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Abstract

Aqueous batteries, such as aqueous zinc-ion batteries (AZIB), have garnered sig-

nificant attention because of their advantages in intrinsic safety, low cost, and eco-

friendliness. However, aqueous electrolytes tend to freeze at low temperatures, which

limits their potential industrial applications. Thus, one of the core challenges in aque-

ous electrolyte design is optimizing the formula to prevent freezing while maintaining

good ion conductivity. However, the experimental trial-and-error approach is inefficient

for this purpose, and existing simulation tools are either inaccurate or too expensive for

high-throughput phase transition predictions. In this work, we employ a small amount

of experimental data and differentiable simulation techniques to develop a multimodal

optimization workflow. With minimal human intervention, this workflow significantly
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enhances the prediction power of classical force fields for electrical conductivity. Most

importantly, simulated electrical conductivity can serve as an effective predictor of elec-

trolyte freezing at low temperatures. Generally, the workflow developed in this work

introduces a new paradigm for electrolyte design. This paradigm leverages both easily

measurable experimental data and fast simulation techniques to predict properties that

are challenging to access using either approach alone.

1. Introduction

Battery technology is the cornerstone of many industrial sectors, including electric vehicles

and various portable electronics in our daily life. The electrolyte, as a crucial part of battery,

plays a significant role in determining battery performance. Thus, a comprehensive under-

standing of electrolyte structures and properties is necessary for the future development of

next-generation battery technology.

Electrolytes typically consist of salts, solvents, and additives. The salts provide ions for

charge transport, and solvents provide the basic solvation environment, while additives are

used to further fine-tune the electrolyte properties. To obtain better electrolytes, one can

either change the molecular structures or fine-tune the composition ratio of all components,

leading to a gigantic design space. Formula optimization based on trial-and-error and human

intuition can be very inefficient, so systematic screening is often necessary, which is, however,

still a quite challenging task. Currently, both experimental and simulation approaches can

be used for high-throughput screening.1–3 Experimental approaches (especially in vivo tests)

are reliable but can be economically expensive and time consuming on a large scale. More

importantly, macroscopic experimental tests do not provide detailed microscopic structural

and dynamic information. This information is needed to understand the structure-property

relationship, which is necessary for the rational design of electrolytes.4,5 In contrast, com-

putational tools such as molecular dynamics (MD) are more cost-effective and informative

on the atomic scale. However, MD simulation is haunted by inaccurate force fields (FF)
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and sampling problems, rendering its prediction untrustworthy. Moreover, MD simulation

is largely limited to predicting basic homogeneous bulk physical properties. However, com-

plex phenomena such as interfacial chemistry and phase transitions involving large time

and spatial scales have profound impacts on battery performance. Simulating these phe-

nomena directly using MD is extremely non-trivial and is still nearly impossible to do in

high-throughput. To solve these problems and gain a more comprehensive understanding,

both experimental and computational tools need to be combined.

In this work, we focus on the screening of aqueous zinc ion battery (AZIB) electrolytes,

which is a typical problem as stated above. AZIB is gaining popularity because of its low

cost and non-flammability.6–8 Aqueous electrolytes also exhibit ionic conductivity one to two

orders of magnitude higher than organic electrolytes, making them a promising alternative

energy storage technology.9,10 However, compared to commercial organic electrolytes, which

is a relatively more mature technology, AZIB still suffers from a number of problems, such

as the stability of electrode materials11 and the modulation of solid electrolyte interphases

(SEI).12,13 One of the key issues in AZIB is that aqueous electrolytes are easy to freeze, dete-

riorating battery performance at low temperatures. Consequently, it is necessary to optimize

organic additives and salt concentrations to prevent freezing and increase conductivity at low

temperatures,14–17 complicating the design of the electrolyte formula. As stated above, high-

throughput virtual screening based on MD simulation can be helpful in electrolyte design,

but is currently hindered by two major difficulties:

1. An accurate and efficient potential energy surface (PES) suitable for large-scale virtual

screening is still missing. The most reliable PES would be the ab initio (mostly based

on density functional theory, DFT) PES, leading to the so-called AIMD (ab initio MD)

approach. But its computational cost is too high to be practical for virtual screening.

