Boosting Predictability: Towards Rapid Estimation of Organic Molecule Solubility
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The water solubility of organic molecules is critical for optimizing the performance and stability of aqueous
flow batteries, as well as for various other applications. Although relatively straightforward to measure in some
cases, the theoretical prediction of the solubility remains a considerable challenge. To this end, machine learn-
ing algorithms have become increasingly important tools in the past decade. High-quality data and effective
descriptors are essential for constructing reliable data-driven estimation models. We systematically investigate
the effectiveness of enhanced structure-based descriptors and an outlier detection procedure for improving aque-
ous solubility predictability. We train and evaluate random forest regression models using various descriptors to
predict experimental solubility. Outliers are identified through an iterative maximum-error deletion procedure.
We discover that descriptors derived from hydration free energy and weighted fingerprints, along with other
established features, are effective. Notably, solvation energy, octanol-water partition coefficient, atomic charge
polarizability interactions, and the presence of a full-carbon aromatic ring are critical for solubility prediction.
Furthermore, the effectiveness of the outlier detection protocol is validated by improving the performance of the
model and detailed analysis of the dataset. This study significantly improves the predictive capacity of super-
vised machine learning for molecular properties, enabling advancements in various technological applications.

either an acid-base reaction or salt dissociation/formation, ul-
timately reaching equilibrium defined by K.q. X(s) is charge-
neutral (¢ = 0). If the molecule of interest is charged (e.g.,

1. Introduction

In many disciplines, such as synthetic, medicinal, and en-

vironmental chemistry, knowing the aqueous solubility of or-
ganic molecules is critical [1-5]. This importance is exem-
plified by the following applications: (i) Flow batteries (FBs)
require highly soluble compounds [6-9], as higher solubility
allows the solution to store more electrons, thereby enhanc-
ing the energy capacity [10]. (ii) In drug discovery, soluble
compounds are essential to minimize side effects [11]. When
working with poorly soluble drugs, advanced delivery tech-
niques are necessary to improve therapeutic efficacy, which
can complicate the development process [12, 13].

Aqueous solubility refers to the maximum amount of a
compound that dissolves in water through dissolution pro-
cess [14]:
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Schemel: Dissolution process mechanisms.

In this context, X(s) and X(aq) represent compounds in the
solid and aqueous phases, respectively, which have an equi-
librium constant of Ky, (solvation process). Furthermore,
solvated species can increase their solubility by undergoing
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Z7F), a counterion (C*) is needed to stabilize the crystal. Y™
denotes the (de)protonated form of X.

Measuring solubility requires time-consuming experi-
ments, often taking tens of hours to perform accurately, and
may present significant challenges [15-18]. Consequently, es-
timating solubility at the early discovery stage without using
physical samples is highly beneficial. This estimation allows
for the prediction of whether a proposed molecule falls outside
the desired solubility range before it undergoes experimental
testing or production. Should this be the case, the compound
might be rejected or alternatively, it could be structurally mod-
ified to enhance its solubility. A critical question then arises:
what is the most effective method for estimating the aqueous
solubility of organic molecules?

Estimating solubility is a challenging task [19, 20] be-
cause it requires theoretical models that capture interactions
within the solid (molecule-molecule) and solution (molecule-
solvent) phases, as well as the transitions between them. This
difficulty becomes more evident when accounting for fac-
tors such as solvent reorganization, electrostatic interactions,
and environmental variables such as temperature, pressure,
supporting electrolytes, pH, and polymorphism in a single
model to assess the dissolution process. The quantum chem-
istry approach is accurate but highly time-consuming, espe-
cially when dynamics are included. Therefore, this method is
not preferred for high-throughput screening. Empirical meth-
ods and molecular simulations are used to study longer time
scales, but their accuracy and reliability remain inadequate for
multi-phase studies [21-24].
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To mitigate these limitations, data-driven approaches [25,
26] can be used to leverage statistical models and link molec-
ular descriptors with relevant data. These descriptors, derived
from molecular modeling and structural properties, are paired
with solubility data collected from experiments. As a result,
the target values inherently covers all realistic effects, en-
abling the application of various data-driven models such as
machine learning (ML) methods to efficiently predict solubil-
ity [27-35].

