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Abstract 

Metaproteomics enables the large-scale characterization of microbial community proteins, 

offering crucial insights into their taxonomic composition, functional activities, and interactions 

within their environments. By directly analyzing proteins, metaproteomics offers insights on 

community phenotypes and the roles individual members play in diverse ecosystems. While 

database-dependent search engines are commonly used for peptide identification, they rely 

on pre-existing protein databases, which can be limiting for complex, poorly characterized 

microbiomes. De novo sequencing presents a promising alternative, which derives peptide 

sequences directly from mass spectra without requiring a database. Over time, this approach 

has evolved from manual annotation to advanced graph-based, tag-based, and deep learning-

based methods, significantly improving the accuracy of peptide identification. This Viewpoint 

explores the evolution, advantages, limitations, and future opportunities of de novo 

sequencing in metaproteomics. We highlight recent technological advancements that have 

improved its potential for detecting unsequenced species and for providing deeper functional 

insights into microbial communities. 
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1. Introduction and motivation 

Metaproteomics is the large-scale characterization of the entire protein complement of 

environmental microbiomes, providing insights into the taxonomic composition, functional 

activities, and interactions of microbial communities within their habitats [1]. It allows the direct 

study of microbial community functions in a wide range of environments, from human 

microbiomes to environmental ecosystems like soil and oceans, and offers insights into both 

the overall community phenotype and the contribution of individual members to the community 

biomass [2]. 

However, considerable bottlenecks remain in metaproteomics data analysis, especially for 

data obtained from complex or poorly characterized environments. This is because 

metaproteomics studies traditionally identify peptides using search engines that rely on pre-

existing protein databases. While this approach works generally well in single-species 

proteomic studies, where annotated genomes can be used to create comprehensive protein 

sequence databases, it struggles with the large diversity and unknown nature of many 

microbial communities, which leads to incomplete, yet often overly large, databases. Recent 

advances in the accuracy and scalability of deep learning-based methods, however, have now 

made de novo sequencing a compelling alternative for metaproteomics, as de novo 

sequencing derives peptide sequences directly from the observed mass spectra, thus 

obviating the need for pre-existing sequence databases. 

This Viewpoint explores how de novo sequencing can address the inherent limitations of 

database-dependent methods in metaproteomics. We discuss its evolution, highlight its 

advantages, and provide a future perspective on how recent technological progress is 

expected to advance the field. 

2. Challenges of database-dependent search engines 

Database-dependent search engines are the most commonly used approach in 

metaproteomics, relying on the comparison of experimentally acquired spectra to theoretical 

spectra derived from protein sequence databases. However, their effectiveness depends on 

their accuracy and completeness with regards to the sample's actual composition, which can 

be difficult to achieve for microbiomes [3]. 

In single-species proteomics, protein databases are typically derived from well-characterized 

genomes. In metaproteomics, however, the organisms present in the sample may be 

unknown, and their genomes might not yet be available in public databases, making database 

construction more complex. Blakeley-Ruiz and Kleiner [4] describe four main approaches for 
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building metaproteomics databases, each with strengths and limitations: matched or 

unmatched metagenomes, and restricted or unrestricted reference databases (Figure 1).  

The first type, a matched metagenomic protein database, is built from metagenomes 

specifically assembled from samples similar to the metaproteomic sample. This approach 

captures the sample's complexity while minimizing the number of irrelevant sequences, as it 

is directly based on the genomes of the organisms found in (similar) samples. However, 

assembling a metagenome from DNA reads and translating it into a metaproteome can 

introduce errors, potentially reducing accuracy. Nevertheless, this approach remains the 

preferred method when the required resources and expertise are available.  

The second type, restricted reference databases, is built from taxonomically relevant 

proteomes, informed by prior knowledge of the sample’s composition. This approach is 

particularly useful for defined microbial communities, such as the SIHUMIx mock community 

[5] used in the CAMPI study [6], or when taxonomic data from methods like 16S rRNA gene 

sequencing is available. However, it is limited by the availability of comprehensive reference 

proteomes in public repositories, which are often sparse or incomplete for many bacterial 

species.  