Another alternative option is machine learning MD (MLMD), which learns a ML PES from

a large number of ab initio data.18–22 MLMD is relatively faster compared to AIMD while

retaining its accuracy, but the current ML PES does not possess the transferability needed for
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formula screening. There are large models such as BAMBOO22 and MACE-OFF23,23 aimed

at training a general electrolyte ML PES. But such efforts still only exist for commercial

organic electrolytes, with compromised accuracy and limited chemical space coverage. Other

hybrid approaches such as PhyNEO24 need ab initio many-body data for training, which is

also too expensive for the screening of aqueous electrolytes. Due to these reasons, the main

workhorse in this area is still the classical fixed point charge FF,25–30 the main advantage of

which is the exceptional simulation speed. With carefully fine-tuned parameters, the classical

FF can be accurate enough for the purpose of large-scale screening, but the parameter

optimization process is highly non-trivial. As we will show in this work, the off-the-shelf FF

can be qualitatively insufficient for any screening tasks.

2. Even with the fast classical FF, it is still difficult for MD to directly simulate the

freezing process. The freezing of pure water has been systematically studied using MD

for more than two decades, while still being an extremely challenging problem.31 High-

throughput simulation of the freezing processes of complex aqueous electrolytes would be

nearly impractical. So far, a theoretical tool for predicting electrolyte freezing still does not

exist, whereas such a tool is indispensable to improve the low-temperature performance of

AZIB.

In response to these challenges, in this work we aim to develop a systematic workflow

that combines both experimental and computational methods to perform accurate prediction

and virtual screening for AZIB electrolytes. Following common practice in the development

of classical FF, easily measurable experimental data such as densities and evaporation en-

thalpies are used to generate classical FF that are specifically tailored for aqueous electrolyte

systems.32–34 However, unlike conventional hand-crafted parameter tweaking, multimodal

top-down optimization is conducted using the advanced automatic differentiable (AD) MD

(ADMD) technique.35–38 This new technique allows us to optimize FF automatically with-

out any human intervention. ADMD transforms top-down FF fine-tuning from a highly

specialized, tedious, and time-consuming task into a task that can be conducted automati-
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cally and efficiently. This enables us to use any available experimental data to update the

FF on a routine basis, which is important for the systematic exploration of the electrolyte

design space. The optimized FF is then used to screen the AZIB electrolyte formulae, tar-

geting the electrical conductivity (especially at low temperatures) as the main property to

optimize. In comparison with the experimental data, we further find that the ionic conduc-

tivity predicted using optimized FF is an excellent predictor for the freezing of electrolytes.

By combining easily measurable experimental data and fast MD simulation, we essentially

enables the screening of the low-temperature performance of AZIB electrolytes, which was

hard to probe directly using either approach alone.

2. Model and Methodology

2.1 AZIB Electrolyte Screening

As mentioned above, AZIB electrolytes have garnered significant industrial attention be-

cause of their low cost, non-flammability, and high conductivity. In this study, we focus on

a specific AZIB electrolyte system primarily composed of zinc sulfate, with minor amounts

of manganese sulfate and polyol-based organic additives such as ethylene glycol (EG) and

glycerol (GI). For this system, we first prepared a small set of formulations and measured

their densities and conductivities at various temperatures, thus establishing a preliminary

experimental database for subsequent FF training, validation, and simulation prediction.

These experimental data encompass electrolyte densities and conductivities for varying con-

centrations (from 1 M to 2.5 M) of ZnSO4 and MnSO4, different proportions (0 to 30 wt.

%) of organic additives EG and GI, at various temperatures (253 K, 273 K, 298 K, 333 K),

totaling about 140 data points. We selected approximately half of them for the training of

FF and half as testing set. All data are available in supplementary information.

In the selection process, we adhered to the principle of evenly choosing points across

different temperature ranges, ion concentration ranges, and organic additive concentration
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ranges to enhance the coverage of the training and testing data in the formulation space.

In addition, note that we always leave the points with the best and worst performances

within each range outside of the training set. Therefore, the prediction of these points in

the testing stage would be an extrapolation, instead of an interpolation in the design space.

