects electronic excitation and the efficient conversion 

of solar energy into electricity. A schematic diagram of the energy levels of a typical 

donor-acceptor system is shown in  

Fig. 5. After photon absorption by the donor material, an exciton is formed. 

However, due to the low dielectric constant of organic materials, it is difficult to dissociate 

the strongly electrostatic bound exciton into free charges under normal (ambient) 

conditions. To overcome this binding energy, acceptor molecules with appropriately 

aligned HOMO and LUMO levels are required to produce the driving force for the rapid 

transfer of electrons from the donor to the acceptor. In this way, both the donor and the 

acceptor can contribute to the absorption spectrum of the solar cell, enhancing its 

efficiency in light capture and free charge generation. 
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Fig. 5. Energy level diagram of a donor-acceptor system. Upon incidence of light, a hole 

(ℎ%) is produced in the ground state and an electron (𝑒&)  is excited. The 𝑒& − ℎ% pair is 

an exciton.  The energy differences on the right are discussed on the text.  

 

Overall, the design of new donor molecules or materials for OSCs seeks to 

optimize three key parameters: light harvesting, hole mobility, and 𝑃𝐶𝐸. Light harvesting 

is characterized by the bandgap (𝐸'), absorption spectrum width, and molecular 

absorption coefficient [150, 151]. Controlling the bandgap is essential to fine-tune these 

properties [152, 153]. The HOMO-LUMO gap defined in Eq. (1) as the energy difference 

between the HOMO and LUMO is a fundamental measure of light absorption efficiency 

in organic materials. 

 

𝐸' =	𝐸(!)! −	𝐸*+)! (1) 

 

A detailed understanding of HOMO-LUMO energy levels, as well as the energy 

differences between HOMO and HOMO-1 (𝛥𝐸(!)!)	 and LUMO and LUMO+1 

(𝛥𝐸*+)!)	of donor materials is thus essential for refining the design of photovoltaic 

materials, enabling fine adjustments that directly impact exciton dissociation efficiency 

and charge transport in devices. Small energy differences between in 𝛥𝐸(!)! and 

𝛥𝐸*+)! indicate that nearby molecular orbitals can also contribute to exciton formation 
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and dissociation, as well as to hole and electron transport [152, 153]. In donor molecules 

with low 𝛥𝐸(!)! and 𝛥𝐸*+)!, defined by Eqs. (2) and (3) below, this additional 

contribution can enhance device efficiency. 

 

∆𝐸(!)! =	𝐸(!)! −	𝐸(!)!&, (2) 

  

∆𝐸*+)! =	𝐸*+)!%, −	𝐸*+)! (3) 

 

The alignment of energy levels at donor (D)–acceptor (A) heterojunctions plays a 

crucial role in the mechanisms of charge generation and recombination in BHJ devices 

[154, 155]. The energy of the charge transfer state at the donor-acceptor (D/A) interface 

can be well approximated by the energy difference between the HOMO of the donor and 

the LUMO of the acceptor, ∆𝐸(*-&., defined by Eq. (4) below. This difference is widely 

used to estimate the driving force required for exciton dissociation at the D/A interface, a 

crucial process for the efficiency of photovoltaic devices. The alignment of the frontier 

molecular orbital levels at the donor-acceptor interface can be evaluated by the energy 

difference between the LUMO levels of the donor and acceptor, ∆𝐸**-&., defined in Eq. 

(5). This parameter measures the degree of alignment between the LUMOs, directly 

influencing the photoelectric efficiency. Excessively high values of ∆𝐸**-&. indicate 

significant energy losses at the D/A interface, impairing device performance [24, 152]. 

 

∆𝐸(*-&. =	𝐸*+)!. −	𝐸(!)!- 						 (4) 

  

∆𝐸**-&. =	𝐸*+)!- −	𝐸*+)!. 						 (5) 

 

There are also other relations between frontier orbitals in donor and acceptor 

materials. The energy difference between the HOMO of the donor and acceptor, ∆𝐸((-&., 

defined in Eq. (6), quantify the alignment between the HOMOs of the molecules. A small 

difference in HOMO energy levels is advantageous for achieving a high open-circuit 

voltage (𝑉!"), significantly contributing to the overall performance of solar cells. On the 
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other hand, a larger HOMO offset facilitates more efficient charge separation; as this 

offset increases, the device's ability to effectively separate charges also improves, which 

is essential for maintaining high efficiency [156]. Wang and collaborators [157] 

emphasize that finding the optimal balance in this offset is crucial. A HOMO offset close 

to 0 eV can result in superior performance in OSCs, characterized by a high open-circuit 

voltage and an elevated fill factor, suggesting that charge separation reaches its maximum 

potential when the HOMO offset is carefully optimized [157, 158]. This quantity is 

relevant for understanding charge transfer and recombination processes at the D/A 

interface, and it is also a determining factor in optimizing materials for photovoltaic 

devices [159]. 

