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Abstract 

Cysteine residues play key roles in protein structure and function and can serve as targets for 
chemical probes and even drugs. Chemoproteomic studies have revealed that heightened 
cysteine reactivity towards electrophilic probes, such as iodoacetamide alkyne (IAA), is indicative 
of likely residue functionality. However, while the cysteine coverage of chemoproteomic studies 
has increased substantially, these methods still only provide a partial assessment of proteome-
wide cysteine reactivity, with cysteines from low abundance proteins and tough-to-detect peptides 
still largely refractory to chemoproteomic analysis. Here we integrate cysteine chemoproteomic 
reactivity datasets with structure-guided computational analysis to delineate key structural 
features of proteins that favor elevated cysteine reactivity towards IAA. We first generated and 
aggregated multiple descriptors of cysteine microenvironment, including amino acid content, 
solvent accessibility, residue proximity, secondary structure, and predicted pKa. We find that no 
single feature is sufficient to accurately predict reactivity. Therefore, we developed the CIAA 
(Cysteine reactivity towards IodoAcetamide Alkyne) method, which utilizes a Random Forest 
model to assess cysteine reactivity by incorporating descriptors that characterize the 3D structural 
properties of thiol microenvironments. We trained the CIAA model on existing and newly 
generated cysteine chemoproteomic reactivity data paired with high-resolution crystal structures 
from the Protein Data Bank (PDB), with cross validation against an external dataset. CIAA 
analysis reveals key features driving cysteine reactivity, such as backbone hydrogen bond donor 
atoms, and reveals still underserved needs in the area of computational predictions of cysteine 
reactivity, including challenges surrounding protein structure selection dataset curation. Thus our 
work provides a strong foundation for deploying artificial intelligence (AI) on cysteine 
chemoproteomic datasets. 

Introduction 
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Cysteine residues are privileged sites in proteins, acting as redox sensors, catalytic nucleophiles, 
structural motifs, and even targets of chemical probes and FDA approved drugs.1–5 Consequently, 
the identification of functional and potentially druggable cysteines is a central challenge of 
functional biology and drug development. The intrinsic reactivity of the cysteine thiol side chain 
towards electrophilic reagents has emerged as a key parameter that correlates with both 
functionality and druggability.6 While the pKa of a thiol is around 8.5,1 the pKa of a cysteine’s thiol 
side chain can vary significantly depending on protein microenvironment (pKa 3.5 to 10), the 
reactivity of cysteines towards minimalized electrophilic molecules, such as iodoacetamide alkyne 
(IAA), is both time- and concentration-dependent.7  

Measurements of cysteine reactivity have been generated proteome-wide, using the 
chemoproteomic method, isotopic Tandem Orthogonal Proteolysis-Activity-Based Protein 
Profiling (isoTOP-ABPP). For these analyses cysteine reactivity is assessed by quantifying the 
relative labeling with high (10x) versus low (1x) concentrations of IAA, using a proteomic readout. 
Highly reactive, or “hyper-reactive,” cysteines are those that show a similar labeling with high and 
low IAA concentrations, (Ratio[high]/[low] =1), indicating saturation of labeling at the lower IAA 
concentration. High-reactivity has been found to be indicative of cysteine functionality, including 
involvement in catalytic activity and susceptibility to oxidative modifications.8,9 Further illustrating 
the functional relevance of these measurements, our recent work revealed an enrichment for high 
predicted pathogenicity (high CADD score) for the codons of high reactivity cysteines.10  

Despite the considerable value of these reactivity measurements, coverage remains a major 
challenge that has yet to be fully addressed. Reactivity measurements are currently only available 
for ~1.5% of all cysteines.6,10,11 However, ~78% of cysteines should be theoretically detectable 
based on tryptic peptide length (>6 & <45 amino acids).12 Reasons for this incomplete coverage 
include protein sequences that differ from reference sequences, genes with restricted expression, 
cysteines that are buried or in structural disulfides, and ionization properties of peptides.  

Computational predictions of cysteine reactivity represent an exciting strategy to pinpoint 
functional residues, in a manner complementary to chemoproteomic analysis. 13–17tructure-based 
programs like PROPKA18 and H++19 can predict pKa values with variable accuracy. Advances 
such as Cy-preds20 and GB-CpHMD21 incorporate both sequence and 3D structural data, but their 
application remains limited to a small set of protein structures and conformations.22–24 Stepping 
beyond these smaller datasets, machine learning applied to chemoproteomics datasets has 
proven useful in identifying primary sequence motifs correlated with cysteine reactivity.13–17 
Whether the addition of 3D structural information can enhance the performance of such models 
remains to be seen. While not yet applied to reactivity analysis, the availability of in silico packages 
for covalent docking at cysteine residues25–29 points towards as yet untapped opportunities for 
integrating reactivity measurements with protein structures to further guide discovery of reactive 
cysteine residues.  

Here we establish the CIAA (Cysteine reactivity towards IodoAcetamide Alkyne) platform, which 
is tailored to guide the in silico discovery of high reactivity cysteines. To build CIAA we first 
generated a high coverage proteomic datasets of high reactivity cysteines that features 823 total 
high reactivity cysteines, identified in both newly generated and previously published datasets. 
We achieve >50% increase in total high reactivity cysteines when compared to prior datasets. We 
then subject a class-balanced set of high- and low reactivity cysteines to feature analysis, both in 
linear sequence and 3D protein space. While we find several features that are suggestive of 
cysteine reactivity, including most notably frequent proximity to histidine and proline residues, no 
single feature showed a strong correlation with cysteine high reactivity. Therefore, we developed 
a Random Forest model that was trained on 3D protein structures from the Protein Data Bank 
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(PDB). The model integrates curated chemoproteomic datasets with additional publicly available 
datasets, creating a robust framework for training. Validated with external datasets achieved an 
overall accuracy of 68%. Notable features identified by the model as correlated with cysteine 
reactivity include backbone hydrogen bond donor atoms, proximity to pockets and intermediate 
values of solvent accessibility. Taken together we expect that the CIAA platform will facilitate 
ongoing and future efforts towards high accuracy in silico discovery of functional and potentially 
druggable cysteine residues.  