The search for ML solubility models has received consider-
able attention in recent years, particularly with regard to drugs
and drug-like compounds [36—-45]. Notably, Zhang et al. [38]
utilized data-driven predictions and 3D molecular represen-
tations to bridge the gap between computational models and
experimental validation for quinone-like molecules. Chaka et
al. [39] enhanced the predictability of solubility by employing
a graph neural network (GNN) named MolGAT [46]. Because
various ML algorithms were used across both descriptor- and
graph-based models for predicting solubility, systematic re-
search into the descriptors is called for to improve the accu-
racy of predictions, especially in medium-sized databases.

Data quality is critical to effective deployment of ML mod-
els [18, 47]. However, experimental measurements are prone
to errors, which raises concerns regarding data reliability.
To address this concern, outliers (molecules whose solubility
cannot be reliably predicted) can typically be identified us-
ing descriptor dissimilarity [48] or clustering [49] methods.
In recent work [50] it was proposed that outliers of solubility
datasets could be detected based on the prediction error distri-
bution [51]. The data were divided into k training and testing
datasets. As a result, the samples in each testing set are pre-
dicted k times by the models trained on distinct data. Samples
that frequently fall beyond a predetermined error range are
considered outliers. Nevertheless, this approach may be inef-
ficient for smaller datasets, high-dimensional feature spaces,
or complex ML models.

In this study, we propose a workflow to improve aqueous
solubility prediction. We select a database that should be suit-
able for organic FB applications. Our methodology comprises
four steps: (i) cleaning the database, (ii) developing structure-
based descriptors, (iii) implementing an outlier detection pro-
cess to refine the data, and (iv) conducting a thorough dis-
cussion of the results to suggest potential directions for future
research.

II. Data Analysis

The Solubility of Organic Molecules in Aqueous Solu-
tions (SOMAS) database, which was previously evaluated
[52], consists of critically validated records. Each record
includes the molecule’s name, Chemical Abstracts Service
(CAS) number, a reference, and its experimental aqueous sol-
ubility, the latter expressed as a floating-point number. Addi-
tionally, the database incorporates eight quantum descriptors,
calculated using density functional theory [53, 54] (DFT),
and employs SMILES (Simplified Molecular Input Line Entry
System) chemical notation to detail the molecular structures.

It also records the temperature (in K) at which each measure-
ment was made. In total, the database contains 11696 records,
with solubility reported in milligrams per liter (mg/L) and des-
ignated as the target variable.

A. Data Cleaning and Preprocessing

To prepare the data for a thorough analysis, we first cleaned

it systematically. The criteria we used align with FB applica-
tions:
(i) Aromaticity [55, 56] is a critical factor that enables the dis-
persion of m-electrons across the conjugated ring. This dis-
persion lowers the ground-state energy and enhances molec-
ular stability [57-59]. Cyclic molecular structures also of-
fer a platform for facile molecular engineering, applicable ei-
ther to the core structure or to the functional group decoration.
Consequently, a total of 6845 records were excluded from the
database due to their non-aromatic character.

(ii)) Water solubility is significantly affected by the net
charge of organic molecules. A prototypical example is
methyl viologen dication [60], which exhibits a solubility
of 1.5 M in aqueous solutions. As electrons are transferred
through reduction reactions, the solubility decreases, until the
neutral molecule becomes practically insoluble. It can there-
fore be argued that the solubility of neutral molecules involved
in the redox processes may represent a critical bottleneck.
Only three records were excluded after filtering out charged
molecules.

(iii) The organic molecules used in FBs are composed of
common elements, primarily carbon (C), nitrogen (N), oxygen
(O), sulfur (S), and hydrogen (H). To a lesser extent, they also
contain phosphorus (P), fluorine (F), chlorine (Cl), bromine
(Br), and iodine (I), indicating an abundant availability of raw
materials. These elements can combine to form various func-
tional groups, including hydroxyl (—OH), carbonyl (C=0),
carboxyl (—COOH), amino (—NH>), phosphate (—POy,), and
halides (—F, —Cl, —Br, —I), each possessing unique proper-
ties. Consequently, additional 20 records were excluded be-
cause the molecules in these records contained boron (B),
arsenic (As), silicon (Si), selenium (Se), or deuterium (D)
atoms.

(iv) An aqueous solubility of 105 mg/L (equivalent to 1
kg/L) for a substance is exceptionally high. This observation
could indicate either an error or a special case occurring un-
der specific conditions that are not typical for most substances
at room temperature and atmospheric pressure. Most neutral
organic compounds exhibit low solubility in water. We ex-
cluded 41 records reporting solubilities of > 10 mg/L from
our analysis.

