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Abstract

This review highlights recent advances in AI-driven methods for generating
Boltzmann-weighted structural ensembles, which are crucial for understand-
ing biomolecular dynamics and drug discovery. With the rise of deep learning
models like AlphaFold2, there has been a shift toward more accurate and effi-
cient sampling of structural ensembles. The review discusses the integration
of AI with traditional molecular dynamics techniques as well as experiments,
the challenges of conformational sampling, and future directions for AI-driven
research in structural biology, particularly in drug discovery and protein dy-
namics.
Keywords: generative AI sampler, AI-assisting traditional sampling,

1. Introduction

Understanding the function of biomolecules, such as globular proteins, in-
trinsically disordered proteins/regions, nucleic acids, and various associated
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small molecules, is crucial for biomedicine, human health, and drug discov-
ery. Traditionally, it has been rooted in the “sequence-structure-function
paradigm," which focuses on the most frequently observed or native state
structure. This paradigm led to the involvement of X-ray crystallography,
nuclear magnetic resonance (NMR), and more recently, cryo-electron mi-
croscopy and other methods in obtaining structures for around 193,000 pro-
teins and 4300 nucleic acids in the RCSB protein databank as of August 2024.
However, this perspective is still incomplete, as biomolecules are inherently
dynamic and mostly function through an ensemble of structures, understood
as a set of representative structures with physical or Boltzmann weights rep-
resenting their probabilities (Fig. 1). Examples include G-protein-coupled
receptors (GPCRs), kinase-domain proteins, and RNA riboswitches, which
can adopt multiple conformations associated with different states, enabling
the downstream function of these biomolecules. Uncovering the compre-
hensive structural ensemble under equilibrium distribution, is critical for
discovering cryptic pockets—druggable pockets hidden in the native state
but revealed in metastable states[1] and understanding the allosteric effects,
where changes in one part of the molecule affect another upon interacting
with binding partners. These often lead to the development of more spe-
cific and selective drugs, compared to those targeting the orthosteric site in
the native state, which tends to be conserved among protein homologs due
to the evolutionary nature of the human proteome[2]. This calls for a shift
from the “sequence-structure-function" to the “sequence-ensemble-function"
paradigm.

While recently attempts have been made to realize this shift through
the use of Artificial Intelligence (AI) in structural bioinformatics, tradition-
ally Molecular Dynamics (MD) has been used for studying conformational
ensembles by integrating Newton’s equations of motion with an optimized
potential. However, all-atom MD suffers from a separation of timescales
effect where the integration timestep captures the fastest motion (bond vi-
bration, in femtoseconds) and is much smaller than most events of interest.
Enhanced or rare event sampling methods sample a modified distribution
with a more uniform distribution across metastable states, then reweight to
obtain the “true" physical distribution[3]. Despite the development of various
methods, reliable enhanced sampling requires significant a priori knowledge,
computing resources and is not high-throughput.

From a data-based methods perspective, with the availability of an enor-
mous structural database, particularly for proteins, methods such as Al-
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Figure 1: Underlying distribution of biomolecules dictates their function in a
given environmental condition
a, Shows a representative free energy profile for a biomolecule. It also illustrates the
interplay between timescales of biological processes and conformational-metastable
states for 1) Trp8 rotomer of Cold Shock Protein[4], 2) Rearrangements of bases
in PreQ1 Riboswicth[5], and 3) Activation loop movements for Abl1 kinase[6]. b,
Illustrates a case where a binding partner (red triangle) triggers the conformational
selection towards metastable state for downstream function of a biomolecule. c
Illustrates the overall importance of Boltzmann weights in drug discovery and in
understanding molecular mechanisms.

phaFold2 (AF2)[7], RoseTTAFold2[8] and OpenFold[9] have been developed
to solve the protein folding problem. These methods use the transformer
model in the natural language processing field to interpret co-evolutionary in-
formation in multiple sequence alignments (MSA) to map a primary sequence
to its crystal-like structure. Alternative models, such as OmegaFold[10] and
ESMFold[11], use Protein Language Models (PLMs) to bypass the require-
ment of MSA. More recently, AlphaFold3 (AF3)[12] expands its predictive
capabilities to complex structures including proteins, nucleic acids, small
molecules, ions and more. While these methods exist within the “sequence-
structure-function" paradigm, a wide range of methods based on these have
been developed to operate from “sequence-ensemble-function" standpoints
by modifying the input or prior information of AF2. They include MSA-
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subsampling[13] or reducedMSA-AF2 (rMSA-AF2) that reduces the infor-
mation entering the AF2 by randomly sampling sequences from MSA, AF-
cluster that clusters the MSA sequence based on sequence similarity[14],
SPEACH_AF[15] that perturbs the MSA with Alanines, and more recently
local frustration based MSA clustering/perturbing method[16]. Further, by
leveraging the AF2 architecture, the Diffold[17] method uses the diffusion
framework to sample heterogeneous conformations. We point to the review
article by Sala et al. [18] for details of these and other methods.