 

Results 

Establishing a high coverage dataset of high reactivity cysteines. Our first step towards 
enhancing the in silico discovery of high reactivity cysteines, was to generate a high coverage 
dataset of known cysteines that exhibit a range of reactivities towards the pan-cysteine reactive 
probe iodoacetamide alkyne (IAA). We opted to pursue a hybrid strategy, both aggregating 
previously reported datasets6,10 together with production of new in-house generated proteome-
wide measures of cysteine reactivity. For both previously acquired and our newly generated 
datasets, relative intrinsic cysteine reactivity towards IAA was quantified by comparing labeling 
with either high (100 µM) or low (10 µM) concentration IAA, with saturation of labeling at lower 
probe concentration indicative of cysteine high reactivity.  

For our reanalysis, we curated a set of cysteine high reactivity data that had previously been 
generated using the Isotopic Tandem Orthogonal Proteolysis-Activity-Based Protein Profiling 
(isoTOP-ABPP) chemoproteomic sample preparation method (Figure 1A).6 Samples analyzed 
by isoTOP-ABPP were reprocessed for Weerapana et al. 2010 (n = 6)6 and Palafox et al. 2021 
(n = 5).10 Reanalysis was conducted to ensure consistency in processing, address reproducibility, 
and confirm high-confidence identification of high reactivity cysteines across datasets. In total 
these prior datasets contained 489 total high reactivity cysteines, defined as R[high IAA]/[low IAA] = 
R100:10 values ≤ 2.3, with the remaining 8,115 total cysteines categorized as either medium (2.3 < 
R10:1 values < 10), or low reactivity (R10:1 values ≥ 10).  

Given the comparatively modest size of the reanalysis dataset—the human proteome harbors 
~260,000 cysteines by comparison30–we also generated additional in-house reactivity analysis (n 
= 13) for proteome derived from the HEK293T cell line. HEK293T cells are a commonly used 
workhorse cell line that has not to our knowledge been subjected to such reactivity analysis. 
These new datasets added 4204 cysteines that had not been observed in prior hyperreactivity 
studies, 640 of which were found to be hyperreactive (Figure 1B and Data S1). In aggregate 
across both the newly generated and reanalyzed data, the relative reactivity of 9,783 cysteines 
from 3,974 proteins were quantified. Of these, ~80% of residues (7,964) showed medium 
reactivity, with ~10% of cysteines exhibiting either high- or low-reactivity towards IAA (823 
cysteines from 717 proteins and  996 cysteines from 803 proteins, respectively; Data S1). 

Cysteine reactivity correlates with UniProtKB indications of functionality 

As our newly generated data more than doubled the total number of high reactivity cysteines 
identified to-date (Figure 1B), we further benchmarked this new data to ensure that quality was 
maintained during this scale-up process. We observe a good overlap in cysteines identified (3,445 
total shared) and a positive correlation between our new dataset and those previously reported 
(Pearson correlation coefficient 0.5, Figure S1). Consistent with prior reports of cell-line 
dependent differences in cysteine reactivity and ligandability,6,31 we do note some likely cell-type 
specific differences in reactivity, for example cysteine 140 in Inosine-5'-monophosphate 
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dehydrogenase 2 (IMPDH2). In addition to comparing ratio concordance between datasets, we 
also assessed whether previously reported properties of high reactivity cysteines were maintained 
in our new and larger dataset. Notably, and corroborating prior findings6, we observe that cysteine 
high reactivity provides a good metric of likely functional significance, as indicated by the 
enrichment for residues in functional sites, including active sites, redox sensitive sites and 
disulfides, with the latter expected to be redox-active disulfides (Figure 1C and Data S1). 
Intriguingly, our UniProtKB analysis also revealed a notable correlation between low reactivity 
residues and metal binding sites, including zinc fingers (Figure S2). In total, 30 low reactivity 
cysteines were identified with UniProtKB annotations related to zinc binding or zinc finger regions, 
compared to 20 high reactivity cysteines. This analysis confirmed that our newly generated data 
did extend cysteine coverage while showing a similar properties distribution of previously reported 
datasets.  

 

 

 

 

 

 

 

Figure 1. Establishing a dataset of high reactivity cysteines towards iodoacetamide alkyne 
(IAA). (A) Experimental workflow for isoTOP-ABPP. Cell lysates are treated with either high (100 
µM) or low (10 µM) concentration of this IAA probe followed by click conjugation to isotopically 
differentiated tobacco etch virus (TEV)-cleavable biotinylated enrichment tags. After single-pot 
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solid phase-enhanced sample preparation (SP3) cleanup12,32 and on-resin sequence-specific 
digestion, samples were enriched (streptavidin), eluted with TEV protease and the labeled 
peptides subjected to LC-MS/MS analysis followed by search with MSFragger,33 using the 
FragPipe user interface and MS1-based quantification with IonQuant.34 MS1 ratios correspond to 
Rheavy/light = R[100 µM]/[10 µM] with the following cutoffs for reactivity,  high (R100:10 ≤ 2.3), medium (2.3 
< R100:10 < 10), and low (R100:10 ≥ 10). (B) Comparison of the number of high reactivity cysteines 
identified in prior studies as reported in CysDB V130 for Weerapana et al. 20106, Palafox et al. 
202110, and Vinogradova et al. 2020 versus high reactivity cysteines identified in newly generated 
datasets (n = 13). High-reactive cysteines were required to be identified in two replicates and had 
a R100:10 standard deviation of <= 3 for further data analysis. (C) Comparison of UniProtKB 
functional annotations for high- vs low reactivity cysteines. See also Figure S1, Figure S2, and 
Data S1. 