 

∆𝐸((-&. =	𝐸(!)!. −	𝐸(!)!- 						 (6) 

 

The behavior of excitons in donor materials is crucial for understanding charge 

separation efficiency. In donor materials, electronic excitation by light generates an 

exciton strongly bound by a Coulombic (i.e., electrostatic) attraction. The exciton binding 

energy (𝐸/012) is defined as the difference between the fundamental gap (𝐸3412) and the 

optical gap (𝐸567), which quantifies this binding energy of the exciton:  

 

𝐸/012 =	𝐸3412 −	𝐸567 (7) 

 

In OSCs, due to the low dielectric constants of organic photoactive materials, 

𝐸/012 can reach values of several tenths of an eV [160–165], making exciton dissociation 

into free charges extremely challenging in pure materials [166]. Thus, the lower the value 

of 𝐸/012, the more easily the exciton can dissociate. Exciton dissociation into free holes 

and electrons at donor/acceptor (D/A) interfaces is driven by the energy level offsets 

between donor and acceptor materials, allowing the excitons to overcome the 𝐸/012. 

Experimental and theoretical studies frequently report 𝐸/012 values ranging from 0.3 to 

1.0 eV in typical materials used in BHJ solar cells and dye sensitizers in DSSCs [163, 

167–171]. The fundamental gap, 𝐸3412, plays an essential role in calculating the exciton 
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binding energy 𝐸/012, as it reflects the energy difference between the adiabatic ionization 

potential (𝐼𝑃8) and the adiabatic electron affinity (𝐸𝐴8) [168]. The ionization potential is 

determined by the total energy difference between the ground state and the 𝑁 − 1 

electronic state, while the electron affinity is given by the energy difference between the 

𝑁 electron ground state and the 𝑁 + 1 electronic state. 𝐼𝑃8 and 𝐸𝐴8 are computed using 

the adiabatic approach, which optimizes the geometries of the cation and anion separately. 

The fundamental gap 𝐸3412 is then given by the energy difference: 

 

𝐸3412 =	 𝐼𝑃(8) −	𝐸𝐴(8) (8) 

 

The optical gap 𝐸567 of a molecule corresponds to the energy of the lowest allowed 

electronic transition single photon absorption, often from the ground state S0 to the first 

excited state S1. In this context, the optical gap 𝐸567 is the energy difference between the 

optimized structures of the 𝑆, and 𝑆; states, representing the fundamental transition that 

directly influences the material’s light absorption efficiency:  

 

𝐸567 =	𝐸<! −	𝐸<" (9) 

  

To evaluate the performance of organic photovoltaic devices, calculating the 𝑃𝐶𝐸 

is essential, as it provides a direct measure of the device’s ability to convert solar energy 

into electricity [14]. The equation for calculating the 𝑃𝐶𝐸 is given by:  

 

𝑃𝐶𝐸 = 	
𝐽<" 	𝑉!" 	𝐹𝐹

𝑃01
 (10) 

 

The open-circuit voltage 𝑉!" 	 is an indicator of the material quality in organic 

solar cells. It represents the maximum voltage a solar cell can generate in the absence of 

current flow in the external circuit, corresponding to the energy difference between the 

energy levels of electrons and holes in the photoactive material under illumination [98, 
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172–174]. A high 𝑉!" 	 value suggests that the solar cell has efficient charge transport 

properties, resulting from an efficient alignment between the donor and acceptor energy 

levels. This alignment, due to a larger energy difference between the energy levels of 

electrons and holes, significantly reduces the probability of charge recombination, 

contributing to greater efficiency in charge transport and electric current generation [98, 

175–177]. In a BHJ device, 𝑉!" 	 is determined by the energy difference between the 

HOMO of the donor and the LUMO of the acceptor, according to the largely used 

empirical Scharber equation [88, 178, 179] 

 

𝑉5$ =
1
𝑒 56𝐸(!)!

- − 𝐸*+)!=">)67 − 0.3	𝑉	 (11) 

 

where 𝑒 represents the elementary charge, 𝐸*+)!=">) = −3.80	𝑒𝑉 [180] is the energy of the 

LUMO orbital of the typical acceptor material PC61BM, and 0.3 V is an empirical 

correction accounting for transport losses to the electrodes [179]. For evaluating donor 

materials in DSSCs, the open-circuit voltage 𝑉5$ is calculated from the energy difference 

between the LUMO of the dye and the conduction band edge of the typical semiconductor 

𝑇𝑖𝑂? in these systems as follows: 

 

𝑉5$ =
1
𝑒 56𝐸*+)!