The third type, unmatched metagenomic protein databases, is built from metagenomic data 

from the same overall ecosystem rather than the specific sample. Examples include the 

Integrated Gene Catalog (IGC) of the human gut microbiome [7], the (expanded) human oral 

microbiome database (HOMD) [8,9], and the unified Global Ocean Microbiome Catalog 

(GOMC) [10]. These databases, commonly used for well-characterized ecosystems, are more 

accessible and enable cross-study comparisons. However, they are less specific, and (much) 

larger in size than matched metagenome or restricted reference databases, often resulting in 

lower identification rates and possibly inflated FDR due to increased database size and 

complexity [11].  

The fourth type, unrestricted reference databases, includes all available sequences from major 

repositories like UniProtKB [12], UniRef [13], or NCBI RefSeq [14]. While these very large 

databases offer the most extensive coverage, they are non-specific and suffer from incomplete 

or sparse proteomes. This incompleteness, combined with the vast size of these databases, 

can lead to lower identification rates and potentially inflated FDR [11].  
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Figure 1. Four main approaches to construct protein databases for metaproteomics. Matched metagenomes 

offer high specificity but require more resources. Restricted reference databases use taxonomically relevant 

proteomes, limited by availability and completeness. Unmatched metagenomes combine data from similar 

ecosystems, enabling cross-study comparisons but increasing size and complexity, reducing accuracy. 

Unrestricted reference databases, like UniProtKB, UniRef, and NCBI RefSeq, provide broad proteome coverage 

but lower accuracy due to their large size. Gradient bars show the trade-off between specificity and database size. 

3. Evolution of de novo sequencing in metaproteomics 

Construction of databases in metaproteomics is challenging, particularly as large databases 

increase computational demands, extend search times, and risk missed identifications or false 

positives [3]. Additionally, identifications are constrained to peptides present in the database, 

meaning that most sequence variants or novel peptides will be missed. These limitations have 

driven interest in de novo sequencing, which altogether eliminates the need for a protein 

database during the analysis of the acquired fragmentation (MS/MS) spectra. In a typical de 

novo workflow, these MS/MS spectra are analyzed using a de novo sequencing algorithm to 

infer peptide sequences. Candidate peptides then undergo validation and post-processing 

before downstream analyses, which can follow either a peptide-centric, or a protein-centric 

approach. In the peptide-centric approach the obtained peptide sequences are matched 

exactly to reference databases by tools like Unipept [15], which use precomputed indices to 

perform taxonomic profiling using the lowest common ancestor algorithm [16], and which 

provide functional annotations based on the matched proteins. The peptides can also be 
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mapped to KEGG pathways using the PathwayPilot [17]. In the protein-centric approach, 

however, the obtained peptide sequences are mapped to reference databases using a 

similarity-based homology search instead, thus allowing the peptides to deviate somewhat 

from those found in the reference protein sequences. Traditionally, this homology search is 

carried out using BLAST+ [18–20], and the functions and taxa associated with the thus-

identified proteins are then grouped and quantified from the mapped peptides [21].  

 

Figure 2. De novo sequencing workflow in metaproteomics. A microbiome sample is analyzed by mass 

spectrometry to generate MS/MS spectra, which are processed using one or more de novo algorithms to infer 

candidate peptide sequences. These sequences undergo validation and post-processing before being used for 

downstream analyses. 

Even though several authors in the metaproteomics field have recommended de novo 

sequencing [11,22,23], its application has remained limited. However, with recent 

technological advancements, we believe its use may gain renewed attention in the field. In 

this section, we provide a comprehensive overview of the progress and applications of de 

novo sequencing in metaproteomics. 