This approach validates the capability of our model to identify the best and worst performers

outside of the training range, and this capability is crucial for formula screening.

We further note that this experimental database particularly emphasizes the performance

of these formulations at different temperatures to explore the temperature-dependence of

their properties, especially at low temperatures (253 K). At such conditions, aqueous elec-

trolytes face the risk of freezing, accompanied by a substantial reduction in conductivity.

Based on this database, our aim was to train theoretical models applicable across a broad

temperature range, validate their accuracies, and use them to identify AZIB electrolyte

formulations that maintain good conductivity at low temperatures or are at risk of freezing.

To achieve this screening, the primary challenge lies in efficiently utilizing the limited

experimental data to generate accurate theoretical models, conduct high-throughput simu-

lations at low cost, and identify target formulations for further experimental iteration. We

need to utilize small amount of experimental data to develop a generally applicable simula-

tion approach.

2.2 Workflow

In this work, we developed an AZIB electrolyte screening workflow that integrates both

experimental data and theoretical tools, utilizing fast and cost-effective classical MD simula-

tions. As shown in Figure 1, our workflow starts with a small amount of experimental data

and uses them to systematically refine the classical fixed point charge FF based on multi-

modal optimization. The optimization results in a significantly better prediction for thermo-

dynamic and transport properties across different formulations and temperature ranges. In

addition, we used refined FF to screen different formulations of aqueous electrolytes, expand-
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ing the electrolyte space, and then found the target formulations at low temperatures and

experimentally verified their performance. In principle, multiple iterations can be conducted

to achieve a robust and sustainable cycle, in which experimental data enhance theoretical

simulations, and theoretical simulations guide further experiments in turn.

Temp

Formulation

Electrolyte Space

�(�, �, �)

Experimental Measurement

Data 
Supplement

Exploration & Screening 

Verification

Multimodal Optimization

Experimental data

Target formulations

Theoretical screening space

Model 
Refinement

Figure 1: The workflow of integrating experiments and simulation for screening of AZIB
electrolytes.

The basic idea of our workflow is to use experimental data to realign the FF used in MD

simulation. Tailoring FF parameters for specific application is an old idea and has been done

in numerous previous works.39–43 However, these works are conducted primarily on simple

systems with a limited number of adjustable parameters. For complex multicomponent

systems with large number of parameters and constantly cumulating experimental data (e.g.,

electrolytes), the fine-tuning of FF should be performed routinely in a scalable, automatic,

and reproducible fashion. ADMD simulation provides an efficient approach to carry out such

a task. In this work, we use the reweighting MBAR approach implemented in our previous
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work38 to optimize the FF parameter. Easily accessible data including the evaporation

enthalpies of organic additives and densities of the electrolytes at various compositions and

temperatures are combined as our fitting target. Conductivities are used mainly for charge

scaling realignment and validation purposes. This multimodal optimization transforms the

training of the FF from years of expert handcrafting into a simple two-week process without

human supervision, which is necessary to keep up with the update of the experimental data.

2.2.1 Theoretical Model

In this work, we used GAFF (General Amber Force Field), commonly used in organic

molecules and drug molecular systems,27–29 as our initial guess for the salt and organic

additive parameters. SPC/E model44 was always used for water without optimization. In

the optimization, we only modified the nonbonded interactions (the Lennard-Jones (LJ) and

electrostatic charges), which essentially dominates the conducting behavior of the electrolyte.

The two LJ parameters (σ and ϵ) are sensitive to different data: σ has a greater influence

on density,45,46 while the evaporation enthalpy is in a closer connection with ϵ.47,48 Therefore,

both the densities and evaporation enthalpies are used to regularize the LJ parameters in

ADMD simulation. To improve the generality of the model, we use degenerate parameters,

a common strategy in FF fitting49 which can enhance parameter transferability between

different molecules (see Section 3 in SI).