-@A − 𝐸">
B0!#67 (12) 

 

where 𝐸">
B0!# is the conduction band edge of 𝑇𝑖𝑂? equal to –4.0 eV [181]. Another 

important parameter for determining the 𝑃𝐶𝐸 is the fill factor (𝐹𝐹), which can be 

approximated as a function of the open-circuit voltage 𝑉5$, temperature 𝑇, and the 

Boltzmann constant 𝑘> using the following expression: 

 

𝐹𝐹 = 	

𝑒𝑉!"
𝑘>𝑇

−	 ln B𝑒𝑉!"𝑘>𝑇
+ 0.72E

𝑒𝑉!"
𝑘>𝑇

+ 1
 (13) 
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The short-circuit current, 𝐽<" , in a solar cell is a significant parameter that reflects 

the device's ability to generate current under solar illumination [182, 183]. It depends on 

factors such as light absorption by the donor material, the efficiency of electron-hole pair 

generation, charge collection efficiency, and the overlap between the material's absorption 

spectrum and the solar spectrum [184]. The greater this overlap and the more efficient the 

charge collection and transport processes, the higher the 𝐽<"  value. To compute 𝐽<" , the 

external quantum efficiency (𝐸𝑄𝐸) is integrated multiplied by the photon flux from the 

AM1.5 solar spectrum [185] over the relevant wavelength range [186]: 

 

𝐽<" = 𝑒G 𝐸𝑄𝐸(𝜆) × 𝑝ℎ𝑜𝑡𝑜𝑛𝑠(𝜆)𝑑𝜆
C$%&

C$'(

 (14) 

 

This integration provides an accurate estimate of the generated current, offering a direct 

measure of the photocurrent performance of the solar cell and aiding in the optimization 

of materials and architectures to maximize device efficiency. In Eq. (14), 𝜆D01	and 𝜆D8E 

are the lower and upper wavelength limits of sunlight, respectively, under AM1.5 

conditions. The AM1.5 spectrum is a standard reference for the spectral distribution of 

solar radiation. It refers to the global irradiance on a horizontal surface under a zenith 

angle of 𝜃 = 48.2°, representing typical sunlight conditions when it reaches the Earth's 

surface, with a total irradiance of 1000 W.m-2 [174, 185]. 𝐸𝑄𝐸 is defined as the step 

function Θ, equal to 0% for photon energies below the optical band gap 𝐸567 of the donor 

material 	and to 65% for photon energies above this threshold, 

 

𝐸𝑄𝐸 = 0.65	 × 	Θ5ℏ𝜔 −	𝐸5677 (15) 

 

where ℏ𝜔	is the energy of the incident photon. In addition to the 𝐸𝑄𝐸, which assesses the 

proportion of photons converted into electric current, the light harvesting efficiency 

(𝐿𝐻𝐸) quantifies the material's ability to absorb incident photons:  

 

𝐿𝐻𝐸 = 1 −	10&3 (16) 
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where 𝑓 represents the optical oscillator strength at the wavelength of maximum 

absorption 𝜆D8E. The 𝐿𝐻𝐸 in DSSCs is directly related to 𝐽<"  because it represents the 

initial stage of light capture and absorption by the photosensitive dye, which is essential 

for generating electrical current in the device [79] The 𝐿𝐻𝐸 in DSSCs is related to 𝐽<"  

through the following integral equation [79, 187], 

 

𝐽<" = G 𝐿𝐻𝐸(𝜆)𝜙01FA$7𝜂$5GGA$7𝑑𝜆
C$%&

C$'(

 (17) 

 

where 𝜙01FA$7 is the electron injection efficiency and 𝜂$5GGA$7	represents the charge 

collection efficiency. 𝜂$5GGA$7 is considered constant and does not vary with the type of 

sensitizer used in the same DSSC device [79]. 

 

Driving Forces 

In a solar cell, after light absorption by the active material, charge separation 

occurs at the donor-acceptor interface. The driving force for this dissociation is crucial to 

overcome the Coulombic attraction between the electron and hole in the exciton, thus 

allowing charges to be effectively separated [188–190]. The efficiency of this charge 

separation process is directly related to the solar cell’s ability to generate electric current, 

as only dissociated free charges contribute to the current flow [191, 192]. Therefore, 

calculating the driving force for charge separation provides valuable insight into the 

device's efficiency potential, enabling the identification and enhancement of key 

parameters to maximize 𝑃𝐶𝐸𝑠 and optimize the overall performance of the solar cell. One 

way to develop devices with high 𝐽<"  values is related to the driving force for charge 

separation in OSCs. This driving force plays a crucial role in overcoming the exciton 

binding energy, enabling the efficient dissociation of electron-hole pairs at the 

donor/acceptor interface. This process generates a larger number of free charges available 

for transport and collection at the electrodes, which directly contributes to an increase in 

𝐽<"  [193]. In BHJ cells, the Gibbs free energy for the generation of separated charges, 
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which involves the transition from an initial singlet excited state, usually the 𝑆,, with 

energy 𝐸567, to a final separated charge state with energy 𝐸"<, is given by [189, 194] 

 

∆𝐺#A68H87051 =	𝐸567 −	𝐸"< (18) 

 

In this equation, 𝐸"< is the energy difference between the LUMO of the acceptor 

and the HOMO of the donor, which we defined above as ∆𝐸(*-&.	[189].  