However, the majority of biomolecular functions depend on the precise
conformational distribution appropriate for the given environmental variables
such as temperature, pressure and ion concentration. There is thus a need to
obtain not just any distribution but specifically a Boltzmann-weighted dis-
tribution of conformations accurate for the environmental conditions. This
has been done in many ways, including either by developing directly an AI-
based sampler or by using AI to augment enhanced MD. This ensures the
system explores conformations with the correct relative probabilities and
fluctuations at a given temperature and pressure, following thermodynamic
principles. These Boltzmann weights provide insights into the allostery net-
works and downstream biomolecular function[19], and also reduce the search
space of metastable conformations for drug discovery via docking and other
applications[20] (Fig.1c). In this mini-review, we will discuss the progress
made in generative AI and the influence of AI in assisting traditional meth-
ods for biomolecule conformational distribution over the past few years and
further outline the key steps we believe the community could be taking to
enable sampling of Boltzmann weighted structural ensembles of arbitrary
proteins and their complexes.

2. Boltzmann-Weighted Ensemble Sampling with Generative AI

The recent advancements in PLMs and diffusion models have significantly
increased the application of generative AI models in predicting biomolec-
ular conformational ensembles with corresponding Boltzmann weights. In
particular, AF2 has been an essential element in this progress, particularly
for protein molecules, since it has learned a mapping from primary amino
acid sequences to contact maps and, subsequently, to Cartesian coordinate
space. Leveraging this progress in the past three years to achieve a trans-
ferrable architecture, the field of protein conformational ensembles has wit-
nessed a surge in works incorporating the components of AF2 into genera-
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Figure 2: Paradigm shift to “ensemble-function" realised in computational
methods for biomolecules
Illustrates the emergence of methods in generating Boltzmann-weighted ensemble
in the past three years since AF2, generative AI development. * - These methods
are not directly influenced by either Generative AI advancements or by utilizing
components of AF2. ∧ - These methods minimize potential energy through their
loss function

tive AI frameworks, including Generative Adversarial Networks (GANs)[21],
Flow-based Models (FMs)[22], and Diffusion Models (DMs)[23]. Due to
such progress in protein ensemble generation, we explore current protein-
specific methods and the methods that can transfer the architecture to all
biomolecules in this mini-review. For a detailed assessment of the generative
AI methods for biomolecular ensemble sampling, we direct the readers to
reviews by Rotskoff [24], Liu et al. [25] and Tiwary et al. [26].

2.1. Generic molecular systems
Before AF2, Boltzmann Generators[27] (BGs) were one of the first meth-

ods to use a flow-based generative AI method to obtain Boltzmann reweighted
biomolecule samples by minimizing the potential energy in their loss func-
tion. BGs training also utilized MD trajectories to enhance the network
initialization through a “training-by-example" protocol. Recent updates in-
clude equivariant flow matching models[28] and transferrable BGs[29], which
prescribes a protocol to account for the topology of the generated molecules
and symmetries in the energy function. With this correction, the updated
Boltzmann generator architecture can be applied to a wide range of chem-
ically distinct systems due to its inputs in the Cartesian coordinate space.
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Despite its elegant protocol, this method requires significant training data
to capture essential modes in the underlying probability distribution. Post
AF2, new approaches have emerged[30, 31, 32, 33, 34] for protein molecules
as AF2’s modules can account for the topology and structural representa-
tion from the sequence, allowing these methods to work from the primary
sequence to lie well within the “sequence-ensemble-function" paradigm.

2.2. Proteins
Following AF2’s success with an extensive protein structure database,

the Str2Str[30] model implemented heating-annealing training for a score-
matching model, allowing moving across energy landscape barriers. The
method is trained only on crystal structures and allows for achieving local
fluctuations akin to microsecond-long MD simulations. AlphaFlow/ESMFlow
[31] is another model that utilizes the AF2 network under a flow-matching
framework. This model was trained on the PDB as well as short 100ns
long MD datasets to include timescale information in the training set. Al-
phaFlow/ESMFlow captures local fluctuations compared to the 100-200 ns
test set of ATLAS MD by learning nanosecond timescale information in its
training set.