 

 

 

Figure 2. Amino acid contents of IAA-reactive cysteines using primary sequences.  (A) 
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Overview of using primary sequences of IAA-labeled cysteines. (B) Sequence logo created using 
pLogo (http://plogo.uconn.edu).35 Starting with 823 high reactivity and 996 low reactivity 
cysteines, sequences were aligned to meet pLogo input requirements, reducing the dataset to 
765 high reactivity cysteines as the foreground and 805 low reactivity cysteines as the 
background. (A) shows the primary sequence motifs for these cysteines. The y-axis represents 
the log-odds binomial probability of an amino acid residue at a specific position, while the x-axis 
shows the position relative to a reactive cysteine fixed at position 0. The red horizontal line 
indicates the statistical significance threshold (p = 0.05) after applying the Bonferroni correction. 
See Data S1. 

 

Primary sequence amino acid composition of high reactivity cysteines 

Previous analysis of a focused set (n = 74) of high reactivity cysteines had revealed   enrichment 
for tryptophan, histidine, proline, and cysteine residues in linear sequence proximity to high 
reactivity sites.13,14 Therefore, to further assess how our dataset compares to this prior study and, 
particularly, to characterize whether these sequence-based enrichments hold true for our larger 
dataset, we next subjected our data to sequence motif analysis (Figure 2A). We generated a 
sequence logo using pLogo35 to assess the frequencies of amino acids flanking high- and low 
reactivity cysteines, starting with 823 high reactivity cysteines and 996 low reactivity cysteines. 
After aligning the sequences to ensure they were of the same size and length, as required by the 
pLogo software, the dataset was reduced to 765 high reactivity cysteines as the foreground and 
805 low reactivity cysteines as the background (Figure 2B and Data S1). This analysis revealed 
an increased occurrence of cysteines (C) near high reactivity cysteines at specific positions. At 
position -3, cysteines were slightly increased, with a log-odds of 4.1, consistent with a CXXC motif 
observed in the thioredoxin family.36 A larger increase was found at position -1, with a log-odds 
of 7.2, indicating cysteines are most over-represented at this position. In addition to cysteines, 
histidine (H) and proline (P) were frequently found at position -1, while hydrophobic residues such 
as tryptophan (W), phenylalanine (F), and methionine (M) were identified within high reactivity 
cysteine neighborhoods. Acidic residues, including glutamate (E) and aspartate (D), were 
depleted, likely due to incompatible electrostatic interactions with cysteine thiolates. These trends 
are generally consistent with the aforementioned prior studies,13,14 which indicates that sequence-
based analysis likely can provide some indication of relative cysteine reactivity.  

Defining a training set of reactive cysteines with 3D structural data available in the PDB 

As one of the key overarching goals of our study is to define structural features that drive cysteine 
high reactivity, our next step was to step beyond linear sequence and to associate protein 
structural information with our identified cysteines (Figure 3A). Of our entire reactivity dataset, 
66% (2636/3969) of the IAA-labeled proteins identified had experimentally determined protein 
structures deposited in the PDB (Figure S3). Similarly, 67% of proteins containing high reactivity 
cysteine proteins were structurally resolved (483/717) (Figure 3B). To check for potential biases 
in the representation of structures for the different protein families and for different cysteine 
reactivity classes, we analyzed their distribution in the available PDB structures. We found that 
the distribution of proteins with PDB structures closely resembles the distribution of proteins in 
the proteome with PDB structures and those experimentally labeled by IAA (Figure S4). We 
observed an enrichment of enzyme structures among proteins with PDB structures, while proteins 
without associated structures showed a higher prevalence of uncategorized proteins. 

Many proteins still remain incompletely resolved and so some of our identified cysteines could be 
located in unresolved protein regions. Therefore, we next further filtered our dataset to ensure 
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that all detected cysteines were structurally resolved. We matched the residue numbering and 
coordinates in the PDB files with UniProtKB amino acid numbering using custom scripts (see 
Supplementary Computational Methods). 345 out of 823 (42%) high reactivity cysteines and 
322 out of 996 (33%) low reactivity cysteines were resolved in at least one corresponding crystal 
structure (Figure 3C).  

To establish our curated training set, we opted to subject these structures to several additional 
pre-processing steps. Among these, we ensured that the IAA-reactive cysteine and its +/- 3 
neighboring residues were fully resolved, with no missing density. This was a crucial step to 
achieve a comprehensive representation of the local microenvironment surrounding each 
cysteine. To exclude possible confounding effects of mutations or other protein modifications, we 
additionally excluded structures harboring these features from further analysis. Through these 
filtering steps, we also noted that nearly half of all proteins (241/505) had more than one 
associated structure in the PDB, with a small subset matching to >20 structures (Figure S5A and 
Figure S5B). To reduce the potential for data redundancy, we used the PISCES37 server 
(accessed November 2023), which prioritized X-ray structures by selecting representatives based 
on structural quality and sequence diversity. This filtering reduced our set of structures from 
22,821 to 1,179 PDBs, including 306 high reactivity and 297 low reactivity cysteines across 644 
and 662 unique PDBs (Figure 3C and Figure S5A). Notably, 32 of these proteins contained both 
a high reactivity and a low reactivity cysteine. Importantly, and demonstrating that our filtering 
steps did not introduce significant bias to the datasets, the high reactivity and low reactivity protein 
sets exhibited similar distributions of experimental techniques, structural resolutions, and 
biological complexes (Figure S6). 
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Figure 3. Defining a training set of reactive cysteines with 3D structural data available in 
the PDB. (A) Workflow for defining a training set of tertiary structures. (B) Number of 
experimentally identified proteins containing  high- or low reactivity cysteines, number of 
experimentally identified unique high- or low reactivity cysteines associated with PDB structures, 
number of experimentally identified unique high- or low reactivity cysteines resolved in at least 
one associated PDB structure, and number of experimentally identified unique high- or low 
reactivity cysteines in the training set after a series of filtering steps. (C) Number of experimentally 
identified unique high- or low reactivity cysteines, number of experimentally identified unique high- 
or low reactivity cysteines associated with PDB structures, number of experimentally identified 
unique high- or low reactivity cysteines resolved in at least one associated PDB structure, and 
number of experimentally identified unique high- or low reactivity cysteines in the training set after 
a series of filtering steps. See Figure S3-S6, and Data S2. 
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Figure 4. Amino acid content of IAA-reactive cysteines using 3D protein structures. (A) 
Overview of using tertiary structures of IAA-labeled cysteines resolved in associated PDB 
structures (306 high reactivity cysteines and 297 low reactivity cysteines). (B) Log2 ratio of amino 
acid frequencies within a 7.5Å neighborhood around high reactivity cysteines relative to low 
reactivity cysteines. Red bars indicate enriched residues in high reactivity cysteine 
neighborhoods, while blue bars indicate depleted residues in these neighborhoods. See Figure 
S7, Figure S8, and Data S3. 

