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ABSTRACT: Bioconjugation reactions are a fundamental synthetic strategy for generating artificial peptides and proteins. 
Although bioconjugates at hydrophobic amino acid residues can offer superior product homogeneity compared to those at 
hydrophilic residues, methods to target moderately reactive hydrophobic amino acids under mild and metal-free conditions 
are limited. In this study, we present the first electrochemically promoted, tryptophan (Trp)-selective bioconjugation that is 
applicable at the protein scale in a neutral buffer. The unique electrochemical cooperation of two radicals, keto-ABNO and 4-
oxo-TEMPO, along with NaBr, was key to accelerating the reaction while simultaneously suppressing both anodic overoxida-
tion of the products and cross-reactivity. Systematic cyclic voltammetry (CV) and UV-visible absorption spectroelectrochem-
istry (SEC) analyses revealed that these two radicals, which have similar redox potentials but differing steric demands, serve 
distinct electrochemical roles (as reactant and electrochemical mediator, respectively). Additionally, NaBr was suggested not 
to function as a redox mediator, but instead likely prevents the decomposition of oxoammonium active species. This electro-
chemical protocol marks a significant advance toward novel processing techniques for chemically modified biologics.

Introduction 
Bioconjugation reactions are fundamental synthetic meth-
odologies essential for producing synthetic peptides and 
proteins. Recent attention has focused on selective biocon-
jugation methods1-7 targeting less surface-exposed, hydro-
phobic proteinogenic amino acids, such as tyrosine,8-10 tryp-
tophan,11 and methionine.12 These methods meet the grow-
ing demand for efficient production and expansion of chem-
ical space of homogeneous protein conjugates without ge-
netic manipulations, thus enhancing their property, efficacy 
and potential applications. Practical bioconjugation reac-
tions require (1) selectivity for a specific functional group 
within a target proteinogenic amino acid, (2) selective acti-
vation of the bioconjugation reagents in the presence of nu-
merous reactive functional groups in biomacromolecule 
substrates, (3) feasibility under physiological conditions 
(mild pH and temperature, aqueous media, and low concen-
tration), and (4) avoidance of excess and toxic metallic rea-
gents that could cause undesired cross-reactivities and 
complicated purification. Meeting these requirements is 
particularly challenging for less reactive hydrophobic 
amino acid residues compared to nucleophilic residues like 
lysine and cysteine.6 

Integrating electrochemical organic synthesis13-17 with bio-
conjugation chemistry is a promising strategy to achieve 
these goals. Electrochemical single-electron transfer pro-
cesses are biocompatible energy inputs that enable opera-
bility in aqueous media, reduce byproducts, and exhibit 
high reactivity and functional group tolerance.18,19 Histori-
cally, electrochemical protein modifications at preparative 
scales have been limited to direct electrolysis for cysteine-
cystine interconversions, site-selective cleavage, and oxida-
tive functionalization.20-23 Since 2018, however, several 
electrochemical protein bioconjugations targeting tyrosine 
(Tyr) residues have been reported.24-28 More recently, elec-
trochemical bioconjugation has extended to tryptophan 
(Trp) residues at the peptides scale29 and to affinity labeling 
of biomacromolecules.30 In this study, we report first elec-
trochemical Trp-selective bioconjugation operable at the 
protein scale. The cooperative use of two N-oxyl radicals 
and a bromide source was essential for efficient, high-yield-
ing bioconjugation.  

Results & Discussion 
In our previous work, we reported a transition metal-free, 
Trp-selective bioconjugation using a sterically less-
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demanding organoradical, 9-azabicyclo[3.3.1]nonan-3-one-
N-oxyl (keto-ABNO), with substoichiometric NaNO2 in 
mildly acidic aqueous media (0.1-1% AcOH aq., pH ~ 3).31,32 
The active species in this bioconjugation is the oxoammo-
nium cation A (see Figure 10), which is generated in situ via 
single-electron oxidation promoted by nitrogen oxide (NOx) 
produced from NaNO2 and AcOH under air. While this ap-
proach is straightforward and compatible with a range of 
substrate, it has some potential limitations: (1) the acidic 
media, which can impede applications to pH-sensitive pro-
teins, and (2) side reaction induced by NOx, such as S- and 
N-nitrosation. Given the well-established role of N-oxyl rad-
icals as electrochemical mediators,33 we hypothesized that 
anodic electrochemical oxidation could activate keto-ABNO 
for Trp-selective bioconjugation in buffered media at neu-
tral pH, eliminating the need for external oxidants (e.g., NOx), 
which could lead to undesirable side reactions. 