Combining some key ideas from AF2 and diffusion models, the Distribu-
tional Graphormer (DiG)[32] method uses a score-matching framework on
an expressive Graphormer architecture to predict Boltzmann-weighted dis-
tributions for proteins. Like AlphaFlow, DiG also uses a PDB and 100-500ns
long MD datasets for training. However, unlike previous methods, DiG em-
ploys MD potential energy as boundary conditions on its loss function during
pretraining, helping it learn the potential energy function. With this setup,
DiG outperforms nanosecond-level simulation data and produces distribution
comparable with millisecond-long simulations for two SARS-CoV-2 virus pro-
teins.

2.3. Intrinsically Disordered Proteins/Regions (IDP/IDR)
Unlike globular proteins, IDPs/IDRs are dynamically heterogeneous, in-

terconverting between distinct ensembles of states[35]. Understanding their
underlying distribution requires MD trajectories to account for timescale
information. IdpGAN [33], developed using GANs architecture, generates
coarse-grained conformational ensembles of IDPs/IDRs. To improve trans-
ferability, Janson and Feig [34] developed idpSAM, a latent diffusion model
using transformer architecture. With an increased training set, idpSAM
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shows promise as a transferrable all-atom ensemble generator while trained
on coarse-grained(CG) data. DynamICE [36] is another model that uses a
recurrent neural network, specifically the Long-Short Term Memory(LSTM)
network, to incorporate experimental prior in ensemble generation. While
these models work on predicting ensembles, ALBATROSS [37] is another
bidirectional LSTM-based deep learning network [38] that directly predicts
the ensemble dimensions, such as radius of gyration and end to end distance,
for a given sequence of IDP/IDR.

2.4. Summary of Generative AI samplers
Altogether, following the paradigm shift from structure to ensemble (Fig.2),

generative AI has significantly advanced in predicting Boltzmann-weighted
protein conformational distribution. In spite of this current progress (Fig. 3),
the field of protein conformational distribution faces two major challenges:
1) a timescale-rich, well-designed training dataset and 2) an evaluation pro-
cess and metrics. Current works show how nanosecond-level information for
diverse proteins could be used to extrapolate to different protein systems.
While extrapolation to different systems of varied length scales is manage-
able due to the current growth in AI, extrapolation to unseen states is highly
questionable. As seen in the case of DiG, this depends on the training set,
learning architecture and using forcefields in pre-training to overcome the
free energy barriers for sampling metastable states. This leads to the ques-
tion of how to evaluate these weights. Currently, all the methods mentioned
use various probability distribution-based metrics to compare with different
lengths of MD simulations. However, reliable benchmark datasets, such as
experimentally determined Boltzmann ensembles, and standardized metrics,
analogous to LDDT or TM-scores in the case of static structures evalua-
tion, are still lacking. Achieving such ambitious desirables in generative AI
for Boltzmann weighted ensemble requires a well-curated training dataset
to avoid test data leakage, with timescale-rich information and standardized
evaluation metrics to extrapolate in both length-scale and timescale.

3. AI-assisted traditional structural sampling methods

AI samplers are known for their efficient sampling, but they struggle
to extrapolate beyond training data and cannot estimate dynamic, time-
dependent properties like transition pathways or rates. In contrast, tradi-
tional methods such as molecular simulations and cryo-EM follow physical
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Figure 3: Summary of current attempts in generating Boltzmann weighted en-
semble.
Illustrates the overall summary of all the attempts made in either using generative
AI or augmenting traditional methods in obtaining Boltzmann-weighted ensemble.

laws and can extrapolate, though they face challenges in accelerating sam-
pling and 3D reconstruction. AI methods can assist here, as structures from
AI samplers can directly serve as templates or seeds [39]. Additionally, AI-
derived scores like AF2 pLDDT provide valuable prior information [40, 41]
for traditional methods. Recently, new AI models have been developed to
integrate more deeply with these methods. In this section, we review a range
of such methods.

3.1. AI for enhanced sampling
Enhanced sampling methods have long been developed to harness the

extrapolation power of physics-based simulations, by overcoming free energy
barriers and accelerating sampling. Typical enhanced sampling workflow
usually involves three key stages: 1. propose possible states/structures, 2.
identify reaction coordinates or low-dimensional manifolds for moving be-
tween these states, and 3. perform enhanced sampling. For each of these
stages, AI methods have been incorporated.