 

Tertiary structure amino acid composition of high reactivity cysteines  

With our curated set of structurally resolved cysteines in hand, we next sought to assess the 
amino acid content of IAA highly reactivity cysteine 3D neighborhoods (Figure 4A). Similar to our 
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linear sequence analysis (Figure 2), we hypothesized that the 3D protein environment 
surrounding high reactivity cysteine residues should be enriched for reactivity-potentiating 
residues, such as histidine and cysteine. Therefore, to enable quantification of the proximal amino 
acid content around high and low reactivity cysteines, we aggregated the coordinates of all atoms 
within 7.5 Å of the sulfhydryl group (SG) atoms for each structurally resolved cysteine, excluding 
atoms from the cysteine residue itself. We selected 7.5 Å as a distance cutoff to ensure capture 
of neighboring residues without sampling more distal residues (Figure S7).  

To prevent overcounting and to generate a non-redundant set of cysteine identifiers, residues 
were grouped by the corresponding PDB chain and residue number, retaining only unique residue 
identifiers (PDB_Chain_C#). The frequency of each amino acid within the high- and low reactivity 
cysteine neighborhoods was then calculated and normalized by the total number of unique 
residue identifiers within 7.5 Å of the SG atoms, accounting for potential differences, particularly 
for more buried cysteines.17 To avoid overcounting, each residue was included only once if any 
of its atoms fell within the 7.5 Å radius, ensuring that residues were counted as unique entities 
rather than based on the total number of atoms they contributed. 

This analysis identified a propensity of histidine and proline residues near high reactivity 
cysteines, aligning with our previous primary sequence analysis findings (Figure 4B and Data 
S3). Additionally, we observed an increase in arginine and glutamine residues and a decrease in 
hydrophobic residues, such as isoleucine and valine. Looking beyond these specific cysteine 
microenvironments, we observed generally similar amino acid content for proteins in our dataset 
compared to a UniProtKB reference human proteome (Figure S8), which indicates that our 
dataset is not inherently enriched or depleted for particular amino acids. Therefore, we conclude 
that the aforementioned high reactivity cysteine-specific amino acid enrichment represents bona 
fide features within the 3D cysteine microenvironment that drive cysteine nucleophilicity.  
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Figure 5. Chemical, reactivity and structural properties of IAA-reactive cysteines. (A) 
Collection of chemical, reactivity, and structural properties of IAA-reactive cysteines using tertiary 
structures. (B) Comparing computationally predicted pKa (PROPKA 3.1)18 values and quantitative 
cysteine reactivity isoTOP-ABPP ratios (R10:1). (C) Percentage of IAA-reactive cysteines in various 
secondary structure regions, as determined by DSSP-2.38,39 (D) Comparison of computationally 
determined relative solvent accessibility (DSSP-2) and quantitative cysteine reactivity isoTOP-
ABPP ratios (R10:1). (E) Number of IAA-reactive cysteines in a predicted pocket (Fpocket 4.2)40. 
See Figures S9-S14 and Data S3. 

 

Descriptors of IAA-reactive cysteines from 3D structures 

Building on our amino acid content analysis, we next extended this microenvironment analysis to 
generate a more comprehensive set of structural features for reactive cysteines. We aggregated 
descriptors in the following categories: residue proximity, general structural motifs, solvent 
accessibility, predicted pocket presence, predicted pKa metrics, overall amino acid content (AAC), 
amino acid interactions (AAI), hydrogen bond interactions, physicochemical properties.  

We started with larger structural features, including secondary structure motifs and relative 
solvent accessibility (RSA) of cysteines, which we classified using the Dictionary of Secondary 
Structure-238,39 (DSSP-2). Parallel RSA values were also computed, based on the Kabsch and 
Sander method,39 for cysteines resolved in PDB structures to assess their exposure within the 
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associated crystal structure. Fpocket40 release 4.2 was used to detect ligand-binding pockets and 
predicted pKa values were computed using PROPKA18 v3.1. B-factor and disorder were assessed 
using BioPython41 functions. We also analyzed amino acid physicochemical properties and 
hydrogen bond interactions, collecting 1D and 3D descriptors for residues within the 7.5 Å cutoff 
around cysteines. Amino acid type descriptors were then assigned based on residue and atom 
properties defined by Cheng et al,42 with  amino acid interaction descriptors assigned based on 
residue and atom properties defined by the Graph-based Residue neighborhood Strategy to 
Predict binding sites (GRaSP)43 method. Hydrophobicity around the cysteine was evaluated using 
the Kyte-Doolittle44 scale, and steric clashes were defined when the distance between the 
cysteine SG atom and a neighboring atom was less than the sum of their Van der Waals radii.45 
Hydrogen bond descriptors categorized neighboring atoms as donors or acceptors from backbone 
or side chains,46–48 with counts divided by the total atoms within 5 Å and 7.5 Å distances, creating 
a weighted hydrogen bond profile. Rosetta49 was used to compute energetic contributions of 
various physicochemical properties for each reactive cysteine, using talaris2013 weights. In total, 
we generated 82 features for each cysteine (Data S3).  Full description of how the descriptors 
were generated can be found in the Supplementary Computational Methods.  