(v) The molecular weight of the redox species should also
be considered, as smaller molecules are more likely to achieve
higher gravimetric energy density and solubility [61] and
lower cost [62]. Accordingly, we established a cutoff of 500
Da for molecular weight, in accordance with Lipinski’s Rule
[63]. Using this criterion, we removed a total of 122 records.

(vi) We also identified 36 complex compounds featuring
multiple stereocenters by analyzing their molecular structures.
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Figure 1. Distribution of (left panel) raw, (right panel) logarithmi-
cally scaled solubility. To demonstrate the presence of higher solu-
bility values, an inset scatter plot displays the raw solubility data.

These molecules possess a tetrahedral configuration that in-
cludes ”[C@@]” and/or ’[C@]” as chiral centers in their
SMILES representations. Typically, such complex molecules
exhibit low symmetry, and their physical properties, includ-
ing solubility, are influenced by chirality. To preserve the in-
tegrity of our processed dataset, we decided to exclude these
stereoisomeric records.

The final dataset includes cyclic molecules composed of
rings containing 3, 4, 5, 6, or 7 carbon atoms, which may
be fused with nitrogen (N), sulfur (S), or oxygen (O) atoms.
To ensure accuracy, the database underwent a comprehensive
check for duplicates using both SMILES representations and
compound names. This process confirmed the absence of
duplicates or missing values. Our data cleansing procedure
yielded a total of 4635 samples.

B. Target Data Transformation

The distribution of the solubility data is illustrated in Figure
1. The raw data follow an exponential distribution. Approx-
imately 95% of the collected records were below 0.05 x 10°
mg/L. It is necessary to transform the target data before train-
ing the model to ensure efficient predictions.

By applying the natural logarithm, we linearized our data to
approximate a quasi-normal distribution. Logarithmic scaling
yields real numerical values since all the experimental solubil-
ity values are nonzero. The scaled values range from -15.29
to 13.82, with a mean of 4.39, a standard deviation of 4.61,
and a median of 5.26. The median being slightly greater than
the mean suggests a left-skewed distribution.

III. Descriptors

To introduce a molecule into the ML model, we initially
utilized property-based descriptors in their original form as
stored in the SOMAS database. These descriptors include
various chemical properties: molecular mass, solvation en-
ergy, dipole and quadrupole moments, molecular volume, sur-

face area, highest occupied molecular orbital (HOMO) en-
ergy, lowest unoccupied molecular orbital (LUMO) energy,
and the HOMO-LUMO energy gap. The temperature was
also recorded. Electronic structures were estimated using
DFT calculations, implemented in NWChem software [64],
and incorporated the implicit COSMO solvation model [65].

However, these descriptors necessitate additional compu-
tational resources and an in-depth theoretical understanding
of electronic structure calculations. Consequently, there is
growing interest in employing SMILES as input for ML ap-
plications [66—68]. SMILES is a single-line molecular nota-
tion system that does not require any further (pre-processing)
DFT calculations. Since ML models cannot process categor-
ical variables in string format, these must be converted into
numerical values. To achieve this, we explored three distinct
methods, which are outlined below.

(1) A list of numeric values representing 208 physicochem-
ical properties, such as the octanol-water partition coefficient
(log P), van der Waals surface area (LabuteASA), and number
of rings, was estimated using the RDKit open-source chem-
informatics software [69]. Initially, the SMILES strings were
converted into RDKit mol objects. If an error occurred during
this conversion, the input SMILES string was deemed invalid.
All records successfully passed this stage. Following the gen-
eration of the descriptors, we implemented an additional fil-
tering protocol to eliminate columns with zero variance or
missing values from the descriptor space. Consequently, 204
features were retained for each sample. The names of these at-
tributes are listed in Sec. I of the Supporting Information (SI).
Additionally, we concatenated the temperature data within the
feature space. This feature space comprises 205 dimensions.

