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The Tox24 challenge1 was designed to evaluate the progress that has been made in computational method 

development for the prediction of in vitro activity since the Tox21 challenge, which was organised by 

National Institutes of Health  National Center for Advancing Translational Sciences (NCATS).2 In this 

challenge, participants were tasked with developing models to predict chemical binding to transthyretin 

(TTR), a serum binding protein, based on chemical structure. The chemicals tested for activity against TTR3, 

which were a subset of the U.S. EPA’s contribution to the multi-agency “Toxicology in the 21st Century” 

(Tox21)” initiative4 were used as training and test sets for the challenge. The challenge results were 

announced during the last day of the ICANN2024 conference https://e-nns.org/icann2024, which took place 

in September 2024 in Lugano. 

 

TTR is one of the serum binding proteins responsible for transport of thyroid hormones (TH) to target 

tissues. TTR also plays a role in maintaining the balance of free versus bound (i.e., available vs. inactive) 

TH.5,6 As such, TTR may be important for supporting TH homeostasis and proper functioning of the thyroid 

system. Endocrine disrupting chemicals (EDCs) may trigger adverse health effects by disrupting the 

endogenous hormone system; thus, the identification of such chemicals is a critical target for toxicology. The 

analysed dataset included chemicals that were screened in a competitive binding assay designed to measure 

the reduction in fluorescence due to displacement of 8-anilino-1-naphthalenesulfonic acid ammonium salt 

(ANSA) from TTR.  

 

Challenge data 

1813 unique chemicals selected from the ToxCast ph1_v2, ph2, and e1k libraries were screened through the 

TTR binding assay at a target concentration of 100 μM. Chemical activity was calculated against a thyroxine 

(T4) standard curve where the high concentration of T4 represented 100% activity (ANSA completely 

displaced from TTR) and low concentration T4 represented 0% activity (ANSA not displaced from TTR).  

Due to assay interference, autofluorescent chemicals were excluded leaving a total number of 1512 

compounds kept for analysis. All data used for measurements were reported with only the chemical names. 

The structural information (Simplified Molecular Input Line Entry System, SMILES) for data was originally 

retrieved from U.S. EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard).4 Several 

compounds (e.g., oils and mixtures) in the original set did not have SMILES in the dashboard, and so, we 

retrieved missing structural information for them from PubChem based on CAS RN and names. These 

compounds were randomly split into a training set of 1012, a leaderboard set of 200 and a blind set of 300. 

Following suggestions from the challenge participants, who noticed discrepancies between SMILES, CAS 

RN and names for several molecules, we further reviewed the data by manually checking conflictual cases 

against CAS https://commonchemistry.cas.org and prioritised CAS suggestions for SMILES. In cases when 

CAS suggestions were ambiguous, we used structures retrieved from PubChem. The structural data were 

updated on 21.06.2024 on the challenge website and the participants were also asked to further validate the 

data.   
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Because multiple testing could, in principle, help the participants to identify the activity values of (some) 

compounds, we decided to release the leaderboard set 15 days before the challenge ended. This allowed 

participants to have an earlier access to these data that could be used to enhance their models.  

 

Challenge setup 

The challenge was hosted on the On-line CHEmical database and Modelling environment (OCHEM)7 

website https://ochem.eu. The users had the option to register and upload their predictions themselves or 

submit them directly to the challenge organisers via email. Only one team submitted their results via email. 

 

Not including the organisers, a total of 78 teams took part in the competition. Based on the registration 

information 45, 13, 11 and 9 teams identified themselves as academic, commercial, non-profit - 

governmental and self-employed, respectively. The challenge attracted participants from all over the world, 

representing 27 countries. The largest numbers of teams were from the USA (15) and Germany (8) followed 

by Russia and Poland (6 each). Since country information was not required, several teams did not indicate it. 

In total, there were 1374 submissions by all teams. 

 

Challenge rules 

Each participant could only belong to one team. Each team was required to provide information on its 

composition before the challenge ended to ensure that this rule was upheld. The teams were encouraged to 

use supplementary data taken from experimental measurements from similar assays in order to enhance their 

models, e.g., transfer learning or multitask approaches. However, the use of supplementary data from exactly 

the same assay type and for the same endpoint as was used for model development within the challenge was 

not allowed. 