 

Eq. (14) for 𝐽<"  shows that another strategy to increase its values involves 

enhancing the electron injection efficiency 𝜙01FA$7, which is directly related to the 

injection driving force (∆𝐺01FA$7). For DSSCs, the charge separation process can be 

evaluated by calculating the electron injection driving force, ∆𝐺01FA$7 ,	according to the 

equation [122, 195, 196]: 

 

∆𝐺01FA$7 =	𝐸2@A∗ −	𝐸">
B0!# = (𝐸2@A −	𝐸C$%&) −	𝐸">

B0!# (19) 

 

where 𝐸">
B0!# 	represents the value of the 𝑇𝑖𝑂?	conduction band (-4.0 eV in vacuum), 𝐸2@A∗  

is the oxidation potential of the dye, which can be approximated by its respective 𝐸(!)!, 

and 𝐸C$%& is the energy of the vertical transition associated with the maximum 

wavelength (𝜆D8E). 

 

Dye regeneration is a fundamental step in the operation of a DSSC, as it enables 

the replenishment of electrons transferred to the semiconductor, thereby maintaining the 

energy conversion cycle and ensuring device efficiency. Therefore, it is crucial to assess 

the effectiveness of this regeneration process through the regeneration driving force 

Δ𝐺HA'A1AH87A defined as [79, 122, 195] 

 

Δ𝐺HA'A1AH87A =	𝐸HA25E
J)/J*) −	𝐸2@A 	 (20) 
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where 𝐸HA25E
J)/J*)  represents the redox potential of the commonly used 𝐼&/𝐼L&electrolyte, with 

a value of -4.8 eV in vacuum. High values of both ∆𝐺01FA$7 and Δ𝐺HA'A1AH87A enhance 

charge transfer efficiency between the semiconductor conduction band and the 

electrolyte, thus promoting effective electron injection and dye regeneration processes 

[79, 197]. 

 

In DSSCs, the dye is regenerated from its oxidized state within a few hundred 

picoseconds[198] Thus, it is essential to compute the recombination driving force to 

evaluate the dye regeneration process. The free energy of the recombination rate can be 

determined by the following expression [79, 199]: 

 

Δ𝐺HA$5D/0187051 =	𝐸">
B0!# −	𝐸2@A =	𝐸">

B0!# −	𝐸(!)!	 (21) 

  

The optimal performance of a DSSC is often characterized by a low 

Δ𝐺HA$5D/0187051 value, suggesting a controlled and less spontaneous electron 

recombination process, which is favorable for maintaining effective charge separation. 

 

Reorganization energy 

The reorganization energy (𝜆) in the framework of Marcus theory of electron 

transfer is a critical parameter for correlating efficiency and 𝐽<"  in photovoltaic devices 

such as BHJ solar cells and DSSCs [79, 200]. In these devices, 𝜆 represents the energetic 

cost associated with geometric relaxation during the charge transfer process and is 

inversely proportional to the mobility of charge carriers [201–203]. In DSSCs, 𝜆 is related 

to the process in which an electron is transferred from the dye to the semiconductor after 

photon absorption [79]. In contrast, in BHJ solar cells, the reorganization energy is 

associated with charge transfer at the donor-acceptor interface [201]. For the electron-

donor materials used in the active layers of organic solar cells, higher hole mobility 

compared to electron mobility is particularly important, as it contributes to efficient 

charge transport and, consequently, to the optimized performance of the device [79]. 
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The reorganization energy can be divided into two main components: internal 

reorganization (𝜆017) and external reorganization (𝜆AE7) [203]. The internal component 

𝜆017, usually the most significant, is related to structural changes and energy level shifts 

in the molecules involved in the charge transfer process. In contrast, 𝜆AE7 is associated 

with environmental variations, such as the polarization of the surrounding medium during 

the charge transfer process [203]. Since 𝜆AE7 is estimated to be significantly smaller than 

𝜆017, its contribution is often considered negligible [201, 204]. Therefore, it is common 

to assume that 𝜆 ≈ 𝜆017, which simplifies the analyses and calculations of the 

reorganization energy. The total reorganization energy can be calculated from equation 

(22), where 𝜆M	is the reorganization energy for holes and 𝜆A is reorganization energy for 

electrons, 

 

𝜆7578G =	𝜆M +	𝜆A 	 (22) 

 

where 𝜆M is obtained from the following equations: 

 

𝜆M =	𝜆M
(,) +	𝜆M

(?)	 (22) 

𝜆M
(,) =	𝐸(,)(𝑀) −	𝐸(;)(𝑀) (23) 