(2) The Gibbs free energy of hydration, expressed in kJ/mol
and denoted by dgtot, along with its polar and apolar com-
ponents (dgp/dga), and the hydrogen-bond strength of donor
and acceptor atoms, can be estimated using a Python library
named Jazzy [70]. In this context, sdc, sdx, and sa repre-
sent the strengths of the C—H donor, X—H donor (where X
denotes non-carbon atoms), and acceptor, respectively. Jazzy
also provides atomic features such as partial charge (q) and
charge-dependent dynamic polarizability (o). These features
are post-processed to describe interactions within a molecule
as follows:

=

-1 N
gigje” PIriril; (1)
i=1 j=i+1

‘/q:

N-1 N
Vo = Z Z oziozje_m”_rj . 2)

i=1 j=i+1

These formulas mimic the Yukawa potential [71] and yield
real numerical values. Here, r;, ¢;, and «; denote the coordi-
nates, partial charge, and charge-dependent dynamic polariz-
ability of atom ¢, respectively. N is the total number of atoms,
and 8 = 0.01 A~! is used as an arbitrary tuning parame-
ter. The 3D coordinates, including hydrogens, were generated
from SMILES strings and optimized using the universal force
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field [72] (UFF) implemented in the RDkit package. The tem-
peratures were added in this set of descriptors, too.

(3) Extended-connectivity fingerprints (ECFPs), as imple-
mented in the RDkit package, were utilized [73]. These fin-
gerprints are based on the distinctiveness of the environments
surrounding individual atoms, pairs of atoms, and trios of
atoms. The types of atoms, bonds, and their connectivity were
assessed and encoded as a binary vector with a length of 1024,
where a ’1’ indicates the presence of a specific subfragment,
and a ’0’ denotes its absence. We further adapted the ECFPs
by assigning a weight to each bit corresponding to the number
of occurrences, n, of that bit. As a result, the vectors are en-
coded using ’0’s and n; values, where n; represents the num-
ber of times subfragment ¢ appears in a molecule (sample).
We refer to this modified descriptor as w-ECFP. Additionally,
temperature data were normalized to the maximum observed
value (469.15 K) and incorporated into the fingerprint as an
additional column. The feature space comprises 1025 dimen-
sions.

All scripts and files related to this study are available in
A.H.’s GitHub repository. The repository contains all the
codes and data used in the present work.

IV. Machine Learning Models

In our study, we utilized the Random Forest Regressor
(RFR) in the Scikit-learn package [74] for high-throughput
screening. To determine the optimal hyperparameters, we
employed cross-validation, calculating scores across a prede-
fined grid of hyperparameter spaces. Specifically, the training
dataset was divided into ten subsets; nine were used for train-
ing the model, while the remaining subset served to evaluate
its performance. We chose the mean squared error (MSE) as
the metric for optimizing hyperparameters. To prepare our
models, we first randomized the dataset, allocating 85% of
the data for training and the remaining 15% for validation.
The performance of each trained model was evaluated using
three metrics: the mean absolute error (MAE), the root mean
squared error (RMSE), and the coefficient of determination
(R?) calculated from the predictions on the test set as de-
scribed in SI (Sect. II). To report the performance metrics,
we calculated each parameter 20 times and then computed the
average value along with the standard deviation.

The models were trained using different feature spaces (see
Table I). For simplicity, we used D; — D5 to denote the de-
scriptors. Among these, Do, comprising structure-derived
chemical attributes, exhibited the best performance. D1, D3,
and D, performed comparably well. Additionally, when com-
paring ECFP with w-ECFP, we observed that the modification
to the fingerprint significantly enhanced model performance.

The larger the difference between RMSE and MAE, the
greater the likelihood of predicting records with substantial
errors, as the RMSE overemphasizes outliers. To enhance the
predictability of the model, it is crucial to identify and elimi-
nate (i) noise within the feature space (irrelevant features) and
(i) noise in the records (outliers in particular). We explored
the former using Gini importance [75] and addressed the lat-

ter by removing outliers from the datasets through an iterative
protocol, which we will discuss in detail later.

The six most important features for each descriptor are
illustrated in Figure 2(a)-(d). A higher feature score indi-
cates a greater influence on the prediction of the target vari-
able. Within the DFT feature space, the volume of the DFT-
optimized structure and the solvation energy exert the most
significant effects on model predictions. Compared to the
other 204 chemical attributes calculated by the RDKit pack-
age, log P shows a high correlation with the target variable. In
D3, the post-evaluated V,, exhibits the most substantial impact
on the descriptors.