 

The Root Mean Squared Error (RMSE) for the blind test set, whose experimental values were kept secret 

before the challenge ended, was used for the final scoring of the participating teams. The RMSEs were 

rounded to one decimal digit and in case of equal scores, the team which submitted their final result earlier 

had a higher position in the final ranking. In addition to the winner of the challenge, we identified ten teams 

that had non-significantly different scores to the winning model using paired samples t-test (see Table 1), 

whom we collectively call the “group winners”. All of these teams were also asked to send a short 

description of their methods to confirm adherence to the challenge guidelines on the use of data, 

reproducibility of models and team composition. These reports were used to prepare a summary of models in 

Table 1. 

 

The participating teams could test their models’ performance on the leaderboard set, which had two 

purposes: to guide the models’ development and to verify that submissions were provided in the correct 

format. It should be noted that once the leaderboard set was publicly released (on 15.08.24), the performance 

on this set no longer reflected the prediction accuracy of the models because the set essentially becomes 

training data. Indeed, after its release, some participants submitted predictions for this set and obtained an 

RMSE=0 (as was the case for team #3, for example). Of course, the leaderboard set could be still used for 

model selection only, and team #7 (and potentially others) did in fact use it in this way. However, this was 

not obligatory and each team could rely on their own validation protocols to select the best model for their 

final submission.  

 

Analysis of submissions before the release of the leaderboard set on 15.08 

The RMSEs for both leaderboard and blind sets were strongly correlated with the Pearson correlation 

coefficient R  = 0.97 and thus RMSEs on the leaderboard set were strongly predictive of the performance of 

the methods for the blind test set. RMSE values for the leaderboard set submitted before its public release 

provided good estimations of the errors associated with models’ performances on the blind test set. There 

were in total 866 submissions by 49 teams before the leaderboard set was made publicly available.  
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Amid all these 866 submissions the lowest RMSE = 20.9 for the blind test set before release of the 

leaderboard set was achieved by team #2 (Table 1), which also corresponded to the lowest RMSE = 20.6 

achieved by this team for the leaderboard set at that time. Hypothetically, if the challenge had ended on the 

15th of August and all teams had submitted their models based on the best leaderboard performance, this 

team would have won the challenge. Under the same conditions, the second place would have gone to #9 

with blind set RMSE=21.2, and #3 would have placed fourth with RMSE=21.3 (after team scottkdh, who 

submitted results with the same RMSE earlier than #3, however scottkdh was not among the “group 

winners” based on their final submission, therefore their results are not listed in Table 1). 

 

Table 1. The “group winners” of the challenge  

n team:  

members 

RMSE   

 

 

Short description of several  methods as provided by 

the authors (see Supplementary Information for 

several descriptions as provided by participants) 

 

Pub

lica

tion 

 

ref 

ere

nce 

 

Final 

blind 

test 

Lowe

st  

submissions before 

15th   August 

Leade

rboar

d 

Blind 

test 

hyp

othe

tic 

plac

e1 

1 Amidoff: 

D. Makarov,  

A. Ksenofontov 

20.5 20.5 20.5 21.4 5 Consensus of four models: CatBoost8 method using 

Mold29 and ALOGPS10,11 plus E-state indices 

descriptors12,13 and two representation learning 

methods: Transformer CNN14 and CNF2.15 The 

authors analysed compounds as  mixtures. Model is 

available as https://ochem.eu/article/162082  

 

2 tcirino: 

T. Cirino 

20.7 20.7 20.6 20.9 1 Tautomer generation for molecules with multiple 

tautomeric forms was done. A consensus model was 

based on representation learning models, including  

Transformer CNF2 and CNN as well Graph Neural 

Network (GNN) models, AttFP, ChemProp and GIN 

provided by Keras Graph Convolution Neural 

Networks (KGCNN)16 as implemented in 

OCHEM,17 which were combined with CatBoost 

models based on EPA, Mold2, and 2D descriptors 

calculated with MORDRED, PaDEL2 and RDKIT.  