𝜆M
(?) =	𝐸(,)(𝑀%) −	𝐸(;)(𝑀%) (24) 

 

 

The terms in Eqs. (22) to (24) are defined in the diagram depicted in 

  

Fig. 6. 𝑀 and 𝑀%	represent the neutral and positively charged species (containing the 

hole), respectively. 𝐸(;)(𝑀) and 𝐸(;)(𝑀%) are the energies of the neutral and cationic 

states in their respective minimum-energy geometries. 𝐸(,)(𝑀%) and 𝐸(,)(𝑀) correspond 

to the energy of the cationic state in the geometry of the neutral molecule and the energy 

of the neutral state in the geometry of the cationic molecule, respectively. 𝛥𝐸 is the 
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adiabatic ionization energy, while 𝜆M
(,)and 𝜆M

(?) are the geometric relaxation energies for 

the neutral and cationic states, respectively. 

 

Fig. 6. Schematic representation of the potential energy surfaces for neutral and positively 

charged structures [201]. ∆𝐸 is the energy of adiabatic ionization, 𝐸(;)𝑀 and 𝐸(;)𝑀% are 

the energy of neutral and cationic states in the lower energy geometry, 𝐸(,)𝑀 and 

𝐸(,)𝑀%	the energy of cationic state in the geometry of the neutral molecule and the energy 

of neutral molecule in the geometry of the cationic molecule, and  𝜆M
(,) and 𝜆M

(?) are the 

energies of the geometric relaxation of the neutral and cationic states (reorganization 

energies), respectively. 

 

The reorganization energy for electrons 𝜆A is obtained from similar equations: 

 

𝜆A =	𝜆A
(,) +	𝜆A

(?)	 (25) 

𝜆A
(,) =	𝐸(,)(𝑀) −	𝐸(;)(𝑀) (26) 
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𝜆A
(?) =	𝐸(,)(𝑀&) −	𝐸(;)(𝑀&) (27) 

 

The hole transfer rate is inversely related to the reorganization energy involved in 

the process. Therefore, the higher the reorganization energy, the lower the hole mobility 

of the material. In general, reducing 𝜆 enhances charge transfer efficiency, allowing a 

larger proportion of photogenerated carriers to contribute to the photocurrent [79, 201]. 

For this reason, computing the reorganization energy is essential for optimizing the 

performance of devices such as BHJ and DSSC, providing insights for the development 

of materials that affords faster charge transport rates thus improved photovoltaic 

performance. 

 

Global Reactivity Descriptors for Photovoltaics 

 

Global reactivity descriptors are important quantities for understanding the 

electronic properties and predicting the reactive behavior of materials used in organic 

solar cells. These parameters enable the evaluation of stability and energy alignment 

between donor and acceptor components, which are critical factors for the efficiency of 

these devices. Ionization energy, electron affinity, chemical potential, hardness, and 

electronegativity values provide insights into charge transfer capabilities and exciton 

separation at the donor-acceptor interface. Electrophilicity values help identifying 

materials that can improve photoelectric efficiency. The analysis of these descriptors 

calculated using DFT can contribute to the rational design of new materials with 

optimized properties for high-performance photovoltaic devices.  

 

Chemical hardness (𝜂) is a parameter that reflects the stability of a compound and 

its resistance to electron exchange with the environment. Calculated by Eq. (28), chemical 

hardness is determined by the adiabatic ionization potential (𝐼𝑃) and the adiabatic electron 

affinity (𝐸𝐴), defined above. In general, the higher the chemical hardness of a compound, 

the greater its stability, indicating lower reactivity and higher resistance to electronic 

changes of its molecular state [205–207]. Chemical hardness is directly related to the 
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conversion efficiency in DSSCs and BHJs because lower chemical hardness tends to 

result in higher conversion efficiency [208–211]. 

 

𝜂 = 	
1
2 (𝐼𝑃 − 𝐸𝐴)	

(28) 

 

Electrophilicity (𝜔), measures the tendency of a compound to accept electrons, 

and it is defined by Eq. (29). This index quantifies the energy stabilization of a system as 

it absorbs the maximum electron flow from a donor. Higher electrophilicity indicates a 

greater capacity for electron acceptance, reflecting the compound's reactivity in electron-

transfer processes [210–212]. 

 

𝜔 = 	
(𝐼𝑃 + 𝐸𝐴)?

4(𝐼𝑃 − 𝐸𝐴)	
(29) 

 

 

A donor material for applications in a BHJ or DSSC is expected to exhibit a high 

electron-donating capacity along with a high electron-accepting capacity. The electron-

donating power (𝜔&) and electron-accepting power (𝜔%) are useful parameters described 

by Eqs. (30) and (31) [213], which evaluate a molecule's ability to donate and accept 

electrons, respectively. A lower 𝜔& value indicates a higher electron-donating capacity, 

while a higher 𝜔% value reflects a better ability to accept electrons [208, 211, 214]. 