To verify this hypothesis, we conducted optimization stud-
ies for the electrochemical bioconjugation of Fmoc-pro-
tected pentapeptide 1a (Fmoc-GSNWG-OH) as a model sub-
strate using an ElectraSyn 2.0 setup (Figure 1a). Without 
applying and electric current, a mixture of 1a (3 mM) and 
keto-ABNO (3 mM) in an electrolyte solution (50 mM tet-
rabutylammonium perchlorate (TBAP) in CH3CN-H2O, 1:1) 
stirred for 1 hour yielded only 33% of product 2a, with un-
reacted starting material (entry 1).34 However, applying 
constant voltage electrolysis (working electrode/WE: 
graphite, counter electrode/CE: platinum, reference elec-
trode/RE: Ag/Ag+) at 1.2 V for 1.0 F/mol (approximately 1 
hour) significantly increased the yield of 2a to 75%, with 
18% of 1a recovered (entry 2). Further increasing the elec-
tric charge led to complete consumption of 1a, but also an 
increase in overoxidation byproducts 3a/3a’ (entries 3 and 
4). At this potential, 2a is likely susceptible to electrochem-
ical oxidation as well, as indicated by the anodic peak of 
Trpketo-ABNO adduct in PBS at 0.98 V vs Ag/AgCl, Figure 
S5). Therefore, lowering the potential to 1.0 V effectively 
suppressed the overoxidation, though the yield of 2a 
dropped to 55% (entry 5). Applying 2.0 F/mol at 1.0 V im-
proved the yield to 78% (entry 6), although further in-
creased in applied charge (>2 F/mol) were limited by rising 
resistance.  

Next, we screened additives to enhance electron-transfer 
processes. Interestingly, adding sterically demanding 
2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) derivatives 
significantly increased the yield of 2a (entries 7–11 vs. en-
tries 5 and 6). Since TEMPOs are inert in Trp bioconjugation 
under NOx conditions, 31 adducts of TEMPO derivatives with 
1a were undetected in these trials. Among the conditions 
tested, 0.6 mM of 4-oxo-TEMPO provided the best result, 
with complete consumption of 1a and minimal formation of 
overoxidized byproducts 3a/3a’ (97% yield of 2a, entry 11). 
The efficiency of the additives correlated with their redox 
potentials,35 with higher oxidation potential TEMPO deriva-
tives yielding more 2a. The current efficiency (the slope of 
the yield of 2a vs. charge graph, Figure S3) was approxi-
mately 1.5 times greater in the presence of 4-oxo-TEMPO 
than without it. 

Further optimizations were conducted in organic solvent-
free, aqueous buffered conditions using the water-soluble, 
N-terminus-unprotected pentapeptide 1b (H-GSNWG-OH). 

However, switching to buffered media hindered Trp-selec-
tive modification. The ElectraSyn 2.0 setup often encoun-
tered unstable electric charge application due to high re-
sistance in the diluted reaction media (0.26 mM of 1b). Con-
sequently, we switched to an ECStat-301 potentiostat (EC 
FRONTIER, Co., Ltd) connected to the ElectraSyn electrodes 
and vial kit for secured reproducibility (Figure S1). Despite 
this setup, the reaction in PBS buffer only achieved low con-
version (3% yield of 2b, Figure 1b, entry 1). To achieve rea-
gent-selective electrolysis, different electrode combinations 
were tested. Using glassy carbon (GC) electrodes for both 
WE and CE improved productivity (37% yield of 2b, entry 
2). Phosphate anions in the buffer may have been detri-
mental, as switching from PBS to Tris-HCl improved en-
hanced the reactivity (Table S2). Screening inorganic addi-
tives to mitigate the negative effect of phosphate revealed 
that addition of NaBr (0.78 mM) and lower concentration of 
4-oxo-TEMPO (0.26 mM) improved reaction efficiency, 
yielding 94% of 2b at 2.0 F/mol charge (entry 4-6). Notably, 
under the NOx activation conditions,31 the transformation of 
1b yielded 2b in a reduced yield (70%) due to the formation 
of nitrosated 2b as a byproduct (17%, entry 7).  