3.1 Early de novo sequencing: from manual annotation to the first algorithmic 

approaches 

In the early days of de novo sequencing, spectra were manually annotated using the b and y 

ion series in the acquired fragmentation spectra, where researchers visually inspected and 

labeled fragment ions to infer peptide sequences. This manual method was applied in the 

foundational metaproteomics study by Wilmes and Bond [1] in 2004, where Q-ToF MS on 

excised 2D-gel spots identified porin, acetyl coenzyme A acetyltransferase, and a component 

of an ABC-type transport system, likely from dominant, uncultured Rhodocyclus-type 
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organisms in activated sludge. Interestingly, modern user interfaces often retain support for 

this practice, as evidenced by the spectrum viewer in the CompOmics utilities library [24], as 

used in, amongst others, PeptideShaker [25], which supports metaproteomics data analysis 

[26].  

The first commonly used, automated de novo sequencing methods employed approaches like 

integer linear optimization [27,28], divide-and-conquer [29], and hidden Markov models 

[30,31]. Graph-based approaches, such as Lutefisk97 [32], Sherenga [33], PEAKS [34], and 

PepNovo [35], represented MS/MS peaks as nodes, and mass differences between two 

observed peaks as edges. The highest-scoring path through the graph, from N- to C-terminus, 

was then used to infer the peptide sequence. In 2015, Muth et al. [11] showed that, while de 

novo sequencing only had a 25% peptide overlap with traditional database searches, it often 

identified novel, unique peptides not present in the database, and provided critical insights by 

mapping these sequences to reference proteomes. From this, the authors considered de novo 

sequencing as a complementary approach, able to uncover additional peptide identifications 

that had been missed by traditional database search methods. However, they also noted that 

a robust method for validation of de novo sequencing results would be beneficial. 

Tag-based methods, such as MetaNovo [36], further demonstrated the applicability of de novo 

sequencing in metaproteomics. MetaNovo used de novo sequence tags to create a sample-

specific sequence database in two steps: first, de novo sequencing generates de novo 

sequence tags using DirecTag [37], which are mapped to a protein sequence database via 

PeptideMapper [38]. This step incorporates probabilistic protein inference to rank and filter 

proteins based on estimated species and protein abundances. In the second step, the filtered 

sequence database undergoes a conventional database search using MaxQuant [39] for 

peptide identification, followed by taxonomic analysis using Unipept [15]. When tested on eight 

human mucosal-luminal interface samples, MetaNovo identified a similar number of peptides 

and bacterial taxa as MetaPro-IQ [40]. However, it detected significantly more non-bacterial 

peptides and outperformed workflows relying on matched metagenomes and whole-genome 

sequencing. MetaNovo improved taxon resolution, identified more taxa of interest, and flagged 

experimental contaminants, enhancing the accuracy and quality of the sequencing results. 

3.2 De novo sequencing in the age of machine learning and deep learning 

With advancements in machine learning, methods like pNovo [41] and Novor [42] introduced 

algorithms such as random forests and decision trees to improve de novo sequencing 

accuracy. In 2020, Johnson et al. [22] showed that de novo sequencing using Novor can be a 

useful metric for assessing the quality of metaproteomics data, particularly when proteome 
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databases are insufficient. By appending de novo sequences to a FASTA file and comparing 

the subsequent results with a database search, researchers can evaluate the suitability of the 

protein database. This method is particularly valuable for species without sequenced 

genomes, where taxonomically related databases are inadequate. The study revealed that 

poor matches are often due to factors such as post-translational modifications (PTMs), 

incomplete sequence data, and noise in the spectra. While these issues highlight the 

limitations of de novo sequencing under such conditions, Johnson et al. emphasized the need 

for more sophisticated de novo sequencing tools to handle noisy data and PTMs, rather than 

solely relying on high-quality genome annotations. 

In recent years, deep learning approaches have further improved the accuracy and reliability 

of de novo sequencing predictions, particularly in metaproteomics. These advancements are 

largely driven by neural networks that automatically learn and detect essential features from 

spectra and peptide sequences, focusing on relevant fragment peaks and subtle patterns. 

DeepNovo [43], for example, uses a convolutional neural network (CNN) to encode the 

spectrum and a recurrent neural network (RNN) to decode peptides, predicting one amino 

acid at a time. Newer architectures, such as transformer models, further enhance precision by 

accurately mapping even incomplete MS/MS fragmentation patterns to peptide sequences. 