 

𝜔% = 	
(𝐼𝑃 + 3𝐸𝐴)?

16(𝐼𝑃 − 𝐸𝐴) 
(29) 

 

𝜔&	 = 	
(3𝐼𝑃 + 𝐸𝐴)?

16(𝐼𝑃 − 𝐸𝐴) 
(30) 
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Electronegativity (𝜒) [206, 215], defined as the ability of a compound to attract 

electrons, can be calculated by Eq. (31). In OSCs, compounds with high electronegativity 

values tend to attract electrons more strongly, which can increase charge recombination 

rates. This effect reduces the number of free charges for generating electrical current, 

negatively impacting the solar cell's efficiency. In dyes in DSSCs, an increase in dye 

electronegativity is associated with a reduction in the open-circuit voltage (𝑉!"). The 

absolute electronegativity of the dye plays a crucial role in modulating electron diffusion, 

directly influencing the charge recombination mechanism through the dye [216]. 

 

𝜒 = 	
(𝐼𝑃 + 𝐸𝐴)

2 	
(31) 

 

Using Koopmann’s theorem [217–219] these descriptors can be computed using 

HOMO and LUMO values. Koopmans' theorem establishes approximately the HOMO 

and LUMO energy values from the ionization potential (𝐼𝑃) and electron affinity (𝐸𝐴) in 

molecular systems according to the following expressions: 𝐼𝑃 = −𝐸(!)! and 𝐸𝐴 =

	−𝐸*+)!. This implies that, in electronic structure calculations, the energies of the frontier 

orbitals can be directly used to estimate these properties. In a recent study [24], we 

showed that the using adiabatic IP and EA values provides an accurate description of 

electronic properties, as they account for the optimized geometries of ionic states, 

enabling a more realistic representation of electron loss and gain processes in the 

investigated systems. 

 

In D-A-D systems based on diketopyrrolopyrrole (DPP) [24], it allowed the 

assessment of material stability, reactivity, and charge transfer capability, providing 

critical insights into HOMO-LUMO energy levels, charge separation efficiency, and 

potential applications in photovoltaic devices. Arunkumar and collaborators [76] 

investigated a series of D-π-A dyes based on tetrahydroquinoline, highlighting the 

relationship between chemical hardness and increased intramolecular charge transfer 

character. They identified two dyes with superior hole and electron transport properties, 

demonstrating their potential applicability in photovoltaic devices. 
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In summary, achieving high efficiency in DSSCs and BHJs OSCs requires 

optimizing several fundamental parameters related to charge separation, electron 

injection, dye regeneration, and reduction of charge recombination rates. When 

considered together, these theoretical evaluations provide a comprehensive understanding 

of the factors influencing efficiency in these OSCs, providing a solid foundation for 

targeted improvements in material design and device architecture. By focusing on these 

properties, researchers can adjust the balance of internal processes within OSCs more 

precisely, promoting significant advancements in performance and long-term stability for 

next-generation photovoltaic devices. 

 

The importance of a judicious choice of the exchange-correlation functional in 

DFT for obtaining accurate values of HOMO and LUMO for computing 

optoelectronic properties 

 

Selecting the appropriate exchange-correlation functional and basis set directly 

impacts the accuracy of the frontier orbital values, used to compute the optoelectronic 

properties of organic materials for OPVs according to the formulae above. 

 

Hybrid functionals such as B3LYP [220] are widely used in organic systems due 

to their good balance between accuracy and computational cost, providing reliable results 

for general electronic properties [25, 221–226]. However, the selection of hybrid 

functionals should be approached with caution, as they may underestimate the spatial 

separation between frontier orbitals and may describe poorly charge transfer effects [227–

231]. Overall, 𝐸(!)! values predicted by hybrid functionals are more accurate than those 

obtained with pure functionals, which depend exclusively on the local or semi-local 

electron densities and are relatively sensitive to the fraction of Hartree-Fock (HF) 

exchange [229, 232]. Functionals with higher HF exchange fractions usually yield more 

accurate 𝐸(!)! values, which are particularly relevant for systems where orbital 

localization and charge separation are critical for photovoltaic performance [229, 233].  
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Although higher HF exchange fractions improve the accuracy of HOMO levels, 

they frequently overestimate LUMO energies and, consequently, widen the HOMO-

LUMO gap. Moreover, as highlighted by Zhang and collaborators [229], generalized 

gradient approximation (GGA) functionals have a smaller systematic error in predicting 

HOMO-LUMO gaps, despite inaccuracies in the absolute values of orbital levels. 

Including a significant fraction of HF exchange in long-range functionals, such as in 

CAM-B3LYP, further degrades the accuracy of 𝐸*+)! values, leading to predictions that 

can significantly diverge from experimental data [229, 233, 234]. 