In the w-ECFPs feature space, the most significant molec-
ular sub-fragments identified are: (i) an aromatic carbon (C)
atom with three bonds within a ring, (ii) an aromatic C atom
with a single hydrogen (H) atom, forming part of a ring struc-
ture with two connections, (iii) a structural pattern where a
chlorine (Cl) atom, acting as a functional group, is single-
bonded to a C atom that is part of a ring and connected to
three other atoms, (iv) a molecular fragment containing a Cl
atom that is not incorporated into a ring structure, (v) a config-
uration of C atoms in a ring where two C atoms, each bonded
to one H atom, have two connections and are linked through a
C atom that is part of an aromatic ring with three connections,
and (vi) an aromatic C atom in a ring connected to three other
atoms, which is single-bonded to a CI atom (not part of a ring
and connected only to one atom), and is also double-bonded
to another aromatic C (which is part of the same ring and has
three connections); this second aromatic C is further double-
bonded to another aromatic C, which is also part of the ring,
bears one H atom, and is connected to two other atoms. Fig-
ure 2(d) illustrates the structures of these sub-fragments in a
representative molecule.

There was no indication that temperature was an important
feature in any feature-importance analyses. This is likely due
to the narrow range of temperatures, centered around room
temperature, in which all measurements were taken. The
dataset includes temperature readings with a mean of 296.6
K and standard deviation of 6.1 K, indicating moderate vari-
ability. More statistical information can be found in Figure
SI.

To investigate the correlation between the target variable
and the most significant features within each D;-D, space, we
illustrated these relationships in Figures S2-S5. We observed
an inverse linear correlation with log P and, to a lesser degree,
with molecular volume.

To investigate potential noise in the feature space, we gath-
ered key features to reduce dimensionality, resulting in a new
dataset comprising six-key-features (6KFs) descriptors. Con-
sequently, the 6KFs space encompasses 24 features. Per-
formance metrics indicate that the predictability of the final
model remained almost unchanged and performed similarly
to other models. This finding encouraged us to establish a
systematic protocol for detecting noise in the dataset, specif-
ically targeting outliers, i.e., measurements that are incorrect
or scarcely represented in the dataset.
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MAE (log) RMSE (log) R? Nest

fmax NOF

Descriptor Package

1.77 £0.06 2.44 £0.09 0.72 £ 0.02 1880
1.50 £0.05 2.17 £0.10 0.78 £0.02 600
1.78 £0.06 2.53 £0.12 0.72 £ 0.03 2250
1.73 £0.07 2.41 £0.10 0.73 £0.02 950
2.10 £0.07 2.83 £ 0.11 0.62 £ 0.02 425

0.42
0.23 205 Dao:
045 9 Ds:
0.25 1025 Dy:
0.40 1025 Ds:

12 D;: chemical attributes NWChem (DFT)
chemical attributes RDkit (SMILES)
chemical attributes Jazzy (SMILES)
w—ECFP RDkit (SMILES)

ECFP RDkit (SMILES)

1.55+£0.06 2.24 £0.10 0.77 £ 0.03 1500

0.31

24 Six Key Features (6KFs)

Table I. Detailed information on the RFR models and descriptors: test set RMSE, MAE, and R? were calculated for the model performance
assessment. N°* and f™? denote the number of decision trees that will be running in a model and the maximum number of features a model
considers when determining a split, respectively. f™** defines the ratio of features to consider when looking for the best split while training
each tree in the forest. NOF is the number of features in each descriptor space.
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Figure 2. Feature Importance Plot: The top six important features are sorted based on the importance for different descriptors. Each bar is
labeled with the feature name, except for (d) the highlighted sub-fragments are displayed for an optional molecule.

V. Outlier Detection

To enhance the integrity of our dataset, we utilize an out-
lier detection algorithm that operates by selectively removing
data points exhibiting maximal prediction errors. This itera-
tive process continues until the overall prediction error con-
verges within an acceptable range. The pseudocode for this
algorithm is illustrated in Figure 3.

To elucidate the computational steps, we begin with an ex-
planation of the nested loop, which operates as follows:
Train model: In accordance with standard procedures, the ML

model is trained on 85% of the data (a randomly generated
training set), while the main hyperparameters are maintained
as specified in Table 1.

Identify maximum error: The trained model predicts log sol-
ubility for the test set and calculates the absolute prediction
error for each molecule to identify the maximum absolute er-
TOr.

Update dataset: If a molecule’s error exceeds an acceptable
threshold, it is removed from the dataset. The data indices are
then reset to prepare for another iteration, if necessary.
Iterate: This process is repeated, involving the recalculation
of the maximum error and reassessment for outliers. The iter-
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Figure 3. Pseudocode diagram for outlier detection.

ative cycle continues until no further outliers are detected or
until a predetermined number of iterations or deletions have
been achieved.