Tools like DeepNovo [43], Graphnovo [44], Casanovo [45], and PointNovo [46] now achieve 

amino acid recall rates exceeding 70% on single-organism datasets, compared to only 40% 

with earlier methods like PepNovo [35].  

This improved accuracy of de novo sequencing with DeepNovo inspired the development of 

deep learning workflows for metaproteomics. In 2021, Kleikamp et al. [18] developed 

NovoBridge, a pipeline that starts with DeepNovo or PEAKS results [34] combined with 

Unipept queries [15], enabling the identification of bacteria absent from existing databases. 

For example, in an ocean metaproteomics dataset, NovoBridge detected Alphaproteobacteria 

in higher abundance than conventional 16S rRNA sequencing, revealing microorganisms 

lacking prior sequencing data. Moreover, Kleikamp et al. developed a taxonomy validation 

method using randomized peptide sequences as a control. By comparing correct and 

randomized sequences, they showed that while random sequences could occasionally match 

at higher taxonomic levels (like phylum), false positives dropped significantly at lower levels, 

such as genus or species, leading to more accurate community representation. NovoBridge 

further uses BLAST+ [47] to homology-match high-quality sequences that could not be 

annotated by an exact match in Unipept, allowing them to be linked to closely related 

organisms or assigned to higher taxonomic ranks. Building on their findings with homology 

searches, they developed NovoLign [48], a pipeline that aligns de novo sequences from 
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metaproteomics experiments using DIAMOND instead of BLAST+, with parameters optimized 

for short sequences and typical de novo sequencing errors. Applied to Orbitrap Astral MS/MS 

data, NovoLign significantly improved peptide-spectrum matches (PSMs) and identified 

additional taxa missed by conventional database searches. These studies highlight the 

potential of homology-based searches for metaproteomics while demonstrating how deep 

learning tools like DeepNovo provide de novo predictions that enable these methods, even 

though their models were not trained on metaproteomics data.  

Subsequently, Lee et al. [49] demonstrated the utility of such metaproteomics-based training 

with the Kaiko deep learning model, trained on five million PSMs from 55 phylogenetically 

diverse bacteria using metaproteomics-specific datasets. Based on DeepNovo’s architecture 

[43], Kaiko outperformed DeepNovo, which was trained on a less representative, nine-species 

dataset, in identifying organisms from soil and synthetic communities. Here, Kaiko was first 

used to annotate spectra, followed by taxonomic assignment through DIAMOND against the 

UniRef100 database, identifying the most abundant organisms in the sample. These identified 

taxa were used to generate a sample-specific protein database, albeit with the risk of 

increasing false positive matches [11,50]. This database was then used for traditional 

database searches, where it  uncovered previously unrecognized species like Candidatus 

Rokubacteria and Candidatus Tectomicrobia, both absent in 16S rRNA sequencing but critical 

for carbon and nutrient cycling in terrestrial ecosystems. Kaiko also identified key functional 

roles through Unipept [15], linking novel species to enzymes like thioredoxin-dependent 

peroxiredoxin, benzoate degradation enzymes, and streptomycin biosynthesis. Additionally, it 

revealed that abundant taxa such as Verrucomicrobia and Actinobacteria are well-represented 

in metaproteomic data, but missed by traditional sequencing methods, which showcases 

Kaiko's ability to detect abundant microbial taxa overlooked by other methods. Similarly, π-

HelixNovo [51], a transformer-based de novo sequencing model, has advanced the detection 

of novel peptides by incorporating complementary spectra to enhance ion information. Applied 

to gut metaproteomes, π-HelixNovo identified significantly more taxon-specific and novel 

peptides compared to Casanovo, improving taxonomic resolution and peptide recall. For 

example, π-HelixNovo uncovered a larger number of bacterial-specific peptides (586 versus 

350) and species-specific peptides (63 versus 15), demonstrating its capacity to identify 

previously unseen members of the microbiome. Recently, π-PrimeNovo showed similar 

improvements on the same dataset, while significantly speeding up the model by making the 

decoding process non-autoregressive [52]. 