In addition to the LJ parameters, an adjustable scaling factor was applied on all atomic

charges, which has a critical effect on electrical conductivity. Charge-scaled models and

polarizable FF have both been proven to be effective in predicting transport properties,50,51

but polarizable model is computationally more intensive, compromising the efficiency of MD

and its applicability in large-scale screening. So we focused on the charge-scaled model with

different scaling factors to obtain an effective charge that can describe the charge shielding

effect in electrolytes. Although it is a common approach in previous studies, it has been a

challenge for charge-scaled models to simultaneously achieve accurate predictions for both
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thermodynamic and transport properties.51–53 To solve this problem, the LJ parameters

were fine-tuned against density and evaporation enthalpy data under different scaling fac-

tors, while the charge scaling factor was manually scanned to achieve the best accuracy for

electrical conductivity. As we show below, such a strategy reaches a much better balance

between the prediction capabilities of different properties.

2.2.2 Multimodal Optimization

To realize multimodal optimization, we used the Differentiable Molecular Force Field (DMFF)38

program to perform trajectory reweighting,54 which avoids expensive backpropagation through

MD trajectory. During the optimization, we targeted a large number of systems at differ-

ent temperatures and formulations simultaneously. We constructed an objective function

encompassing multiple properties to obtain parameters suitable for various systems.

Specifically, the loss function is constructed as following:

Loss =
∑
T,s

ωT (ρ− ρref)
2 + (∆HEG −∆HEG

ref )
2 (1)

where ρ is the simulated electrolyte density and ρref is the experimental data, the same

as for ∆H. In this work, we study two organic additives: EG and GI. Since these two organic

molecules share FF parameters, to examine the transferability of our parameters in different

molecules, we only included ∆HEG in our object function, while leaving GI as our testing

examples. The reference value of ∆HEG
ref was taken from the CRC database55 and fixed at

298 K during the optimization. In the loss function, ωT represents a temperature-dependent

weighting factor, which is introduced because the number of experimental data points varies

between different temperatures in the training dataset. ωT was taken to ensure equal con-

tributions from data points in different temperatures, warranting balanced performance of

the model in a wide temperature range.

In practice, we first optimized the density to achieve a relatively accurate level, then
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both density and evaporation enthalpy data are employed to finish the final refinement.

In the final refinement stage, two ADAM optimizers were initialized separately, each using

either density or enthalpy gradients to update. The parameter updates from both optimizers

are used alternately during the optimization. In our experience, this strategy ensures that

different physical data with different magnitudes do not interfere with each other in gradient

updates. Moreover, arbitrary relative weights can be avoided between different experimental

data types.

2.2.3 Computational Details

Robust and standard calculation procedures for properties (i.e., density, evaporation en-

thalpy, and electrical conductivity) are essential in our workflow. Densities were directly

derived from NPT simulations, while evaporation enthalpies were evaluated using the av-

eraged potential energies in gas and liquid phases (i.e., Vgas and Vliquid), as shown in the

following equation:56

∆H = Vgas − Vliquid +RT (2)

The situation for electrical conductivity is slightly more complicated as multiple methods

exist to compute electrical conductivity in electrolyte. In previous studies, one often first

determines the self-diffusion coefficient from the mean square displacement (MSD), then

use the Nernst-Einstein relationship to obtain the conductivity.57,58 This approach is not

rigorous because the Nernst-Einstein equation is only applicable to ideal dilute solutions,

when the correlation between the diffusion of positive and negative ions can be neglected.59

Although more accurate methods exist (such as the mutual diffusion coefficient method60–62

), but they have relatively poorer convergence in our systems.59,63,64 Therefore, we choose

to calculate the conductivity by directly integrating the current time correlation function
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(TCF).47,65 The instantaneous ionic current is computed as:

J(t) =
∑
i

qivi (3)

where qi and vi are the charges and velocities of ions. The TCF then can be computed using

moving average along sampled trajectories:

CJ(τ) = ⟨J(t) · J(t+ τ)⟩ (4)

Then the conductivity can be obtained by integrating TCF:

σ =
1

kBTV

∫ ∞

0

CJ(τ) dτ (5)

More details of simulations and MD settings are inlcuded in Supplementary Information.

Initial GAFF parameters were obtained using Ambertools,66,67 and the initial structures

in different compositions were constructed using Packmol.68 All non-differentiable simula-

tions were conducted using OpenMM.69,70 The entire optimization process was conducted

on a single V100 card, undergoing over 60 iterations and taking approximately 10 days to

complete. All procedures were fully automated, requiring no manual intervention.