Having established the optimal conditions, we next as-
sessed the compatibility of redox-active amino acids. The 
optimal conditions were applied to model peptide 1b in the 
presence of 1 equivalent of various amino acids (Figure 2). 
The reaction proceeded smoothly with Lys and Met (entries 
2 and 3). In the presence of histidine (His), however, the 
standard voltage resulted in low recovery of His. Lowering 
the voltage to 0.6 V improved both the product yield and His 
recovery (entry 1). When Tyr was present, the reaction was 
slower under standard conditions, but satisfactory yield 
and Tyr recovery were achieved by increasing the voltage 
and electric charge (entry 4). Notably, redox-insensitive 
cystine (Cys dimer) was well-tolerated under these condi-
tions (entry 5).  

With amino acid compatibility confirmed, we applied the 
conditions to commercially available biorelevant peptides 
containing Trp (Figure 3). To achieve higher conversion, we 
used a higher concentration of keto-ABNO (1.04 mM, 4 
equivalents to the peptides). The reaction proceeded effi-
ciently with leuprorelin, yielding 82% of the adduct. Delta 
sleep-inducing peptide displayed a slower reaction with 
concurrent oxidative side reactions; however, by applying 
increased charge at a lower voltage, we achieved a moder-
ate yield of the keto-ABNO adduct (60%). Somatostatin, 
which contains a macrocyclic disulfide, afforded the desired 
adduct in high yield (89%). Octreotide, featuring both a cy-
clic disulfide and a C-terminal threoninol moiety, showed 
good reactivity (81%), even with modification at an unnat-
ural D-Trp residue. Daptomycin, an antimicrobial lipopep-
tide produced by a non-ribosomal pathway, also showed 
good yield (76%) with an increased amount of keto-ABNO.  

A significant advantage of this electrochemical method is its 
straightforward applicability to one-pot, orthogonal dual 
conjugation reactions by simply adjusting the applied volt-
ages/charges.36-38 To demonstrate this, we performed a 
one-pot, tandem electrochemical modification, leveraging 
orthogonal reactivity with Tyr. Since N-methyl luminol de-
rivative (MeLum) has been reported as an effective reagent 
for electrochemical Tyr-selective bioconjugation,25,28 we 
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used this reagent to target the Tyr residue of leuprorelin in 
our optimized setup. After Tyr modification with MeLum at 
1.0 V, reagents for Trp-modification were added, and the re-
action was further electrolyzed at 1.0 V. Each bioconjuga-
tion reagent selectively reacted with its target residues, pro-
ducing doubly modified leuprorelin in 51% yield (Figure 4). 
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Figure 1.  Optimization of Electrochemical Trp-Selective Bio-
conjugation. a ElectraSyn 2.0 (IKA USA) potentiostat was uti-
lized. b Ag/Ag+ was used as the reference. c Yield was deter-
mined by HPLC analysis using UV detection at 230 nm. d The 
half-wave redox potentials (E1/2 vs ferrocene) of N-oxyl radicals 
were cited from ref 35. e ECStat-301 (EC FRONTIER Co, Ltd.) 
potentiostat was utilized. f Ag/AgCl was used as the reference. 

g Chemical activation in 0.1% AcOH aq. (ref 31). Nitrosated 2b 
was concomitantly produced in 17% yield.  