In addition to these advancements, Kleikamp et al. [53] focused on improving the detection of 

specific PTMs by incorporating SMSNet [54] into their metaproteomics pipeline. Moreover, 
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SMSNet also enhances de novo sequencing by addressing a key challenge: the absence of 

robust methods for FDR estimation. While most de novo methods struggle with confidence 

evaluation due to a lack of decoy sequences [55–57], SMSNet refines its low-confidence 

predictions by incorporating a peptide database, providing an additional layer of validation. 

Paired with MSFragger for identifying peptides with PTMs [58], it effectively identified rare 

modifications like the sulfur-to-selenium (S−Se) mass shift, crucial for detecting 

selenocysteine, a key adaptation mechanism to oxidative stress in microbial communities. By 

incorporating DIAMOND [59] for peptide alignment and a reverse decoy strategy, the pipeline 

maintained a strict 5% FDR, improving identification confidence and greatly speeding up 

processing compared to BLAST+ [47].  

Related to the issues in metaproteomics, forensic samples present unique challenges due to 

their unknown origin, complicating the identification of the appropriate protein sequence 

database—similar to studying an organism with an unsequenced genome in microbial 

communities. Jenson et al. developed MARLOWE [60], a computational tool that addresses 

this by characterizing source organisms in unknown forensic samples. It uses PEAKS, Novor, 

or Casanovo for de novo sequencing, performs peptide tag extraction and filtering by peptide 

strength (as defined by Jarman et al. previously [61]), assigns tags to taxonomic sources, 

adjusts counts for tags shared between organisms, and finally scores source organisms using 

non-negative least squares regression. Tested on biodiversity and Bacillus cereus datasets, 

MARLOWE successfully identified true contributors in single-source and binary mixtures and 

distinguished species within a bacterial group, demonstrating its potential for generating 

forensic leads and aiding follow-up analyses. 

In Table 1, we provide an overview of tools that have been specifically developed for 

metaproteomics or have been applied in metaproteomics, either in their original publication or 

elsewhere. While this table excludes reviews, we would like to highlight the works of Muth and 

Renard (2018) [62], O’Bryon et al. (2020) [23] and Beslic et al. (2023) [63] for comprehensive 

overviews of traditional de novo sequencing tools, as well as Bittremieux et al. (2024) [64] for 

an in-depth review of deep learning de novo sequencing tools. 

Table 1. Overview of de novo tools used in, or specifically developed for metaproteomics applications. The 

Table contains de novo tools that either have been specifically developed for metaproteomics applications, or have 

been applied in metaproteomics - in the original publication or elsewhere. The tools are listed in chronological order 

based on the original publication date. 

 

Tool Models used Original 
publication 

Applications 
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PEAKS (commercial 
software) 

spectrum graph,  
deep learning (since 
v10+) 

Bin M et al., 2003 
[34] 

Lacerda CMR et al., 
2007 [65] 
Cantarel BL et al., 
2011 [66] 
Savidor A et al., 
2017 [67] 
Karaduta O et al., 
2020 [68]  

PepNovo spectrum graph, 
probabilistic network 
modelling 

Frank A and 
Pevzner P, 2005 [35] 

Benndorf D et al., 
2009 [69]  
Kuhn R et al., 2011 
[70] 
Cantarel et al., 2011 
[66] 
Hanreich A et al., 
2012 [71]  
Muth T et al., 2015 
[11]  

Novor spectrum graph, 
machine learning, 
decision tree 

Ma B, 2015 [42] Johnson RS et al., 
2020 [22] 
Thuy-Boun PS et al., 
2022 [72]  

SMSNet deep learning Karunratanakul K et 
al., 2019 [54] 

Kleikamp HBC et al., 
2024 [53] 

NovoBridge starts from 
DeepNovo or 
PEAKS results 

Kleikamp HBC et al., 
2021 [18] 

 

Kaiko 
 

based on DeepNovo Lee JY et al., 2022 
[49] 

 

MetaNovo hybrid approach 
combining de novo 
sequencing and 
database search 

Potgieter MG et al., 
2023 [36] 

 

π-HelixNovo deep learning, 
transformer model 

Yang T et al., 2024 
[51] 