Generating possible structures: While generating a Boltzmann ensem-
ble is complicated, achieving structural diversity is relatively straightforward
with generative AI methods. These diverse structures can effectively initial-
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ize molecular simulations, enabling generating structures from discontinuous
regions of wide conformational spaces. Case studies demonstrate that un-
biased MD simulations seeded by rMSA-AF2 can construct Markov State
Models Markov State Models with metastable states containing cryptic lig-
and pockets[42].

Learning reaction coordinate: AI methods for dimensionality reduction
that incorporate time information improve the capture of dynamic proper-
ties from time series data and help identify reaction coordinates for slow
processes, with pioneering examples including time-lagged independent com-
ponent analysis (TICA)[43] using a linear neural network architecture and
VAMPnet [44] employing non-linear architecture. Iterative applications of
these methods combined with enhanced sampling can optimize reaction co-
ordinates and enhance convergence on thermodynamic properties, such as
Boltzmann weights. For example, the Reweighted Autoencoded Variational
Bayes for Enhanced Sampling (RAVE) method [45] iterates between time-
lagged autoencoder-type ML models learning low-dimensional reaction coor-
dinates [46, 47] and enhanced sampling schemes like metadynamics. Reweight-
ing biased samples and correcting bias effects for the time series have been
implemented for this iterative biasing protocol [48]. An example of AI-
integrated enhanced sampling workflow for general proteins is the AF2RAVE
protocol, which combines rMSA-AF2 with the RAVE method to systemati-
cally explore metastable states and rank structures using Boltzmann weights
[4, 49].

Enhanced sampling schemes: AI methods have been used to design new
enhanced sampling strategies. For instance, data-driven free energy or bias
potential estimators can be used for adaptive biased simulations[50], while
reinforcement learning models can probe adaptive sampling initialization or
bias deposition as policy selection problems[51, 52]. Additionally, AI models
can reduce the computational cost of traditional enhanced sampling methods.
For example, in the learned replica exchange method (LREX)[53], Boltzmann
generator facilitate replica exchange by mapping high-temperature replica
configurations to target temperatures, eliminating the need for intermedi-
ate replicas. Thermodynamic Map methods (TM)[54, 55] show promise in
using diffusion models combined with MD simulations to extrapolate Boltz-
mann weights of structural ensembles under conditions not present in the
MD training sets.

Advances in AI methods for enhanced sampling have been carefully dis-
cussed in recent reviews [56, 57]. While specific methods for each stage of
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the enhanced sampling workflow depend on the system and available tools,
establishing a general guideline for selecting the most suitable approach at
each stage would be highly beneficial. For that purpose, benchmarking these
methods with reliable dataset based on unified metrics for sampling efficiency
and performance (eg. accuracy and convergence of sampled Boltzmann dis-
tribution) is essential. Transferability remains a challenge for AI-augmented
enhanced sampling methods, as both MD and AI models often require rerun-
ning for new systems, except in specific cases such as homologous proteins
or mutants. In practical applications, prior knowledge and manual tuning
are typically inevitable. Looking ahead, interpretable AI and reinforcement
learning may play a role in streamlining this process by treating traditional
manual tuning as a policy problem.

3.2. AI for Molecular Dynamics surrogates and force-fields
Recent works have integrated AI more deeply into the MD simulation

process itself, beyond just enhancing sampling methods. Schreiner et al.[58]
implemented an Implicit Transfer Operator (ITO) using denoising diffusion
probabilistic models with a SE(3) equivariant architecture to learn surrogates
of MD simulations at multiple time resolutions, accurately capturing stochas-
tic dynamics across various time scales. Another example is Timewarp[59],
a normalizing flow-based generative model by Klein et al., which learns to
make large time steps (105-106 fs) to simulate MD, achieving a 105-fold ac-
celeration over traditional MD simulations. Timewarp demonstrates trans-
ferability between different molecular systems and generalizes well to unseen
small peptides (2-4 amino acids) at all-atom resolution.

AI has also been employed to accelerate MD simulations by learning
coarse-grained (CG) models. This involves using AI to group atoms into
larger particles or “beads” [60], develop effective CG force fields such as
CGSchNet[61] and 2-for-1 methods[62], and backmap CG configurations to
recover atomistic molecular details such as the DiAMoNDBack method[63].
By compromising system resolution in a systematic manner, these AI-powered
CG models significantly reduce computational costs, more efficiently sam-
ple conformational space and enable the study of larger systems and longer
timescales, such as the application of the CALVADOS model [64, 65] to
liquid-liquid phase separation for intrinsically disorder proteins.