To assess the final set of outliers, we implemented the pro-
cedure described above using various descriptors (D7, D,
D3, and Dy). The overlap of the outputs from these descrip-
tors yielded the final set of outliers, defined mathematically
as:

Souttier = Sty N Saup ™ NS NS (3)
In this expression, Syutlier denotes the intersection of all sets,
containing elements common across all specified sets. The in-
dividual sets SPET | SRDkit | gJazsy oy q gw—BECFP ropresent
the outliers identified in the feature spaces of Dy, D2, D3,
and Dy, respectively. Given that each descriptor is tailored to
a specific application domain, samples that consistently fail to
be modeled across these domains are classified as outliers.

To identify outliers, we utilized the following parameters:
“initial _error” (15), "none_run_lim” (20), “error_drop_rate”
(0.1), and accepted_max_error” (3). The detection process
required approximately 5000 cycles to complete. As a re-
sult, 750 records were excluded from the dataset. The outliers
demonstrated a wide range of solubility values, from low to
high, as depicted in Figure 4(a).

Re-optimization of the models using cleaned data signifi-
cantly improved performance, with predictability increasing
by up to 10%. Changes in model complexity varied depend-

>
(a) 2 1t (b) g
80 [ - s y
Il inliers 2 %
. Uo1 6 -
tlier:
o 6ok outliers o
c S
2 Z of
o 8 y
40 5 P °
£ o ot”
20 §_ 4 ‘0@
S-12| y
w s
4 1 1 1 1

-12 -6 0 6 12
Log Solubility

-12 -6 0 6 12
Predicted Log Solubility

Figure 4. (a) Distribution of inlier (blue) and outlier (red) log solu-
bility data. (b) Scatter plot of the experimental log solubility versus
predicted log solubility. The red dashed line shows a deviation of
€r = %3 from the ideal prediction line.

ing on the specific case. The descriptor D, composed of de-
scriptors Dy to Dy, is the most effective, as shown in Table
II. A scatter plot comparing experimental log solubility with
predicted log solubility (Figure 4 (b)) underscores the model’s
good predictive accuracy for the test set data.

MAE (log) RMSE (log) R? Nest fmax Degcriptor

1.36 £0.03 1.76 £0.04 0.81 £0.01 850 0.52 D,
1.24 +£0.03 1.62+£0.04 0.85+0.02 950 0.49 Do
1.254+0.04 1.63 £0.05 0.84 £ 0.01 1500 0.46 D3
1.29+£0.03 1.64 £0.04 0.83+£0.02 950 0.49 Dy

1.07+£0.03 1.38 £0.05 0.90 £0.01 800 0.32 D

Table II. Performance of models applied on the clean dataset: test
set RMSE, MAE, and R? were calculated for model performance as-
sessment. N°* and f™** denote the number of decision trees that
will be running in a model and the maximum number of features a
model considers when determining a split, respectively. The descrip-
tors labeled as Dy to D4 follow the same conventions as presented
in Table 1. Descriptor D is composed of descriptors D1 to Dy.

VI. Challenges and Cases of Applications

In our analysis of the refined data, we found that solubility
is enhanced under two conditions: (i) disruption of the cen-
tral symmetry in core structures, exemplified by the substitu-
tion of an N/O atom with a carbon atom within the benzene
ring, which increases polarity; and (ii) the incorporation of
functional groups such as -OH, -COOH, —NHs, and —SO3H,
which enhances hydrogen bonding and solute-solvent inter-
actions. These concepts have been extensively discussed in
chemistry textbooks.

Returning to Scheme 1, our models were designed to pre-
dict the solubility of neutral molecules (i.e., related to the sol-
vation process), without considering the equilibration process.
This is referred to as intrinsic solubility and is generally ex-
pected to have low molarity in the aqueous solutions.

https://doi.org/10.26434/chemrxiv-2025-4111w ORCID: https://orcid.org/0000-0003-2699-5731 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0


https://doi.org/10.26434/chemrxiv-2025-4111w
https://orcid.org/0000-0003-2699-5731
https://creativecommons.org/licenses/by/4.0/

Log Experimental Solubility (mg/L)

10

0 10

Log Predicted Solubility (mg/L)

Figure 5. Scatter plot of experimental versus predicted log solubility for the outliers, identified by the algorithms shown in Figure 3, is
presented. The predictions were obtained using the model trained on descriptor D. Molecular structures corresponding to the most highly
deviating data points, colorized in magenta, cyan, green, and red, are illustrated.