 

Casanovo deep learning, 
transformer model 

Yilmaz M et al., 2024 
[45]  

Yang T et al., 2024 
[51]  

NovoLign starts from 
DeepNovo or 
PEAKS results 

Kleikamp HBC et al., 
2024 [48] 

 

MARLOWE starts from PEAKS, 
Novor, or CasaNovo 
results (or 
customized input 
from other de novo 

Jenson SC et al., 
2024 [60] 
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sequencing tool)  

π-PrimeNovo deep learning, 
transformer model 

Xiang Z et al., 2025 
[52] 

 

 

4. De novo sequencing in metaproteomics: quo vadis? 

4.1 Advantages of de novo sequencing in metaproteomics 

De novo sequencing offers a promising path forward in metaproteomics by directly identifying 

peptides from MS/MS spectra without relying on databases, effectively bypassing 

corresponding limitations [23,73].  

De novo sequencing is particularly useful for detecting unsequenced microbial community 

members, isoforms, and mutations, all of which are often missed by traditional database-

dependent approaches. As microbial diversity is often poorly represented in current 

databases, partly due to the difficulty of culturing many microbes, de novo sequencing enables 

a more complete analysis of microbial communities, even in novel or underexplored 

environments. By identifying sequence variants and novel peptides, it can therefore provide 

deeper insights into microbial diversity, and into their (unique) contributions to functional roles 

in the community.  

Furthermore, de novo sequencing is much more efficient than database searching in the 

context of large search spaces, as it only needs to process spectrum information. This 

efficiency can become beneficial in time-critical scenarios, such as pathogen diagnostics or 

monitoring. 

4.2 Limitations of de novo sequencing in metaproteomics 

While the potential of de novo sequencing is high, it comes with notable limitations. One of the 

primary challenges is spectral quality. Historically, de novo sequencing has been more error-

prone than database searches, especially with poor-quality MS/MS spectra. Reliable de novo 

sequencing heavily depends on complete ion fragmentation and minimal noise, as missing 

fragment ions quickly leads to considerable sequencing ambiguity [57]. This might lead to 

errors such as substitution errors, mass ambiguities in which a set of residues has the exact 

or similar combined mass as another residue set; or to inversion errors which are caused by 

mixing up the b-type fragment ion ladder with the y-type counterpart [62]. In cases of low 

spectral quality, database searches avoid this ambiguity issue by restricting the allowed 
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sequence space to known peptides, whereas de novo methods must contend with a much 

larger search space. Approaches such as the masking of low-confidence sequence parts with 

mass deltas, or applying transfer learning to incorporate species-specific data have been 

proposed to mitigate these issues [18,54]. However, ambiguity-based sequence errors from 

the de novo process can still propagate, complicating the mapping of peptides to proteins, and 

further downstream to taxa and functions. 

Another key challenge in de novo sequencing is the absence of a robust method for FDR 

estimation, as it lacks the decoy sequences used in database-driven methods to control FDR. 

This makes evaluating confidence in novel peptide identifications more difficult. NovoBoard 

[74] has proposed a solution using decoy spectra to set a lower-bound on FDR, as had been 

established in spectral library search approaches [75,76]. Moreover, several other post-

processing tools have emerged to refine de novo sequencing results: pNovo3 [77] 

incorporates fragment ion intensity predictions, Spectralis [78] applies Levenshtein distance 

metrics, PostNovo [79] combines multiple sequencing methods to rescore predictions, 

SMSNet [54] improves low-confidence predictions with a peptide database, and Instanovo+ 

[80] includes a diffusion-based decoder to refine sequences. Although these tools all help 

quantify confidence, no validated method currently exists to set an FDR threshold with strong 

statistical support, or to compare confidence levels across different de novo tools, complicating 

their integration into broader workflows. 