 

3 znavoyan: 

Z. Navoyan,  

A. Tevosyan,  

H. Yeghiazaryan, 

L. Khondkaryan, 

N. Abelyan,   

V. Atoyan,   

N. Babayan 

20.72 20.4 21.8 21.3 4 RF models were developed on bioassay data from 

ToxCast4 and eMolTox18 which formed a set of  

Bioassay descriptors. The final model was based on 

a consensus of RF models developed with a 

combination of bioassay descriptors with RDKit, E-

state and Graph Neural Networks (GNN). GNN was 

used based on Principal Neighborhood Aggregation 

(PNA).19 

 

4 Microsomes: 

Y. Uesawa,  

Y. Iwashita,  

K. Kimura,  

T. Komasaka,  

K. Shishido,  

M. Asada 

20.8 20.8 19.9 21.4 6 The model was developed by stacking prediction 

results from XGBoost, RF,20 CatBoost, and 

LightGBM, using Mordred,21 E-state, pH-dependent 

descriptors, as well as diverse nuclear receptor- and 

stress response pathway-related activity predictions 

generated by Toxicity Predictor22 as explanatory 

variables. The robustness of the final model was 

ensured by nested cross-validation. 

 

5 YingkaiZhangLab 

X. Pan, 

Y. Zhang, 

Y. Gu, 

W.J. Zhou 

20.8 20.5 -3 - - The initial dataset was extended with 215 TTR 

bioactivity endpoints collected from public databases 

(EquiVS23 and Papyrus24). Structures of molecules 

were optimised. Consensus of three models based on 

sPhysNet-MT,25 which used 3D descriptors based on 

 

https://doi.org/10.26434/chemrxiv-2025-7k7x3 ORCID: https://orcid.org/0000-0002-0007-2421 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://www.zotero.org/google-docs/?ZxA6yZ
https://www.zotero.org/google-docs/?cw8m2k
https://www.zotero.org/google-docs/?nUDPaF
https://www.zotero.org/google-docs/?iqPFzg
https://www.zotero.org/google-docs/?GoxHSZ
https://www.zotero.org/google-docs/?fpwHgt
https://ochem.eu/article/162082
https://www.zotero.org/google-docs/?qFkokr
https://www.zotero.org/google-docs/?RDiUJr
https://www.zotero.org/google-docs/?XJtgDK
https://www.zotero.org/google-docs/?N5CmJA
https://www.zotero.org/google-docs/?rBhr9l
https://www.zotero.org/google-docs/?h4NVGi
https://www.zotero.org/google-docs/?7OVJOp
https://www.zotero.org/google-docs/?2zJpBh
https://www.zotero.org/google-docs/?L41Dx6
https://www.zotero.org/google-docs/?cIyrvh
https://www.zotero.org/google-docs/?kAMnHd
https://doi.org/10.26434/chemrxiv-2025-7k7x3
https://orcid.org/0000-0002-0007-2421
https://creativecommons.org/licenses/by-nc-nd/4.0/


4 

radial basis functions (RBFs), KANO,26 which 

utilizes a chemical element-oriented knowledge 

graph, and GGAP-CPI (protein Graph and ligand 

Graph network with Attention Pooling for 

Compound-Protein Interaction prediction) which 

combines both 2D ligand molecular graphs and 3D 

protein structure graphs, were used. 

6 AntonijaBoss: 

A. Kraljevic,  

B. Lučić 

21.2 21.2 - - - Consensus of an RF model based on ALOGPS, E-

state indices and CDK27 descriptors and Transformer 

CNF2 model.  

 

7 SankalpJain: 

S. Jain, 

A. Zakharov 

21.3 21.3 - - - Deep Learning Consensus Architecture (DLCA),28 

which is a consensus model based on Deep Neural 

Networks (DNN) using Morgan, Avalon, and 

AtomPair along with RDKit29 physicochemical 

descriptors combined with Convolutional Neural 

Network (CNN)  based on SMILES. 

 

8 alx.dga: 

A. Dougha 

21.4 21.4 21.5 22.0 13 Mixture of experts based on a Tanimoto similarity of 

tested  compound to the training set. Expert models 

included Support vector Machines (SVM)30, RF, 

Knowledge-guided Pre-training of Graph 

Transformer (KPGT)31 and ChemProp.32 

 

9 luispintoc: 

L. Pinto 

21.4 20.4 21.0 21.2 2 Consensus of four Foundation Chemistry Models 

fine-tuned: two MolFormer33 models (which were 

also pre-trained on 50k compounds from ZINC 

database), SMI-TED,34 and UniMol.35   

 

10 GAT_Wang: 

H. Wang, 

W. Liu, 

J. Chen 

21.4 21.4 - - - Data for 2403 chemicals against thyroid hormone 

receptor β (TRβ) were collected from PubMed.  