 

pKa prediction is insufficient to predict cysteine reactivity  

The availability of computational tools that predict cysteine pKa, most notably PROPKA18, 
highlights a potential opportunity for rapid discovery of reactive cysteines. Therefore, in building 
our set of descriptors, we investigated whether PROPKA predictions of pKa could inform IAA 
reactivity—we acknowledge the clear limitation that IAA reactivity does not directly measure thiol 
pKa but instead provides a proxy for relative reactivity towards electrophiles. Towards 
understanding the relationship between pKa and IAA reactivity, we first examined five 
experimental cases where both reactivity and pKa had been directly measured (Table S2).50–54 
Several of these test cases corroborated the relationship between higher IAA reactivity and lower 
pKa values, such as C145 of MGMT which had a ratio of 0.87 and an experimental pKa of 5.3 
(Figure S9).50  

To further assess the relatedness of PROPKA predictions and measures of IAA-cysteine 
reactivity, we next expanded our analysis to all cysteines in our dataset. Our PROPKA analysis 
did not reveal a significant correlation between median theoretical predicted pKa values and 
isoTOP-ABPP reactivity measurements (Figure 5B). The average median predicted pKa for high 
reactivity cysteines was 11.18 versus 10.71 for low reactivity cysteines. Thus we conclude that 
PROPKA predicted pKa is generally not a useful proxy for IAA reactivity. 

A small subset of both the high- and low reactivity cysteines had predicted pKa values that 
strongly contrasted with their measured reactivity. Exemplifying this difference, for the high 
reactivity cysteines, 34 residues had predicted pKa values greater than or equal to 14. For the 
low reactivity subset, 16 cysteines had predicted pKa values less than 8.5. Therefore, we opted 
to inspect these cysteines further so as to better understand the discrepancies between pKa 
prediction and measured IAA reactivity.  

For the high reactivity subset, we noted 16 cysteines involved in disulfide bonds, as annotated by 
UniProtKB and resolved structurally. This category of cysteine is exemplified by the redox active 
disulfide between C32 and C35 of thioredoxin (TXN) (Figure S10A).55 Five additional high 
reactivity cysteines were also likely localized to disulfide bonds, as indicated by the presence of 
a disulfide bond in at least one associated structure or when another cysteine sulfur atom was 
within 3 Å (Figure S11 and Data S3). We also noted several additional proximal cysteine pairs 

https://doi.org/10.26434/chemrxiv-2025-tm8ch ORCID: https://orcid.org/0000-0001-8541-1404 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://sciwheel.com/work/citation?ids=106566&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=953515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=326540&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16967878&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10264297&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=492614&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2282956&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16850053,16977191,5742769&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=4578685&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=953515&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16967944,345663,3282463,16970375,13376865&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=16967944&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7348352&pre=&suf=&sa=0
https://doi.org/10.26434/chemrxiv-2025-tm8ch
https://orcid.org/0000-0001-8541-1404
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

just beyond this distance cutoff as exemplified by  ATP-dependent RNA helicase, DDX3X, in 
which the sulfur atom of C317 is 5.1 Å away from the sulfur atom of C298 (Figure S10B).56 
Intriguingly and pointing to possible unique features of the low reactivity and low pKa prediction, 
only four of 16 cysteines were located in disulfide bonds, whereas six were located near zinc ions 
in their associated structures, including C166 of Hepatocyte growth factor-regulated tyrosine 
kinase substrate (HGS) and C150 of Zinc finger CCCH-type antiviral protein 1 (ZC3HAV1) (Data 
S3). Five of these cysteines also had UniProtKB annotations supporting their involvement in zinc 
binding or indicating their presence in zinc finger regions.Thus we conclude that the difference in 
reactivity and predicted pKa may stem from redox active disulfide bonds and metal coordination 
for the high reactivity and low reactivity cysteine subsets, respectively.   

 

Prevalence of high reactivity cysteines in secondary structure motifs 

Previous studies have suggested that high reactivity cysteines are often located near alpha-
helices.16 Therefore, we next investigated whether this enrichment held true for our newly 
generated descriptors. We used the DSSP-2 algorithm to classify cysteines into four main 
categories: helices, beta sheets, loops, and conflicting annotations (Data S3). Among these 
classifications, 102 high reactivity cysteines were found in helices, 36 in beta sheets, and 116 in 
loops. In comparison, we observed 81 low reactivity cysteines in helices, 64 in beta sheets, and 
97 in loops (Figure 5C). As these analyses do not consider residue position in the secondary 
structure, we further subsetted the cysteines located in alpha helices to assess proximity to the 
helix N-terminus. We defined a cysteine as being near the N-terminus of a helix if the nitrogen 
atoms of the two downstream residues (i+2 and i+3) were part of a helix and within 5 Å, even if 
the cysteine itself was not located within the helix. With this added filtering, we observe an 
increased number of reactive cysteines at the N-terminus of helices relative to lowly reactive 
cysteines, which indicates that our data corroborates that of prior reports (Figure S12).  