 

Figure 2. Amino Acid Compatibility. a ECStat-301 (EC 
FRONTIER Co, Ltd.) potentiostat was utilized. b Yield was deter-
mined by HPLC analysis using UV detection at 230 nm. 
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Figure 3. Electrochemical Trp-Modification of Peptides. EC-
Stat-301 (EC FRONTIER Co, Ltd.) potentiostat was utilized. 
Yield was determined by HPLC analysis using UV detection at 
230 nm. 
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The optimized buffered conditions were also applied to na-
tive proteins and a monoclonal antibody (trastuzumab) us-
ing a fluorescein isothiocyanate-conjugated reagent (FITC-
ABNOH) (Figure 5). Labeling yield was determined by 
measuring fluorescence intensity on an SDS-PAGE gel. To 
achieve high conversion in the bioconjugation reaction, an 
excess of FITC-ABNOH (10-100 equivalents to proteins) 
was required, with 6.0-10 F/mol of electric charge applied 
at 0.85 V. SDS-PAGE analysis indicated minimal protein de-
naturation (Figure S23-S30). 

Additionally, avidin pull-down experiments were con-
ducted to confirm the preservation of payload function (Fig-
ure 6). In this experiment, a biotin-conjugated reagent (Bi-
otin-ABNOH) was conjugated to Bovine Serum Albumin 
(BSA) under electrochemical conditions in PBS buffer. After 
conjugation, the binding capability of biotin to streptavidin 
beads was maintained, as demonstrated by a mock purifica-
tion of the biotin-labeled BSA from a cell lysate mixture (Fig-
ure 6, lane D vs. lane E). These results indicate that the elec-
trochemical Trp-bioconjugation method is broadly applica-
ble to both protein and peptide substrates, and exhibits high 
tolerance to various functional groups. However, MS analy-
sis frequently revealed overoxidation of protein conjugates, 
and applying higher electric charges often resulted in fluo-
rescence bleaching of FITC. Reducing undesired overoxida-
tion remains a challenge and is an area for further refine-
ment in future applications. 

 

Figure 4. One-pot, Orthogonal, Dual Electrochemical Modifica-
tions. ECStat-301 (EC FRONTIER Co, Ltd.) potentiostat was 

utilized. Yield was determined by HPLC analysis using UV de-
tection at 230 nm. 
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Figure 5. Electrochemical Trp-modification of proteins. EC-
Stat-301 (EC FRONTIER Co, Ltd.) potentiostat was utilized. As-
suming that the mono-conjugate product is obtained at 100% 
yield, yield was calculated from the fluorescence intensity of 
the SDS-PAGE bands using a calibration curve as a reference. 
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Figure 6. Biotin-labeled BSA was pulled down from a mixture 
with HeLa S3 cell lysate by utilizing streptavidin beads. The 
SDS-PAGE bands below 25kDa in lanes E-G correspond to 
streptavidin that was released from the beads upon boiling. 
Lane A: BSA alone,  lane B: biotin-labeled BSA, lane C: HeLa S3 
cell lysate, lane D: a mixture of cell lysate and biotin-labeled 
BSA used for the pull-down experiment, lane E: elution from 
streptavidin beads after pull down from the mixture of cell ly-
sate and biotin-labeled BSA, wash with CRB (50 mM Tris-HCl 
(pH 7.5), 0.3% TritonX-100, 300 mM NaCl; 3 times), and boiling, 
lane F: elution from streptavidin beads treated with cell lysate 
without biotin-labeled BSA, wash with CRB (3 times), and boil-
ing, lane G: elution from streptavidin beads treated with biotin-
labeled BSA without cell lysate, wash with CRB (3 times), and 
boiling. 

To gain insight into mechanism, we conducted systematic 
cyclic voltammetry (CV) measurements in PBS buffer (Fig-
ure 7). While Ac-Trp-OEt and keto-ABNO individually ex-
hibited anodic peaks at 1.1 V and 0.8 V, respectively, a mix-
ture of Ac-Trp-OEt and keto-ABNO displayed a new anodic 
peak at 0.68 V (Figure 7a).39 This result indicates that Trp 
and keto-ABNO interact with each other, and the resulting 
complex (complex B) is more prone to oxidation than Ac-
Trp-OEt or keto-ABNO alone. Another new anodic peak at 
0.98 V is attributed to the Trpketo-ABNO adduct. The ca-
thodic peak currents disappeared due to the irreversible bi-
oconjugation reaction occurring between the oxoammo-
nium cation derived from keto-ABNO and Trp. However, in 
the case of Ac-Trp-OEt and 4-oxo-TEMPO, the cyclic voltam-
mogram was a simple superposition of the two components 
(Figure S7a).39 Thus, Trp and 4-oxo-TEMPO neither interact 
nor react. This is consistent with the absence of bioconjuga-
tion products observed between TEMPO or its derivatives 
and 1a/1b. Using similar analysis, we could not observe 

electrochemical interactions between keto-ABNO and 4-
oxo-TEMPO (Figure S7b).  