One advantage of AI-powered MD engines is their transferability across
different systems without the need for retraining. However, to truly claim a
model is transferable and generalized, its performance must be demonstrated
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on large, novel test systems. In future endeavors, improving transferability
will require incorporating more high-quality MD data from diverse systems
across different temperatures, pressures, or other environmental parameters,
into the training set. Moreover, the impact of different CG resolutions trans-
ferability and accuracy has not been investigated, and it remains unclear
which resolutions would be optimal.

Additionally, AI has been used to facilitate the development of quantum-
mechanical quality force fields for accurate ab initio MD simulations of
large molecular systems containing millions of atoms, making previously pro-
hibitive simulations feasible. These AI-powered force fields, such as AI2BMD[66]
and GEMS[67], allow researchers to explore conformational space and de-
tailed interatomic interactions for processes such as folding and unfolding
of chignolin, providing a level of detail often unattainable with conventional
force fields. For practical applications of AI-driven ab initio quality MD on
biological systems and process, overcoming the challenge of large timescales
will be the next hurdle in the future.

3.3. AI for Boltzmann Ensembles from Cryo-EM
While so far in this section we have focused on AI methods interfac-

ing with molecular simulations, their impact has been significant also in
enhancing experimental structural ensemble determination, particularly in
cryo-electron microscopy (cryo-EM). Since biomolecules are flash-frozen be-
fore Cryo-EM imaging, sampling of each particle follows the Boltzmann dis-
tribution prior to freezing. However, reconstructing a 3D ensemble from
millions of noisy 2D images is challenging. Each 2D image is a randomly
oriented “planar slice” of a biomolecule in a specific conformation, and the
low signal-to-noise ratio complicates both 3D reconstruction and free energy
landscape estimation.

Both traditional and AI-driven approaches for reconstructing Boltzmann-
weighted structural ensembles from single-particle cryo-EM have been sys-
tematically reviewed recently [68]. Here, we highlight a few applications of
AI in this field. For 3D reconstruction of heterogeneous conformations, VAE
models, such as CryoDRGN [69] and TomoDRGN [70], have been widely
used, taking cryo-EM/ET 2D images as encoder inputs and 3D density map
as decoder outputs. The synthetic 2D images from 3D density map outputs
are compared with input images for the VAE reconstruction loss. While GAN
models, like Multi-cryoGAN [71] establish a competition between physics re-
construction simulator with a discriminator neural network that distinguishes
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between experimental 2D cryo-EM images and the ones synthesized from the
3D reconstruction.

For extracting Boltzmann weights of conformations from Cryo-EM datasets,
Bayesian frameworks are often employed to reweight computationally mod-
eled structural ensembles, typically derived from MD simulations and poten-
tially from generative AI in the future. The ensemble reweighting process
involves recovering the posterior probability of the weights for each confor-
mational state, given the observed cryo-EM images[72, 73].

4. Outlook

We conclude this review with our outlook on what we perceive as some
exciting avenues and open challenges. Numerous reweighting methods have
been developed to integrate experimental data from X-ray crystallography,
FRET, NMR, and cryo-EM into molecular dynamics simulations. These
methods help capture the long-timescale behaviors observed experimentally,
addressing sampling limitations in MD and producing more accurate Boltz-
mann weights[74, 75]. Looking ahead, we expect AI-driven samplers for
Boltzmann ensembles to better incorporate diverse experimental priors and
high-quality MD data into input channels, model architectures, and train-
ing sets. Comprehensive benchmark datasets and metrics are still needed
to evaluate these ensembles and their Boltzmann weights. It is crucial to
consider not only a model’s transferability but also its generalizability, par-
ticularly its performance on test sets that include critical point mutations
and long-timescale dynamics in large systems.