 

Khan and collaborators recently studied seven donor molecules based on 

benzo[1,2-b:4,5-b′]dithiophene (BDT) with an A-π-D-π-A configuration, using DFT and 

TDDFT methods. The analysis of maximum absorption wavelengths identified the CAM-

B3LYP functional as the most accurate, outperforming ωB97XD, B3LYP, and 

MPW1PW91 [73]. In a similar study, Bora and collaborators designed five new donor-π-

acceptor-π-donor (D–π–A–π–D)-type conjugated acceptors, employing quinacridone as 

the donor, thiophene as the π bridge component, and five distinct central acceptor units. 

By correlating the calculated HOMO and LUMO energies, the gap energy 𝐸', and 

absorption wavelength values (𝜆D8E) with experimental data, they found that the 

HSEH1PBE functional, using the 6-31G(d) basis set, showed the best agreement with 

experimental results compared to B3LYP, B3PW91, B3LYP-D3, CAM-B3LYP, 

PBEPBE, and ωB97XD [235]. 

 

Moudou and colleagues [236] recently reported that the B3LYP functional (20% 

HF exchange) provided results close to experimental values compared to the CAM-

B3LYP, B3PW91, WB97XD e MPW1PW91 functionals for six push-pull (D-π-A) 

molecules containing the MTPA core with different π-spacers. The results showed good 

agreement with the experimental data, highlighting a reduction in 𝐸' for the thiophene 

and benzothiazole spacers. The B3LYP functional is widely used in the study of dye-

sensitized solar cells (DSSC), offering good performance [25, 237–239]. A series of 

quinoxaline-based chromophores was investigated by Shafiq et al., aiming to evaluate the 

efficiency of different functionals, including MPW1PW91, CAM-B3LYP, M06, and 

M06-2X, in predicting UV-vis properties. For the MTHR molecule, the MPW1PW91 
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functional (25% HF exchange) showed the best agreement with experimental data. The 

results highlighted MTH1 as a promising chromophore, achieving a 𝑃𝐶𝐸 of 17.85% and  

𝑉!"  of 1.285 V [128]. Haider and collaborators [240] evaluated modifications in the 

terminal groups of pyrene-based dyes, investigating the reference molecule with various 

functionals, including B3LYP, CAM-B3LYP, MPW1PW91, and ωB97XD. Based on the 

maximum absorption wavelength, the ωB97XD functional showed the best agreement 

with experimental values. Using DFT calculations, several properties were determined, 

such as frontier molecular orbital (FMO) energies, optical properties, LHE, FF, V_OC, 

among others. 

 

We recently investigated the design and application in BHJ and DSSC OSCs of 

nine star-shaped molecules with a triazine (Tr) core built with thiophene (Th), phenyl 

(Ph), and carbazole (Cz) fragments. For the Tr-Th and Tr-Cz systems, we used TDDFT 

to calculate excited-state electronics properties, using the B3LYP, PBE, M06-2X, CAM-

B3LYP, ωB97XD, and LC-wPBE functionals. We found that the B3LYP frontier 

molecular orbital energy values agreed with available experimental data and similar 

systems containing the triazine core. Although the PBE functional also yielded good 

results, with deviations of approximately 11% for HOMO and LUMO energy values in 

the Tr-Cz system, B3LYP provided a more balanced combination of accuracy and 

computational cost. Despite the low fraction of HF exchange, which is relevant for 

systems having significant charge transfer effects, as in semiconductor polymers, the 

B3LYP functional remains widely used, with a large body of recent studies showing 

satisfactory results for calculating optoelectronic properties in donor and acceptor 

materials for organic photovoltaic devices [241, 242]. Many investigations have shown 

that, although B3LYP may underestimate some electronic properties of conjugated 

organic systems, it still offers good relative accuracy in predicting HOMO and LUMO 

energy levels and optical gaps. Its simplicity, along with a good balance between 

computational cost and accuracy, make B3LYP a popular choice in research focused on 

designing and optimizing materials for OSCs [25, 241–246]. 

 

Finally, it is important to highlight the recommendations of Bursch and 

collaborators [228], which guide the selection of the functional based on the chemical 
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system and the specific task, rather than on popularity alone. First, it is advisable always 

to include a dispersion correction to improve accuracy in intermolecular interactions. 

Additionally, it is recommended to assess cost-effective combinations, considering the 

use of (m)GGA-type functionals, which, although less precise than hybrids, offer lower 

computational costs. Hybrid functionals are preferred for accuracy, but their use should 

be balanced against computational demand. Verifying consistency across different classes 

of functionals—such as comparing a hybrid with an (m)GGA—is also suggested, 

especially in comparative analyses. In critical cases, it may be useful to test hybrids that 

include different fractions of HF exchange to ensure that the results accurately reflect the 

properties of the system under study.  