 

Relative solvent accessibility and pocket detection of high reactivity cysteines 

We also examined the contribution of computationally predicted relative solvent accessibility 
(RSA) for each reactive cysteine. Again using DSSP-2 program, we calculated the median RSA 
for each structure associated with a UniProtKB_C# identifier. We did not identify a statistically 
significant difference in RSA between high- and low reactivity cysteines (Mann-Whitney U: 
47,509.5, p = 0.2970) using either PDB structures or predicted protein structures from AlphaFold 
257 (Figure 5D and Figure S13). On average, high reactivity cysteines had a median solvent 
accessibility of 15%, with 26% classified as “high-solvent accessible” (RSA ≥ 20), 15.7% as 
medium solvent accessible (10 ≤ RSA < 20), and the remainder as low-solvent accessible. Thus 
we conclude that solvent accessibility is not sufficient to predict cysteine reactivity and that 
cysteines are frequently not highly solvent accessible, regardless of relative reactivity.  

Given the relatively small nature of the cysteine SG, we postulated that solvent accessibility alone 
might inadequately capture the accessibility of specific residues to labeling with the comparatively 
bulky IAA probe. Therefore we also analyzed the proximity to pockets, using Fpocket40 release 
4.2. Consistent with our hypothesis, we found a modestly increased number of high reactivity 
cysteines were located in pockets, when compared to low reactivity residues, 45% (139 out of 
306) versus 34% (101 out of 297), respectively (Figure 5E). These findings are consistent with 
prior studies which noted that cysteines identified by IA-DTB or liganded by scout fragments (e.g. 
KB02, KB03, or KB05) are typically not exclusively in highly exposed regions.31,58,59 This pattern 
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may reflect the functional importance of shielding high reactivity sites within potential binding 
pockets away from bulk solvent. 

 

Correlation analysis of structural descriptors highlights the complex determinants of 
cysteine high reactivity 

Guided by the suggestive enrichments for high reactivity cysteines in pockets and alpha helices, 
we next broadened our analysis to the rest of our descriptors, with the goal of pinpointing key 
features that drive cysteine reactivity. We assessed the correlation between the descriptors and 
experimental cysteine reactivity measurements via Pearson Correlation Coefficients (PCC). The 
highest PCC, 0.16, was observed for the percentage of hydrogen bond acceptor backbone atoms 
within a 5 Å radius of high reactivity cysteines (Figure S14). This inverse relationship suggests 
that less reactive cysteines may have fewer hydrogen bond donors available to stabilize the 
thiolate form. Unfortunately, no single descriptor emerged as a strong predictor of cysteine high 
reactivity. This lack of strong correlations between any individual descriptors and cysteine 
reactivity lead us to conclude that high cysteine reactivity towards IAA is likely governed by a 
combination of factors rather than any single structural feature.  
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Figure 6. Features of reactive cysteines can be used to build CIAA, a random forest model 
to predict cysteine reactivity towards IAA. (A) Workflow of extracting features of cysteine 
reactivity using protein structures as input for a random forest algorithm to predict cysteines highly 
reactive and lowly reactive towards IAA. (B) Table of datasets obtained from literature, showing 
the number of randomly sampled unique highly-reactive and low reactivity cysteines used as input 
for our testing set. (C) Confusion matrix heatmap showing the distribution of true positive, false 
positive, true negative, and false negative cases from the random forest algorithm. The matrix 
provides a visual representation of the model’s classification performance, where the rows 
represent the actual classes (high- or low reactivity) and the columns represent the predicted 
classes. The observed reactivity classes are based on quantitative cysteine reactivity isoTOP-
ABPP ratios (R10:1). (D) Bar graph showing the most important features of the model, where 
feature importance scores were calculated using Gini importance.60 The height of each bar 
represents the relative contribution of each feature to the model’s predictions, with higher bars 
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indicating greater importance in determining high- or low reactivity cysteines. (E) SHapley Additive 
exPlanations (SHAP) summary showing the impact of selected features on the predicted 
classification (high- or low reactivity cysteines).61,62 Each point represents a test case, with the 
position on the x-axis indicating the magnitude and direction of the feature’s effect on the 
prediction. The color of each point represents the feature value, with pink indicating higher feature 
values and blue indicating lower feature values. Features with larger SHAP values have a greater 
impact on the prediction. (F) Close up view of correctly predicted high reactivity C100 of 
Multifunctional methyltransferase subunit TRM112-like protein (TRNT112) (PDB: 6KHS). 
Hydrogens are omitted for clarity. Potential hydrogen bonds are represented by blue dashed lines. 
(G) Close up view of correctly predicted low reactivity C309 of Gasdermin-D (GSDMD) (PDB: 
5NH1). Hydrogens are omitted for clarity. Potential hydrogen bonds are represented by blue 
dashed lines. See Figure S15-23 and Data S3. 

 

Supervised learning for initial model development 

To test the hypothesis that a combination and features is driving cysteine reactivity, we set out to 
develop a model that could enhance our understanding of the structural drivers of cysteine 
reactivity (Figure 6A). Given the complexity of the data, we pursued a supervised machine 
learning approach to predict whether a cysteine was low reactivity (0) or high reactivity (1) towards 
IAA. Our goal was to identify patterns within the structural features that could distinguish between 
these two classes with a focus on correctly predicting the high reactivity cysteine class. 

To maximize the number of high reactivity cysteines in our training set, we opted to use the 
entirety of our experimental dataset as the “ground truth.”  Therefore, to establish an external test 
dataset, we subjected several additional published cysteine reactivity datasets11,26,63–65  to our 
curation pipeline, applying the  same filtering criteria and structural processing as we had for our 
training set, ensuring consistency in data handling (Data S2). Our external test dataset contains 
a randomly sample set of unique cysteines not included in our training set (Figure 6B). Out of the 
proteins in the test set, 231 are shared with proteins in the training set, though their cysteine 
residues are distinct between the sets.  