While there are possibly several relevant applications of Boltzmann-weighted
ensembles in biology and associated fields, for the sake of brevity here we
highlight one important area, namely structure-based discovery. AI-generated
static structures, especially from AF2, show promise for drug discovery [76,
77]. Refining ligand-free AF2 structures with flexible docking or MD im-
proves small molecule docking by addressing ligand-induced fit effects [78, 79].
However, conformational diversity is critical for drug discovery, especially in
cryptic pocket and antibody design [80]. Boltzmann weights are key for iden-
tifying metastable states and selecting favorable holo (ligand-bound) struc-
tures. AF2RAVE-generated structures have demonstrated success in kinase
inhibitor studies by proposing metastable, druggable states [6]. Moving for-
ward, we believe AI-driven Boltzmann ensembles offer exciting potential in
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Method System Input Architecture Accuracy Trans.
Generative AI-Sampler

BGs[27] universal Cartesian Coords Flow-based enhanced MD ×

transferrable-BGs [29] universal Cartesian Coords Equivariant-
Flow

dipeptide MD
(50ns) ✓

Str2Str [30] proteins Cartesian Coords Score-based fast folding proteins
(1µs MD) ✓

AlphaFlow-MD [31] proteins AA seq, MSA Flow-matching ATLAS MD
(100ns) ✓

ESMFlow-MD [31] proteins AA seq Flow-matching ATLAS MD
(100ns) ✓

DiG-proteins [32] proteins AA seq score-based ms-long MD ✓

idpGAN [33] IDP AA seq GANs ms-long MD ✓

idpSAM [34] IDP AA seq Latent Diffusion MCMC ✓
AI-accelerating MD

RAVE [45] universal initial structure VAE enhanced MD ×

AF2RAVE [4] proteins AA seq, MSA rMSA-AF2, RAVE enhanced MD ×

TM [55] universal initial structure score-based ms-long MD ×

LREX [53] universal initial structure Flow-matching enhanced MD ×

AI-assisted MD engines/toolkits

Chennakesavalu et. al.[60] biomolecules all-atom structures
and forces from MD GNN, Normalizing flow µs-long MD ×

DiAMoNDBack [63] proteins CG structure DDPM all-atom, diverse
no BW ✓

Timewarp [59] peptides AA seq Flow-matching µs-long MD ✓

2-for-1 [62] proteins CG MD score-based ms-long MD ×

CGSchNet [61] proteins AA seq GNN µs-long MD ✓

AI2BMD [66] proteins initial structure GNN ab initio ✓

GEMS [67] biomolecules initial structure SpookyNet ab initio, NMR ✓
AI for Cryo-EM reconstruction

Multi-cryoGAN [71] biomolecules 2D images GAN diverse, no BW ×

CryoDRGN [69] biomolecules 2D images, pose VAE diverse, no BW ×

TomoDRGN [70] biomolecules tilt series images VAE diverse, no BW ×

ensemble-
reweighting [72] biomolecules MD, cryo-EM data Bayesian inference ms-long MD ×

Table 1: Representative examples of AI methods for generating structural ensembles.
Unless otherwise specified as ‘no BW’, the ensembles generated by the methods above
are capable of extracting Boltzmann weights. Transferability of architectures (Trans.)
specifies whether the model requires retraining when applied to different systems.
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allosteric drug design, understanding biomolecular dynamics and interac-
tions, exploring the proteome and more.

In conclusion, AI-driven methods for generating Boltzmann-weighted struc-
tural ensembles have advanced but continue to face significant challenges.
Interdisciplinary collaboration is essential to overcome these challenges, im-
proving biomolecular understanding and accelerating therapeutic discovery.

5. Papers of interest

Papers of special interest(*) or outstanding interest (**)
[32]** generative AI model to sample the Boltzmann distribution, by

incorporating the physical potential into the loss function of a score-matching
framework on a Graphormer architecture.

[29]* transferable Boltzmann Generator, based on a continuous normal-
izing flows is demonstrated on general dipeptides.

[34]* a transferrable all-atom generator for IDPs, trained on coarse-grained
(CG) data. It employs an autoencoder architecture combined with a DDPM
model matching the latent space distribution to a prior.

[4]** combined rMSA-AF2 with the Reweighted Autoencoded Variational
Bayes for Enhanced Sampling method to extrapolate heterogeneous confor-
mations and assign Boltzmann weights.

[55]* a score matching model to extrapolate thermodynamic properties
like Boltzmann weights for structure ensembles at temperatures unseen in
the training MD dataset.

[62]* demonstrated that the score function of diffusion model trained on
CG MD can approximate a force field for CG MD simulation.

[59]* a Markov chain Monte Carlo algorithm targeting the Boltzmann
distribution using a conditional normalising flow as a proposal distribution.
Its transferability has been demonstrated on small peptides.

[67]* constructed a machine-learned force field at quantum-mechanical
accuracy that can capture long-range interactions in large molecules.

[72]** Bayesian framework reweighting MD ensembles based on Cryo-EM
images.
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