 

The choice of basis set is a crucial factor for the accuracy of optoelectronic 

property calculations and should consider the type of system studied, the required 

precision, and computational cost. Basis sets such as 6-31G(d,p) [225, 247, 248] or 6-

311G(d,p) [242, 246, 249, 250] are widely used for medium-sized organic molecules, as 

they balance cost and accuracy, making them suitable for fundamental electronic 

properties like HOMO-LUMO energy levels. For systems requiring higher accuracy, 

especially in large conjugated structures, basis sets like Def2-SVP [25, 251–253] or Def2-

TZVP[253–255] are recommended due to their detailed descriptions of electronic 

interactions and orbitals. Thus, the selection should balance available computational 

resources with the level of detail required by the study. 

 

On the importance of the DFT HOMO and LUMO value for computing the OPV 

properties: the triazine molecule as an illustrative case 

 

The relationship between 𝑃𝐶𝐸 in OSCs and HOMO-LUMO energy levels is 

directly associated with fundamental processes such as charge separation, electron, and 

hole transport, and charge recombination. The alignment between donor and acceptor 

HOMO and LUMO energy levels, for instance, plays a crucial role in determining the 

open-circuit voltage (𝑉!"), a key parameter for achieving good 𝑃𝐶𝐸 values.  
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We recently investigated [25] the influence of the choice of functional on the 

determination of the HOMO and LUMO energy levels in donor-acceptor (D-A) systems 

with a triazine (Tr) nucleus. We investigated nine star molecules with this nucleus, finding 

𝑃𝐶𝐸 values close to 30% due to a favorable alignment of the energy levels. The 

calculations employed the B3LYP, PBE, M06-2X, CAM-B3LYP, wB97XD, and LC-

wPBE functionals, to analyze their impact on the optoelectronic properties of the systems. 

 

The literature indicates that, for conjugated D-A systems containing a triazine 

nucleus, the HOMO and LUMO energy values typically vary between -5.0 and -6.0 eV 

(HOMO) and between -1.5 and -3.5 eV (LUMO) [255-258]. In our work, we found that 

the B3LYP functional produced the smallest deviations compared to the experimental 

data, with only 0.6% deviation for the HOMO and 37.4% for the LUMO. The PBE 

functional also presented good results, with deviations close to 11%, but the B3LYP stood 

out for providing a more balanced combination of accuracy and computational cost. 

 

The analysis of the HOMO and LUMO levels showed a significant influence on 

the optoelectronic properties of the systems, in particular on the band gap energy (𝐸'). 

The wB97XD 𝐸' values were significantly higher, around 7.6 eV, in contrast to the 

B3LYP results, around 3.9 eV. Although the corresponding exciton binding energy (𝐸/012) 

did not show substantial variations between the two functionals, the parameters related to 

the driving force showed a significant dependence on the HOMO and LUMO energy 

levels. 

 

In addition, parameters such as 𝑉!"  and 𝑃𝐶𝐸 were also shown to be strongly 

influenced by the frontier orbitals. For the systems containing a triazine core, the 

wB97XD functional resulted in a maximum 𝑃𝐶𝐸 value of 10.58% for a BHJ and 10.26% 

for a DSSC. On the other hand, the B3LYP functional led to a maximum PCE of 32.39%, 

evidencing that the precision in the alignment of the HOMO and LUMO levels can 

drastically affect the optoelectronic properties of OPVs. 
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Systems with optimized HOMO-LUMO levels favored charge transport by 

reducing recombination rates and improving electron and hole mobility. In triazine-based 

systems, substituents such as carbazole stabilized these energy levels, positively 

impacting photovoltaic performance. These results emphasize the importance of adjusting 

computational methods and molecular design to optimize energy level alignment and 

improve the efficiency of photovoltaic devices. 

 

Conclusion 

This work systematically presented the main processes involved in producing an 

electric current in BHJ solar cells and DSSCs. We discussed these processes in detail and 

presented several simple equations for computing relevant practical properties of these 

devices using DFT. We also discussed the limitations of this approach, mainly related to 

the choice of the exchange-correlation functional.    

 

By providing reliable and accurate predictions, DFT-based methods can accelerate 

the screening of promising materials, significantly reducing the time and costs associated 

with laboratory experiments. Furthermore, DFT can facilitate the rational design of donor 

and acceptor materials, allowing for precise tuning of their electronic and structural 

properties to maximize performance. This approach has been essential in addressing 

challenges such as exciton dissociation, charge recombination, and device stability, 

leading to significant advancements in the field. Although significant advances have been 

made in understanding the relationship between electronic properties and the efficiency 

of organic photovoltaic devices, challenges remain, including the need for a 

comprehensive evaluation of functionals and basis sets suitable for different chemical 

systems. In this context, we emphasize the importance of selecting computational 

methodologies appropriate to the specific problem, striving to balance computational cost 

and accuracy. 
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