They were used for transfer learning based on graph 

attention network (GAT) architecture.  

 

11 vchupakhin: 

V. Chupakin 

21.4 21.4 - - - A feature set (AUX) of 180  descriptors was used. 

These were  predictions of models developed for 

proteins that bind compounds that are structurally 

similar to thyroxine and retinol. Data were collected 

from PubChem and ChEMBL and had different units 

(active/inactive, Ki, IC50, %). AUX descriptors 

were used in combination with Mordred 2D to 

develop an ensemble of 50 stacked VotingRegressor 

models,36 with each model developed using 

CatBoost. 

 

Final blind test: the final RMSE submitted by the team, which was used to score teams.  

Lowest: the minimal RMSE for the blind test among all submissions of the respective team. 

 1The hypothetical place had the challenge closed on 15.08.24.  

 2Submission had the same RMSE as the submission from #2 (submitted 21-08-2024 08:53:04), but was 

submitted later (30-08-2024 07:16:19) than #2. 

 3Team submitted its first predictions after 15.08.24 and thus no results were available. 

 

Analysis of RMSEs following release of the leaderboard set 

The release of the leaderboard set, which extended the training set to 1212 molecules, allowed several teams 

to improve upon the RMSE obtained for the blind set. The lowest RMSE for the blind set (20.4) was 

obtained by teams #9 and #3, but these participants did not submit the respective predictions with these 

results as their final entries. In the case of #3, the results for the leaderboard set were not predictive of the 

blind set (i.e., this team had entries with, e.g., leaderboard RMSE=0) that could not be used to guide 

selection of the model. Team #9 had the lowest RMSE of 14.8 for the submission leaderboard results with 

the lowest RMSE for the blind entry that would have won the competition if selected for the final 

submission. 

 

https://doi.org/10.26434/chemrxiv-2025-7k7x3 ORCID: https://orcid.org/0000-0002-0007-2421 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://www.zotero.org/google-docs/?3KFbNn
https://www.zotero.org/google-docs/?32tG97
https://www.zotero.org/google-docs/?SxqoJQ
https://www.zotero.org/google-docs/?Pl3eCY
https://www.zotero.org/google-docs/?gsIQ08
https://www.zotero.org/google-docs/?0j7Hux
https://www.zotero.org/google-docs/?JS6Flb
https://www.zotero.org/google-docs/?dsvUY5
https://www.zotero.org/google-docs/?Ltn5AC
https://www.zotero.org/google-docs/?fSMETA
https://www.zotero.org/google-docs/?yIEwN9
https://doi.org/10.26434/chemrxiv-2025-7k7x3
https://orcid.org/0000-0002-0007-2421
https://creativecommons.org/licenses/by-nc-nd/4.0/


5 

In general, the release of the leaderboard set allowed seven teams to obtain RMSEs lower than 20.9, thus 

surpassing the lowest RMSE for the blind set achieved by team #2 before release of the leaderboard set. This 

observation proved the benefit of releasing the leaderboard data to the participants: otherwise teams that 

could successfully identify compounds from this set would have had a significant advantage over 

participants who did not do this. Thus, there would be a risk of us inadvertently comparing the ability of 

teams to identify data from the leaderboard set, rather than comparing the performances of methods. Six out 

of seven teams which achieved an RMSE < 20.9 are in Table 1 (#1 to #5 and #9) and only one team, 

manbaritone, did not rank as one of the “group winners”. The last submission from team manbaritone had an 

RMSE=21.6, narrowly falling short of the threshold to be considered a “group winner”. Only three out of 

eleven models in Table 1 (#3, #5 and #9) did not select their best submission with minimal score as the final 

submission. 