3. Results and Discussion

3.1 Performance of Optimized Model

Following the aforementioned AZIB electrolyte screening workflow, we performed multiple

rounds of multimodal optimization, refining the LJ parameters under charge-scaled mod-

els with different scaling factors (0.6, 0.7, and 0.8). We then compared the original model

(GAFF + SPC/E), the charge-scaled model (one of the most commonly used approaches

in previous literature71,72), and the corresponding optimized models generated in this work.
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The results are reported in Figure 3 and Figure S2. As shown in Figure S2, without system-

specific optimization, the original GAFF model generates significant outliers in density, and

the predicted conductivities show essentially no correlation with experimental results. This

performance clearly illustrates the deficiency of universal FF in electrolyte screening, and MD

simulations using such a FF can be seriously misleading. For comparison, the charge-scaled

model performs much more robustly in conductivity predictions when the right scaling fac-

tor is used. However, since charge parameterization is strongly coupled with LJ parameters,

adjusting charges alone significantly deteriorates the model performance in densities (Figure

S2) and evaporation enthalpies (Table 1). In Figure 2, we show the trends of density and

conductivity errors during the density optimization cycles starting from the charge-scaled

models. For all charge scaling factors, by optimizing density, the electrical conductivity error

is also reduced. This shows how the learned parameters can be transferred in the predictions

of different properties. We find that the inclusion of EG evaporation enthalpy in the fitting

target worsens the accuracy of conductivity. This shows the balance between dynamic and

thermodynamic properties, which is an inherent limitation originating from the inaccurate

function form used in the classical FF. Nevertheless, compared to the charge-scaled model,

the final optimized model still shows better performance in electrical conductivity, regardless

of the scaling factor. In addition, the predictions of the density and evaporation enthalpy

are also significantly more accurate (see Figure S2 and Table 1). We also note that the

improvement achieved in the EG evaporation enthalpy is also observed for GI, which was

not included in the fitting target, proving the excellent chemical transferability of the op-

timized model (see Table 1). Therefore, we conclude that the automatically optimized FF

reaches a much better performance compared to both initial GAFF and charge-scaled GAFF

(regardless of the value of the scaling factor) and thus will be used in all subsequent studies.

To finalize the FF model for formula screening, we still need to determine the optimal

value for the charge scaling factor. Using conductivity errors as our gauge, the scaling factor

is set to 0.7 at 273 K and 298 K. However, at low temperature (253 K), 0.6 gives a better
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result, while 0.8 is optimal at higher temperature (333 K). We plotted the heat map of

the correlation between scaling factors and temperatures in Figure S3. This is physically

understandable, as the charge shielding effect weakens at higher temperatures, so the scaling

factor should be larger when the temperature increases. The final results for the training set

are plotted in Figure 3a and b, computed using the temperature-dependent charge scaling

factors and in comparison with the original and the corresponding charge-scaled GAFF. It

is clear that multimodal optimization based on small amount of experimental data largely

enhances the accuracy of MD. We further examine the optimized model in the extrapolation

test dataset, which is composed by the worst and the best performers at each temperature.

The results are plotted in Figure 3c and d. Once again, the strong predictive power of the

optimized model is clearly demonstrated, in comparison with the original GAFF.
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Figure 2: The trends of density and conductivity errors during the optimization: (a), (b),
and (c) respectively show the changes under different scaling factors.

Table 1: Prediction errors of thermodynamic quantities for different models

Initial Only CS(0.6) Opt(0.6) Only CS(0.7) Opt(0.7) Only CS(0.8) Opt(0.8)

density 13.78% 4.49% 2.82% 3.22% 2.71% 5.24% 2.91%
∆H (EG) 7.85% 52.59% 35.14% 41.69% 25.92% 31.81% 18.45%
∆H (GI) 20.69% 49.56% 31.76% 43.33% 30.99% 35.34% 23.08%

To investigate the reliability of the model in greater details, we further examine its

capability to capture the quantitative trends of electrical conductivity with respect to tem-
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Figure 3: Final performance of different models in training and testing sets : (a)(b) re-
spectively show the prediction results of conductivity and density of optimized model in the
training set, in comparison with GAFF and charge-scaled model; (c)(d) show the prediction
results of optimized model in the testing set, in comparison with GAFF.
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peratures and composition ratios. Capturing such trends is important for the physical un-

derstanding of the electrolyte behavior, thus is crucial for the rational design of electrolytes.