Next, we examined the electrochemical interactions be-
tween NaBr and N-oxyl radicals. A solution containing NaBr 
and keto-ABNO produced a new anodic peak at 1.3 V, which 
is shifted to a lower potential compared to that of NaBr 
alone (1.4 V, Figure 7b). The same anodic peak at 1.3 V was 
also observed in the cyclic voltammogram of the mixture of 
NaBr and 4-oxo-TEMPO (Figure S7c). These anodic peaks at 
1.3 V likely correspond to bromide anion ion-pairing with 
oxoammonium species (R2N=O+…Br).40 

In the cyclic voltammogram of a mixture of Ac-Trp-OEt, 
keto-ABNO, and NaBr (Figure 7c), two anodic peaks ap-
peared at 0.68 V (Trp…keto-ABNO) and 0.98 V (Trpketo-
ABNO adduct). The anodic peak at 1.3 V (keto-ABNO+…Br) 
and any cathodic peaks disappeared due to the consump-
tion of keto-ABNO+ species via conjugation with Trp, which 
occurs quickly enough to complete within the sweeping 
timescale of CV. NaBr was not likely involved in the oxida-
tion of keto-ABNO. These observations suggest a completely 
different mechanism from the previously proposed role of 
bromide in N-oxyl radical catalysis.41 Bromide did not act as 
a redox mediator for the generation of oxoammonium spe-
cies, because our bioconjugation proceeded under a con-
stant voltage (0.8-0.9 V) below the oxidation potential of 
R2N=O+…Br (1.3 V) or NaBr (1.4 V). A mixture of Ac-Trp-
OEt, 4-oxo-TEMPO, and NaBr produced the cyclic voltam-
mogram that was a simple superposition of all three com-
ponents, further supporting the electrochemical inertness 
of NaBr to the system (Figure 7d). 
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Figure 7. Cyclic voltammograms in PBS buffer (pH 7.4) on 
a glassy carbon working electrode at a scan rate of 100 mV 
s-1. Concentration: Ac-Trp-OEt, keto-ABNO, 4-oxo-TEMPO = 
3 mM; NaBr = 9 mM. 

 

We further monitored the reaction profile of keto-ABNO 
and 1b using LC-MS, varying the applied charge in the pres-
ence and absence of NaBr (Figure 8). At 0 F/mol, negligible 
reaction was observed in both cases after 5 minutes (<5% 
yield), indicating that electrical input is essential for driving 
the reaction, regardless of the presence of NaBr. As the ap-
plied charge increased, the reaction proceeded, with com-
plete consumption of 1b at 3.0 F/mol without NaBr and at 
2.0 F/mol with NaBr. This outcome clearly demonstrates 
the accelerating effect of NaBr. Notably, in the absence of 
NaBr, significant formation of byproduct 3b (the overox-
idized 1bketo-ABNO adduct) was observed from the be-
ginning of the reaction. The presence of NaBr significantly 
suppressed this side reaction, making the generation path-
way of the active species preferred. 

 

 
Figure 8. Reaction profiles for Trp-selective electrochemi-
cal bioconjugation of 1b. (a) The profile in the absence of 
NaBr (Figure 1b, entry 4). (b) The profile in the presence of 
NaBr (0.78 mM; Figure 1b, entry 6). NaBr accelerated the 
bioconjugation and suppressed the side reaction producing 
over-oxidized byproduct 3b. 
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Figure 9. UV/Vis absorption spectral changes of (a) keto-ABNO and (b) keto-ABNO + NaBr, upon oxidation in degassed PBS 
buffer pH 7.4 (WE: Pt mesh; CE: Pt wire; RE: Ag/AgCl). All measurements were performed under an argon atmosphere. The 
concentration of keto-ABNO = 2.6 mM, NaBr = 7.9 mM. OCP = open circuit potential. 