As shown in Figure 5, the outlier detection process identi-
fied two distinct groups: those with overestimated solubility
and those with underestimated solubility. Among the data,
there is a low solubility range where, logically, even if the ab-
solute error |e,.| is larger than 3, both the predicted and actual
target values are negative (log solubility < 0). This means
that the deviation is negligible on a linear scale and that these
data can be returned to the dataset. However, to keep the al-
gorithm universal, general, and simple, we avoid applying this
constraint at this stage, although this should be considered in
future refinements.

The majority of the data identified during the outlier detec-
tion procedure contained acidic or basic sub-fragments. This
influences the formation of ionic species, which depends on
the pK, value of the solute and the pH of the solution. If a
compound exhibits an acidic character in its neutral form, it
will deprotonate at pH values greater than its pK,, resulting
in increased solubility. Similarly, molecules with basic char-
acteristics exhibit higher solubility as the pH decreases below

pK., leading to protonation. This highlights a significant lim-
itation of many current databases, which often lack pK, (or
pKp) and pH information for each species.

Our interpretation is further reinforced by a comprehen-
sive high-throughput study of the solubility of quinone deriva-
tives [76]. Under strongly acidic conditions, various quinone
derivatives were nearly insoluble because of their pK, >
pH. These derivatives remain unaffected by chemical reac-
tions and equilibrate with the solvent in their unionized forms.
However, their solubility increases dramatically in a strong
basic medium, where the —OH and —SO3H functional groups
undergo deprotonation reactions, resulting in the formation of
—O7 and —SOg, respectively.

In addition to pH and pK,, information regarding support-
ing electrolytes is another critical property that is currently
missing from existing data banks. The presence of additional
ions from the supporting electrolyte alters the concentration
of free ions with opposite charges and shields interactions be-
tween solute ions, which can lead to modifications in solubil-
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ity [77]. For example, the solubility of 2,2,6,6-tetramethyl-1-
piperidinyloxy [78] has increased from 0.8 M to 4.8 M [79]
through the use of different salts.

Although laboratory errors in reported data are always pos-
sible, recent publications [80, 81] provide good examples to
shed light on another existing reason for the discrepancies in
data. A wide range of solubility has been reported for com-
pounds from the same family, despite identical pH conditions
and supporting electrolytes. Our computed pK, values (see SI
Sect. V) suggest that in each study, these molecules have very
similar acidic or basic characteristics and exist in ionic form
in the solutions studied, which would typically result in high
solubility. This discrepancy can be attributed to crystallization
processes. The low-soluble compounds will likely form more
stable crystals even if they are chemically similar. In other
words, the molecular packing in the crystal is very sensitive
to the molecular structure and this can lead to large changes
in crystal binding energy [82] (polymorphism impact).

In summary, the solubility data quality can be reliably as-
sessed by obtaining information on the structural variations,
acidity of the molecules, pH of the solution, and supporting
electrolytes. While pK, is relatively straightforward to eval-
uate nowadays, predicting structural variations presents more
challenges and is still an open question [83]. Nevertheless,
progress in ML-based potentials and sophisticated structure
search methodologies offer substantial potential for accurately
predicting the energy landscapes of polymorphic structures.

VII. Conclusions

The aim of this study has been to develop machine learning
(ML)-based solubility models as a viable alternative to quan-
tum computational methods. To achieve this, we undertook
a systematic process that included data cleaning and analysis,
descriptor development, and outlier detection. We proposed a
workflow to refine experimental data, focusing on producing
useful models through effective outlier detection.

Our efforts facilitate the development of models for predict-
ing intrinsic solubility. The results indicate that both hydration
free energy and subfragment-frequency-weighted fingerprints
perform comparably to established descriptors. Notably, sol-
vation energy, log P, V,, and the number of ringed aromatic

carbon atoms forming three bonds emerged as the most sig-
nificant features for predicting solubility.

The effectiveness of our proposed outlier detection ap-
proach was validated through improved model performance.
This method also contributed to data quality assessment and
addressed missing information to mitigate discrepancies. We
believe that further advancements in solubility prediction
could be achieved by integrating relevant data from the lit-
erature on flow batteries.

The insights gained from this research have significant
implications for both industrial applications and educational
initiatives aimed at advancing solubility models.
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