As illustrated in Figure 4a, we systematically increase EG concentration in the 1.5 M ZnSO4

+ 0.1 M MnSO4 solution. A high concentration of organic additive is typically beneficial

in preventing freezing at low temperature, but it lowers the electrical conductivity at room

temperature (298 K). The effect can be caused by many reasons, including: dilution of ionic

concentration due to the non-ionic nature of organic additives, the formation of ion pairs or

clusters with the organic compounds that reduce the number of free ions, increased viscosity

that hinders ion mobility, and structural changes in the aqueous solution that impedes ion

movement.14–17 Multiple factors contribute to the decrease in conductivity, a trend that both

experiments and theoretical simulations have discovered. This effect is clearly observed in

Figure 4a, as the predicted conductivity drops from 60 mS / cm to 15 ms / cm by adding

30 wt. % of EG.

Another more interesting example is given in Figure 4b, which shows the temperature

dependence of the conductivity for 2 M ZnSO4 + 20 wt. % EG. The conductivity shows

a non-monotonic trend with a turning point at 298 K. This complex behavior can be at-

tributed to two competing effects: On the one hand, high temperature leads to enhanced ion

mobility and reduced viscosity, which contributes to increasing conductivity; On the other

hand, the dielectric constant of water decreases when temperature increases, resulting in

increased ion pairing, leaving fewer free ions available for conduction. Different effects may

dominate in different temperature ranges, giving the complex non-monotonic temperature

dependence. The optimized model accurately captures both the non-monotonic dependence

and the position of the turning point at 298 K, highlighting its ability to describe all the

relevant underlying physical effects.

In summary, through an automatic multi-modal optimization, we significantly enhance

the model’s performance in predicting the thermodynamic and transport properties of AZIB

electrolytes. It also accurately reflects the physical phenomena of conductivity variations

15

https://doi.org/10.26434/chemrxiv-2025-23xh1 ORCID: https://orcid.org/0009-0002-5489-7901 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-23xh1
https://orcid.org/0009-0002-5489-7901
https://creativecommons.org/licenses/by/4.0/


0 10 20 30
Weight Percentage of EG (wt. %)

15

30

45

60

75
C

on
d
u
ct

iv
it
y
 (

m
S
/c

m
)

a 1.5M ZnSO4 + 0.1M MnSO4 in 298K

Exp

Predicted

245 265 285 305 325
Temperature (K)

16

24

32

40

48

C
on

d
u
ct

iv
it
y
 (

m
S
/c

m
)

b 2M ZnSO4 - 20 wt. % EG

Exp

Predicted

Figure 4: The trends of electrolyte conductivity changes under different conditions: (a)
shows the conductivity changes with respect to the weight percentage of organic additive
EG. (b) shows the conductivity changes with respect to temperature. Both the predicted
values and the experimental measurements are presented in the figure.

under different conditions, which makes it perfectly adequate for formula exploration. As

mentioned previously, this optimization and the MD simulation based on classical FF is

cost-effective and fully automated, which is crucial for industrial applications.

3.2 Exploring AZIB Electrolytes at Low Temperature

After a comprehensive validation of the model, we further use it to explore the formulation

space at low temperatures. Given the limited accuracy of classical MD, it is still difficult

to achieve a quantitative prediction of all physical properties. Furthermore, while electrical

conductivity is one of the most relevant key properties in electrolyte screening, high con-

ductivity at room temperature alone does not necessarily make it a good electrolyte. As

mentioned in the Introduction, a more important issue is that aqueous electrolytes are at

risk of freezing,14–17 which is the main factor preventing their industrial application in low

temperature environments. However, freezing behavior is difficult to approach directly using

either experimental or simulation methods. Therefore, in this part, our aim is to assess

whether the optimized model could accurately distinguish good and bad performers at low

temperatures, especially if it can help us identifying freezing failures before experimental
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trials.