 

We further performed ultraviolet-visible (UV/Vis) absorp-
tion spectroelectrochemistry (SEC) measurements to inves-
tigate the electrochemical interactions between NaBr and 
N-oxyl radicals (Figure 9). UV/Vis absorption spectra were 
measured in degassed PBS buffer under an argon atmos-
phere. The spectra of keto-ABNO exhibited an absorption 
band (max = 243 nm). Applying a potential of 0.80 V (vs. 
Ag/AgCl) to the keto-ABNO solution led to a decrease in the 
intensity of this absorption band, with an isosbestic point at 
220 nm, suggesting the generation of a single active species 
throughout the electrolysis (Figure 9a-[1]). In the presence 
of NaBr, a similar trend was observed; the absorption band 
at 243 nm decreased upon applying a potential of 0.80 V, 
and the final profile of the band was comparable to that of 
keto-ABNO alone (Figure 9b-[1]). Additionally, the time 
courses of absorbance at 243 nm in the presence and ab-
sence of NaBr were nearly identical (Figures 9a-[2], 9b-[2]), 
indicating that the bromide anion does not accelerate the 
generation of active species through electrochemical inter-
actions. 

Multiple peaks were observed at approximately 220, 240, 
and 270 nm upon applying electric charge under air in the 
absence of NaBr, but the presence of NaBr significantly sup-
pressed the generation of these peaks (Figure S9). These 
peaks likely originated from a decomposed form of keto-
ABNO. In other words, the presence of bromide anions may 
direct charge usage away from the decomposition of active 

species and product overoxidation, thereby favoring the de-
sired bioconjugation pathway. 

Based the above experimental results, we propose a plausi-
ble reaction mechanism (Figure 10). Focusing on the gener-
ation of active species, keto-ABNO+ (A), and the roles of the 
components, several factors should be considered. Firstly, 
an interaction between Trp and keto-ABNO is observed. Un-
der a constant voltage of 0.8-0.9 V, electrochemical oxida-
tion of Trp…keto-ABNO complex (B, Eoxi : 0.68 V)42 reason-
ably generates the oxoammonium species A, promoting the 
bioconjugation process. Secondly, the presence of phos-
phate anions is found to inhibit the reaction, while the pres-
ence of a bromide anion restores reactivity. This is likely 
due to the favorable interaction between oxoammonium 
species and the bromide anion (depicted as A-Br and C), 
which helps prevent the decomposition of the active species 
without accelerating the generation of oxoammonium. This 
effect starkly contrasts with the previously proposed role of 
bromide anions in N-oxyl radical catalysis.41 The two radi-
cals, which have similar redox potentials but distinct steric 
demands, have distinct roles―keto-ABNO acts as a biocon-
jugation reagent, and 4-oxo-TEMPO functions as an electron 
mediator. 4-oxo-TEMPO may enhance the generation of the 
active oxoammonium species A-Br through oxidation of 
complex B existing in a low concentration in the solution 
phase and facilitate the productive bioconjugation process 
over the overoxidation pathway of product 2. This alliance 
is critically important for achieving facile and high-yielding 
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electrochemical bioconjugation even in highly diluted con-
ditions (sub-mM level). These synergistic roles of the com-
ponents significantly suppress unproductive pathways that 
cause oxidative side reactions, possibly via direct oxidation 
on the electrodes. 

 

 
Figure 10. Plausible reaction mechanism. Oxidation poten-
tials (Eoxi) are described vs. Ag/AgCl. 

 

Conclusion 
In conclusion, we successfully developed the first elec-

trochemically promoted Trp-selective bioconjugation at 
protein scale by identifying a unique electrochemical coop-
eration among keto-ABNO, 4-oxo-TEMPO, and NaBr. This 
method offers advantages over the previous chemical acti-
vation approach using NOx, as it can be performed in a neu-
tral aqueous buffer. The accelerated reaction and reduced 
side reactions can be attributed to the unique role of NaBr, 
likely by stabilizing the oxoammonium active species. The 
reaction development described here may pave the way for 
novel processing techniques in the chemically modified bi-
ologics.43 
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