Additionally, while de novo sequencing can offer advantages in time-critical assessments by 

bypassing the need for comprehensive reference databases, its computational demands 

present a major challenge. Modern de novo algorithms often require additional hardware 

resources such as GPU-based processing, which may not be available in all research 

environments. The lack of streamlined pipelines also hinders the broader adoption of de novo 

sequencing in metaproteomics. Furthermore, infrequent updates to some post-processing 

tools can cause compatibility issues with emerging models. These limitations highlight the 

need for a user-friendly, modular, open-source solution that integrates multiple algorithms, 

ensures robust validation, and offers scalability, making de novo sequencing accessible to 

more researchers. 

4.3 Future opportunities  

The first major opportunity lies in advances in deep learning, significantly enhancing both 

database-dependent (meta)proteomics [81] and de novo sequencing. Optimizing deep 

learning methods can enhance performance of de novo sequencing in two critical ways: (i) 

adapting training data specifically for metaproteomics, and (ii) refining model architectures.  
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Regarding (i), adapting training data specifically for metaproteomics, de novo sequencing 

methods depend on sequence patterns and training data quality, making the integration of 

relevant metaproteomics datasets in model training crucial. As more public datasets become 

available, training deep learning models on more diverse data should further improve their 

ability to predict novel peptides from unexplored microbial environments. A promising 

opportunity lies in the transfer learning approach, in which existing models are further ‘fine-

tuned’ using the provision of additional training data, though no detailed studies have so far 

assessed its benefits for metaproteomics. Pre-trained de novo models combined with transfer 

learning could improve performance, particularly for samples with varying spectral noise. 

However, overfitting of the resulting models remains a concern, and care should always be 

taken to ensure adequate generalizability of the transfer learned model. 

For (ii), refining model architectures, further improvements in de novo sequencing can be 

achieved by optimizing model architectures. In a recent review, Bittremieux et al. [64] 

summarized key advances, such as removing the m/z binning requirement introduced by 

PointNovo, allowing it to better leverage the high-resolution provided by mass spectrometers 

such as Thermo’s Astral and Bruker’s TimsTOF Ultra 2. Furthermore, transformer 

architectures, as seen in Casanovo, simplify model training with built-in attention mechanisms, 

improving both stability and training speed. Other promising architectures include GraphNovo, 

which combines a graph-based approach with deep learning, and models like PepNet [82] and 

π-PrimeNovo [52], which increase inference speed by removing the autoregressive nature of 

previous models. Although these models show promise, independent benchmarking on 

metaproteomics datasets is still needed to assess their performance in this context.  

The second major opportunity lies in leveraging hardware advancements, which play a crucial 

role in boosting the performance of de novo sequencing models. The integration of graphical 

processing units (GPUs) allows for faster and more efficient processing of large datasets, 

while tensor processing units (TPUs) are specifically optimized for accelerating deep learning 

model training and inference. Furthermore, field-programmable gate arrays (FPGAs), such as 

those used in RapidOMS [83] for spectral library searching, offer a 60-fold speedup compared 

to CPUs, and a 2.72-fold speedup compared to GPUs, along with an 11-fold improvement in 

energy efficiency compared to GPUs. Such efficiency improvements are essential as deep 

learning models become more complex and datasets grow in size. 

The third major opportunity comes from recent advances in mass spectrometry, such as the 

abovementioned timsTOF Pro and Astral instruments, whose improved sensitivity improves 

the number of high-quality spectra acquired from complex samples, essential for de novo 

sequencing. The timsTOF Pro combines trapped ion mobility spectrometry (TIMS) with parallel 
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accumulation-serial fragmentation (PASEF), producing cleaner spectra with more finely 

resolved peaks, which reduces misidentifications and enhances peptide predictions. Similarly, 

the Astral offers ultra-high mass accuracy and resolution, enabling the detection of low-

abundance peptides, thereby expanding proteome coverage. These instruments, along with 

orthogonal separation techniques like ion mobility spectrometry, help reduce spectral overlap 

and noise, allowing improved peptide identification and PTM detection. Moreover, in silico 

efforts such as filtering spectra based on quality metrics, such as signal-to-noise ratios [84–

89], is therefore crucial for maximizing the accuracy of de novo sequencing. Additionally, 

clustering spectra into consensus representations can yield more comprehensive ion series 

information [90–93]. Notably, clustering MS/MS data has proven effective for rapid quantitative 

profiling of metaproteomic samples, reducing the need for extensive database searches [94]. 