To explore the electrolyte formulation space, we fix the temperature at 253 K and vary

the salt concentration from 1.5M to 2.5M, and the content of organic additives (EG and

GI) from 10 wt. % to 40 wt. %. Evenly spaced grid points are used to sample the salt

and additive concentrations, resulting in more than 400 formulations. We compute their

conductivity using MD and select the three formulations with the highest conductivity for

experimental validation. These results are then compared with the top three formulations

with best conductivity in the original dataset at 253 K, as shown in Figure 5. As is shown,

the conductivity errors of the model in the newly explored best performers (marked by

the yellow dots in Figure 5) are comparable or even smaller than the errors of the original

best performers (marked by blue dots), again showing the extrapolation capability of the

optimized model. The three new best performers feature an experimental conductivity at

253 K of 18.92 mS/cm (1M ZnSO4 + 0.1M MnSO4 with 20 wt. % EG), 16.42 mS/cm (1M

ZnSO4 + 0.1M MnSO4 with 30 wt. % EG), and 15.28 mS/cm (2M ZnSO4 + 0.1M MnSO4

with 30 wt. % EG), respectively, which are readily available for more comprehensive battery

tests.

More importantly, in the newly explored formulations, we can successfully separate the

best and worst performers with high confidence. Specifically, when the predicted conductiv-

ity is lower than 10 mS/cm, it always shows an ultra-low experimental conductivity of 0.5

mS/cm, indicating a freezing or vitrification failure (labeled by the blue stars in Figure 5).

Therefore, even though simulating the freezing process directly is still a challenging task, we

can easily identify and rule out the freezers using low liquid conductivity as an indicator,

which can be computed conveniently using fast classical MD. This is physically reasonable

because sluggish diffusion dynamics in a liquid is a strong sign of subsequent freezing on a

longer time scale. Moreover, it is important to note that this predictive power comes from

the carefully fine-tuned theoretical model based on experimental data. To show this, we also

compute the conductivities of the three freezers using the normal charge-scaled model, which
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are labeled by the red stars in Figure 5. The computed conductivities by the charge-scaled

model are reaching 18 mS/cm, which is completely inseparable from the best performers,

thus being useless in formula exploration. Therefore, by combining a limited amount of easily

measurable experimental data (such as densities and conductivities) and fast MD simula-

tions, we effectively create a highly efficient tool to predict the complex phase-transition at

low temperature. Furthermore, this tool is created fully automatically, and can be constantly

self-improved using new experimental data and is free from human cherry-picking. In all,

we show that with an extremely low cost, our hybrid experimental/computational method

serves as an effective approach aiding the discovery of new electrolytes at low temperatures.

4. Conclusion and Outlook

In this work, we developed a comprehensive optimization framework to refine classical FF

based on simple experimental measurements, yielding a robust theoretical model for AZIB

electrolytes. By recalibrating classical MD using experimental data, we can promote the

prediction accuracy to densities and electrical conductivities by orders of magnitude, enabling

a reliable screening on electrolyte formulation at low temperature. More importantly,the

model can be used to identify potential freezers with high efficiency, the capability of which

emerged while learning to simple experimental data. Essentially, this work shows the power

of combining experimental measurements with simulation tools, creating a self-reinforcing

cycle that is much more capable than conventional one-shot MD simulations. Employing

this method, we are able to conduct screening tasks for complex properties (such as phase-

transition properties) while retaining the efficiency of classical MD. Such capability is well-

evidencing for the AZIB electrolyte system in this work and is readily applicable to larger-

scale screening problems for other molecular materials. Therefore, We believe these efforts

address critical challenges in the design of AZIB electrolytes and pave the way for their

broader application.
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Predicted by 
Charge-Scaled Model

Freezing

Best Performers

Figure 5: Exploration of new electrolyte formulations, predicted conductivities are plotted
against experimental conductivities: best performers are labeled by dots and freezers are
labeled by stars. Data points from the original dataset are in yellow, while newly explored
data points are in blue. Red stars are the freezers computed using naive charge-scaled
models.
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the Madrid-2019 force field: Parametrization of nitrate (NO3) and ammonium (NH4+)

ions. The Journal of Chemical Physics 2023, 159, 224501.