To determine the most suitable model for this task, we initially compared several machine learning 
algorithms, each offering distinct advantages based on the dataset’s characteristics. We tested 
Random Forest (RF), K-Nearest Neighbors (KNN), Classification and Regression Tree (CART), 
Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM) (Figure S15A). These 
algorithms were selected to cover a range of approaches, from ensemble methods (RF) to 
distance-based (KNN) and linear separation techniques (LDA and SVM), ensuring that we 
considered different ways of modeling the data. After running preliminary tests, we observed that 
while some algorithms excelled in certain aspects, they struggled with balancing the true positive 
rate (TPR) and false positive rate (FPR). To further optimize the models, we performed recursive 
feature elimination (RFE) (Figure S15B), which allowed us to reduce the feature set by selecting 
the most important descriptors. Despite these efforts, the best model performance we could 
achieve at this stage resulted in a TPR of 70% and an FPR of 44% (Figure S15C), testing on our 
external validation set. 
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Ablation studies to evaluate descriptor importance 

We refined the model by conducting ablation studies that assessed the influence of different 
categories of descriptors on the model’s TPR and FPR. By systematically removing individual 
descriptor categories, we identified the features that contributed most to true positive predictions 
(Data S3). This process revealed that including only three categories—AAC, hydrogen bond 
statistics, and RSA—resulted in a modest improvement for decreasing the false positive rate 
(baseline TPR of 71% and FPR of 39%) (Figure 6C). The optimized model comprised 29 features 
(Figure S16), with the most influential being the relative percentage of hydrogen bond acceptor 
backbone atoms within 5 Å, the percentage of valine residues within 7.5 Å, and RSA (Figure 6D). 

During model optimization, we also observed a trend in cysteines represented by multiple PDB 
structures, which showed an increase in correct prediction rates compared to those with only one 
structure (Figure S17). For cysteines with a single structure, the correct prediction rate was 47%, 
while those with multiple structures achieved over 50% accuracy in 83 out of 267 cases. This 
indicates that additional structural data may provide further context for predictions.  

Effect of multiple structural representations on prediction accuracy 

For example, the CIAA method predicted C141 of Flap Endonuclease (FEN1) to be high reactivity 
in three out of four test structures, achieving 75% accuracy (Data S3). The structure 3Q8M, which 
yielded an incorrect prediction, included both Chains A and B, each bound to a double-stranded 
DNA segment, while the other structures—3Q8K, 5FV7, and 5ZOD—contained only one or no 
DNA segment (Figure S18). Studies show that FEN1’s cap helices near C141 in α-helix 6 become 
more ordered upon DNA binding,66 potentially altering access to C141 based on DNA-bound 
conformation.  

Another example, C2093 in DNA-dependent protein kinase (DNA-PK), demonstrated a similar 
pattern where multiple structures captured conformation-induced dynamics upon DNA and 
Ku70/80 binding. The X-ray crystallography structure 5LUQ, representing Apo-DNA-PKcs, 
predicted C2093 as low reactivity. In contrast, the electron microscopy structures 6ZFP (DNA-
PKcs “state 2”), 7OTY (DNA-PKcs), and 5Y3R (DNA-PK holoenzyme) each representing various 
conformational states, predicted C2093 as high reactivity. In these structures, DNA-PK undergoes 
conformational adjustments, such as rotations and flexing of the N-terminal arm toward the FAT 
domain,67 altering the local environment around C2093 (Figure S19). These examples highlight 
how the inclusion of multiple structural states provides additional data that can influence predictive 
outcomes.  

 

SHAP Analysis of feature contributions 

To further explore the impact of these features, we performed a SHapley Additive exPlanations 
(SHAP) analysis. Shapley values, derived from cooperative game theory, quantify the average 
marginal contribution of each feature to the model’s prediction of low reactivity (0) or high reactivity 
(1) cysteines.62,68 In our analysis, positive SHAP values indicated an increased likelihood of 
predicting high reactivity cysteines, while negative values decreased this likelihood. Specifically, 
lower values of hydrogen bond acceptor backbone atoms within 5 Å, valine residues within 7.5 Å, 
and RSA were found to increase the model’s ability to predict high reactivity cysteines (Figure 
6E). These insights highlight the role of structural features related to hydrogen bonding, residue 
composition, and solvent accessibility as key drivers of the model’s improved predictive 
performance.  
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Two examples of correctly predicted cases are high reactivity C100 in the Multifunctional 
methyltransferase subunit TRM112-like protein (TRNT112) and low reactivity C309 in Gasdermin-
D (GSDMD) (Figure 6F and Figure 6G, respectively). The microenvironment of C100 features 
an abundance of backbone hydrogen bond donors from nearby residues such as Ser11, Gly20, 
and Ser103, compared to a limited number of backbone acceptor hydrogen bond atoms. In 
contrast, C309 in GSDMD has fewer hydrogen bond donors available in its microenvironment and 
is situated near the acidic residue Asp305. 

 

Model limitations and performance across protein functional classes 

It is important to acknowledge the limitations of our model by examining cases where it failed. We 
compared correct and incorrect predictions across experimental structure determination methods. 
The model performed consistently across methods, with the highest TPR of 69% for X-ray 
structures (n = 370 PDBs) and the lowest TPR of 50% for NMR structures (n = 31 PDBs) (Figure 
S20). Despite a true negative rate (TNR) of 72% for NMR structures, the false negative rate (FNR) 
was also 50%. Interestingly, many cysteines incorrectly predicted as high reactivity using NMR 
structures were from proteins involved in transcription or regulation, particularly DNA/RNA-
binding proteins, which may undergo significant conformational changes upon ligand binding. 
Examples include C416 near the flexible loop region of Nucleus accumbens-associated protein 1 
(NACC1)69 and C1070 in the unstructured C-terminal region of bifunctional 3’-5’ 
exonuclease/ATP-dependent helicase (WRN).69,70 This suggests that including NMR structures 
from conformationally flexible proteins may have reduced model performance by introducing false 
negatives. 