A fourth opportunity lies in the growing adaptation of data-independent acquisition mass 

spectrometry (DIA-MS) in the proteomics field. However, its adoption in metaproteomics has 

been slow, partly due to challenges highlighted in a recent benchmark study [95], which noted 

that the large database sizes required for DIA-metaproteomics need to be reduced [96,97], 

possibly increasing the risk of false positives. Despite this potential risk, Aakko et al. [98] 

demonstrated the feasibility of DIA-MS for consistent and accurate quantification of microbial 

samples, proving its applicability in complex metaproteomes using synthetic mixtures and 

human fecal samples. Moreover, Pietilä et al. [99] advanced this further with glaDIAtor, a tool 

that enables untargeted DIA metaproteomics by creating a pseudospectral library directly from 

DIA data, eliminating the need for DDA-based libraries and reducing MS runs, thus improving 

workflow efficiency. However, most de novo sequencing tools are trained on DDA-MS data 

and are generally unsuitable for DIA-MS. Recent tools like DeepNovo-DIA [100], Transformer-

DIA [101], PepNet [82], and Cascadia [102] offer promising solutions to this challenge, 

demonstrating the potential of de novo sequencing for DIA-MS. DeepNovo-DIA [100] 

restructures the long short-term memory (LSTM) network to leverage the extra dimensionality 

of DIA data, identifying co-eluting precursor ions and their fragments, as well as fragment ions 

across multiple neighboring spectra. The networks learn 3D shapes of fragment ions, 

correlations between precursors and their fragments, and peptide sequence patterns. 

Transformer-DIA [101], an extension of Casanovo, uses self-attention layers and an encoder 

block to integrate precursor and fragment information, directly incorporating DIA-MS features. 

Cascadia [102] expands de novo sequencing of DIA-MS by using an augmented spectrum, 

including fragmentation peaks from nearby peptides to capture more signals associated with 

each peptide. 
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A fifth opportunity lies in developing user-friendly, scalable workflows that are accessible to 

researchers without extensive computational expertise. These workflows should integrate 

advanced de novo sequencing tools with key post-processing steps such as FDR estimation, 

protein inference, taxonomic assignment, and functional annotation. As de novo sequencing 

improves, downstream analysis methods must also advance, particularly technologies that go 

beyond BLAST+ [47] to handle large metaproteomic references. Hybrid approaches, like 

MetaNovo [36], which combine de novo sequencing with conventional database searches, 

offer great promise by incorporating probabilistic methods to refine protein and taxon 

inference. Streamlining these workflows will enable researchers to better understand microbial 

community dynamics and discover novel proteins, taxa, and functions. 

Despite these technical advancements and the availability of benchmark studies in 

metaproteomics [6,103], there remains a pressing need for dedicated benchmarking efforts 

focused on de novo sequencing methods tailored specifically to metaproteomics. Current 

benchmarks often focus on single-organism or human-centric datasets, which overlook the 

complexity and diversity of microbial communities in environmental samples. Effective 

benchmarks must evaluate factors like accuracy, precision, recall, speed, candidate 

validation, PTMs, and novel peptides, all crucial for reliable application of de novo sequencing 

in real-world metaproteomics. 

5. Conclusion 

De novo sequencing has the potential to transform metaproteomics by enabling the 

identification of novel peptides and thus providing a deeper understanding of microbial 

communities in environments where traditional database-dependent approaches fall short. 

While recent advancements in deep learning have substantially improved the accuracy and 

efficiency of these tools, some challenges remain, particularly in handling poor-quality spectra, 

managing the large search space inherent in de novo approaches, and developing robust 

validation methods - similar to FDR estimation in database-dependent methods. Despite these 

challenges, the future of de novo sequencing in metaproteomics looks promising. Continued 

innovation in algorithms, hardware, and software will be essential to unlocking its full potential, 

making it a critical tool for advancing our understanding of microbial diversity and function in 

complex environments. 
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