24

https://doi.org/10.26434/chemrxiv-2025-23xh1 ORCID: https://orcid.org/0009-0002-5489-7901 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-23xh1
https://orcid.org/0009-0002-5489-7901
https://creativecommons.org/licenses/by/4.0/


(33) Habibi, P.; Polat, H. M.; Blazquez, S.; Vega, C.; Dey, P.; Vlugt, T. J. H.; Moultos, O. A.

Accurate Free Energies of Aqueous Electrolyte Solutions from Molecular Simulations

with Non-polarizable Force Fields. The Journal of Physical Chemistry Letters 2024,

15, 4477–4485, Publisher: American Chemical Society.

(34) Le Breton, G.; Joly, L. Molecular modeling of aqueous electrolytes at interfaces: Effects

of long-range dispersion forces and of ionic charge rescaling. The Journal of Chemical

Physics 2020, 152, 241102.
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(60) Schröder, C.; Haberler, M.; Steinhauser, O. On the computation and contribution of

conductivity in molecular ionic liquids. The Journal of Chemical Physics 2008, 128,

134501.

(61) Molecular dynamics study of conductivity of ionic liquids: The Kohlrausch law. Journal

of Molecular Liquids 2007, 134, 29–33, Publisher: Elsevier.

(62) Calculations of shear viscosity, electric conductivity and diffusion coefficients of aqueous

sodium perchlorate solutions from molecular dynamics simulations. Computational and

Theoretical Chemistry 2016, 1090, 52–57, Publisher: Elsevier.

(63) Yao, N.; Chen, X.; Fu, Z.-H.; Zhang, Q. Applying Classical, Ab Initio, and Machine-

Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable

Batteries. Chemical Reviews 2022, 122, 10970–11021, Publisher: American Chemical

Society.

28

https://doi.org/10.26434/chemrxiv-2025-23xh1 ORCID: https://orcid.org/0009-0002-5489-7901 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-23xh1
https://orcid.org/0009-0002-5489-7901
https://creativecommons.org/licenses/by/4.0/


(64) Feng, G.; Chen, M.; Bi, S.; Goodwin, Z. A.; Postnikov, E. B.; Brilliantov, N.; Ur-

bakh, M.; Kornyshev, A. A. Free and Bound States of Ions in Ionic Liquids, Conduc-

tivity, and Underscreening Paradox. Physical Review X 2019, 9, 021024, Publisher:

American Physical Society.

(65) Temperature dependence of the transport coefficients of ions from molecular dynamics

simulations. Chemical Physics Letters 2005, 408, 84–88, Publisher: North-Holland.

(66) An overview of the Amber biomolecular simulation package - Salomon-Ferrer - 2013

- WIREs Computational Molecular Science - Wiley Online Library. https://wires.

onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1121.

(67) Case, D. A.; Cheatham III, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz Jr., K. M.;

Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The Amber biomolecular sim-

ulation programs. Journal of Computational Chemistry 2005, 26, 1668–1688, eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.20290.

(68) PACKMOL: A package for building initial configurations for molecular dynamics simu-

lations - Mart́ınez - 2009 - Journal of Computational Chemistry - Wiley Online Library.

https://onlinelibrary.wiley.com/doi/full/10.1002/jcc.21224.

(69) Eastman, P.; Pande, V. OpenMM: A Hardware-Independent Framework for Molecular

Simulations. Computing in Science & Engineering 2010, 12, 34–39, Conference Name:

Computing in Science & Engineering.

(70) Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A.;

Wang, L.-P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; Wiewiora, R. P.;

Brooks, B. R.; Pande, V. S. OpenMM 7: Rapid development of high performance

algorithms for molecular dynamics. PLOS Computational Biology 2017, 13, e1005659,

Publisher: Public Library of Science.

29

https://doi.org/10.26434/chemrxiv-2025-23xh1 ORCID: https://orcid.org/0009-0002-5489-7901 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-23xh1
https://orcid.org/0009-0002-5489-7901
https://creativecommons.org/licenses/by/4.0/
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