To explore whether protein functional classes influenced incorrect predictions, we further 
examined model accuracy across these classes. The model achieved the highest accuracy (78%) 
when predicting high reactivity cysteines in nucleic acid/small molecule-binding proteins, 
chaperones, transporters, channels, and receptors (Figure S21). However, it struggled with 
correctly predicting low reactivity cysteines for enzymes, leading to an increase in false positives. 
Most high reactivity cysteines in our training set fall within a modest RSA range (5-20%), but the 
model struggles with highly solvent-accessible cysteines in enzymes that appear ligandable but 
are not necessarily high reactivity (Figure S22). This could be due to missing descriptors that 
capture pre-binding states, hidden allosteric pockets, or metrics accounting for ligand accessibility 
and specific protein-ligand interactions. For instance, low reactivity C14 of Uroporphyrinogen-III 
synthase (UROS) (R10:1 = 19.22) was incorrectly predicted to be high reactivity. However, C14 of 
UROS was shown to be liganded by an acrylamide derivative with a phenyl-oxazole substituent71 
and has a high RSA of 84% (PDB: 1JR2).  

 

Model limitations and performance using AlphaFold 2 structures 

We also explored the application of the CIAA model using AlphaFold 2 structures, as not all 
proteins in our experimental dataset had associated crystal structures in the PDB, or the reactive 
cysteines of interest were not resolved in their structures. AlphaFold 257 provides computational 
predictions of protein structures based on sequences for over 200 million proteins. Leveraging 
this abundance of data, we tested our CIAA model using AlphaFold 2 structures in place of PDB 
structures. We identified cases from our test set that were correctly predicted using PDB 
structures (Figure 6C)  and obtained the corresponding AlphaFold 2 structures (accessed 2301). 
Upon testing, the model achieved an accuracy of 72.5% (Figure S23A). 
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Next, we examined whether we could use AlphaFold 2 structures to predict cysteine reactivity 
towards IAA for proteins lacking associated crystal structures in the PDB or those without resolved 
reactive cysteines. We identified such proteins from our experimental dataset (n = 409) and 
downloaded their AlphaFold 2 structures. However, unlike the prior performance with AlphaFold 
2 structures, the model showed lower accuracy, achieving only 52.3%. Most of the 
misclassifications involved high reactivity cysteines incorrectly predicted as low reactivity (Figure 
S23B). 

 

Discussion 

To enhance the discovery of high reactivity and likely functional cysteine residues, here we 
developed “Cysteine reactivity towards IodoAcetamide Alkyne (CIAA),” an in silico method 
designed for high-throughput, high-coverage investigations of cysteine reactivity. CIAA 
incorporates published and in-house chemoproteomics studies, which in aggregate measure 
reactivity towards IAA for 9,783 cysteines, including 823 classified as high reactivity—thus our 
work more than doubles the number of known high reactivity cysteines previously reported in the 
literature. Enabled by this data, we mined protein structures to define features that indicate 
cysteine reactivity. Consistent with prior studies, we find that high reactivity cysteines are 
frequently located near histidines, prolines, and positively charged residues and are found in 
alpha helices.13 Aligning with recent efforts to analyze a related class of ligandable, potentially 
“druggable,” cysteines,72 we also observe an enrichment for high reactivity cysteines in pockets—
we expect that some of these residues could serve as useful starting points for drug development 
campaigns and that such highly reactive cysteines may prove particularly tractable for hit-to-lead 
optimization.  

As none of these features alone were sufficient to provide a high confidence metric of cysteine 
likely reactivity, we incorporated all descriptors into a supervised random forest model, which 
resulted in an overall accuracy of 68%, with key predictive features including the depletion of 
hydrogen bond acceptor atoms, depletion of valine residues, and intermediate values of relative 
solvent accessibility. Although the model achieved a true positive rate of 71%, the false positive 
rate of 39% prompted further examination of its limitations. Many misclassified cysteines were 
located within conformationally dynamic proteins or highly solvent-accessible regions, indicating 
that protein dynamics, such as shifts between open and closed states, significantly impact 
reactivity predictions. For example, C285 of CASP1, experimentally classified as low reactivity, 
was predicted to be high reactivity by the CIAA model when analyzed in the active conformation 
of CASP1 (PDB: 6BZ9)—we expect this disconnect stems from the non-stimulated nature of the 
cellular proteomes analyzed, in which CASP1 should exist largely in the zymogen or inactive form. 
Thus we conclude that state-dependent cysteine reactivity may rationalize some of the differences 
observed between the model and proteomic measurements.11,73 Looking beyond state-dependent 
activities, our work also highlights ongoing challenges in computational predictions, particularly in 
protein structure selection and dataset curation as being critical for model performance. Future 
efforts to improve our model’s performance will likely benefit from incorporating protein dynamics 
and other state-specific features, such as protein interactions, together with stringent dataset and 
structure curation.  

Looking beyond structurally resolved cysteines, the rapid growth of protein structure prediction, 
most notably via AlphaFold,57 opens up tremendous opportunities for in silico discovery of 
reactive, functional, and ligandable cysteines proteome-wide in a species-agnostic manner. Our 
comparison of AlphaFold structures that either have or lack matched structures in the PDB reveals 
key differences in CIAA performance. For the former, the availability of matched structures 
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resulted in high accuracy of the CIAA model. For the latter, performance was poor, likely due to 
larger dissimilarity between predicted structures and AlphaFold training data. We are optimistic 
that future implementations of AlphaFold 2 and related tools will prove compatible with in silico 
cysteine analysis, as this does not reflect an inherent limitation in predicted structures.74,75 Such 
efforts will also benefit from ongoing efforts to increase chemoproteomic dataset size to further 
improve training set quality.71,76–78 
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