 

 

Models developed using OCHEM 

The winner #1, as well as runners-up #2 and #6, developed their models using the OCHEM platform. This 

impressive result further confirms the high accuracy of OCHEM, which was previously used to develop the 

top model in the ToxCast EPA Challenge,37 the best balanced accuracy38 in the Tox21 challenge, and which 

also contributed the winning model in the Kaggle EUOS/SLAS Solubility Challenge.17  In addition to 

providing a highly accurate and convenient way to model data, models developed using OCHEM for the 

challenge are made publicly available and can be used by other groups to predict new compounds.  All three 

models used Transformer CNF2,15 which is an extension of Transformer CNN.14 The latter method was also 

used by winning and runner-up models developed within this challenge. Both of these methods are Natural 

Language Processing (NLP) methods that were pre-trained on a large corpus of chemical structures 

(SMILES from ChEMBL database; no activity data were used), which contributed to their high accuracy. 

 

Use of mixtures 

The winning team developed models using descriptors for mixtures. In the case of compounds that consisted 

of several components, descriptors were calculated for each component and averaged. These types of 

descriptors were added in OCHEM for analysis of properties of  binary non-additive mixtures,39 ionic 

liquids15,40 but also were apparently useful for this study. The rationale behind using mixture descriptors is 

that it is not always the main component that gives rise to toxicity. 

 

Use of tautomers  

While the winning team used mixture descriptors, the runner-up team #2 separated mixtures into individual 

records, while also enumerating tautomers using the same activities reported for the original structure. This 

data augmentation strategy increased the dataset to 2400 records, which were used to develop the model. The 

idea behind this analysis was that it could not be known for certain that the tautomer provided in the training 

set was active and contributed to toxicity both in the training and test sets. 

 

Data cleaning 

Team #9 noticed that after desalting, there were some duplicates in the datasets and only 1165 unique 

molecules were available, for which the participant used averaged values. Team #2 also corrected several 

structures and excluded duplicates as well as outliers, which were identified as records with large errors. 

Team #7 removed inorganic compounds, salts, and any compounds containing metals, rare atoms, or other 

special atoms thus reducing the dataset size (training + leaderboard) to 1125 compounds. It should be 

mentioned that no one team used negative data (i.e., discarded compounds due to autofluorescence) or 

attempted to predict autofluorescence properties of compounds to improve the models. Possibly such 

modelling could further improve the quality of models which is worth exploring in the future. 

 

Consensus modelling 
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With an exception of  team #10, which used transfer learning, all models from Table 1 were consensus 

models. Some participants referred to some models as ensembles, but we reserve the term ensemble for a set 

of models developed using the same method, such as the ensemble of 50 models used by #11, while 

consensus is a more general term and can include models developed using different methods, or the same 

method.  Note that DLCA,28 which was used by team #7, inherently combined several different descriptors 

and learned representation based on SMILES, meaning it was also counted as a consensus model.  

 

Use of other data 

Several teams #10 and #11 used data collected from bioassays to develop models to be used as descriptors 

for the final model (#3, #11), while team #5 collected data to improve training for the GGAP-CPI (protein 

Graph and ligand Graph network with Attention Pooling for Compound-Protein Interaction Prediction) 

model and team #11 used additional data for transfer learning (#11). Team #9 developed a consensus of four 

Foundation Chemistry Models. Two MolFormer-based models were pre-trained on ~50k data points from the 

ZINC database, as well as Tox21 and Tox24 datasets. These models, in addition to the SMI-TED and 

UniMol models, were fine-tuned using predictions of boosted decision-tree algorithms during the last step. 

 

Overall analysis of ML methods 

In 8 out of 11 models, the authors used at least one representation learning method. They included Graph 

Neural Networks (ChemProp, Attentive Fingerprints, GIN) as well as Natural Language Processing (NLP) 

methods based on SMILES data processing (Transformer CNN, CNF2, Convolutional Neural Networks) or 

Foundation Chemistry Models (MolFormer, SMI-TED and UniMol). The use of fine-tuned Foundation 

Chemistry Models for TTR binding prediction reported here is, to our knowledge, one of the first reported 

uses of such models for toxicity prediction, which complements other studies highlighting the promise of 

using of Foundation Chemistry Models and Large Language Models41 in chemistry and material sciences. 

 

Among traditional methods, the most popular were decision trees (RF and boosted decision trees, such as 

CatBoost, LightGBM, XGBoost) but other traditional methods based on fully connected DNN and SVM 

were also used. The majority of the descriptor-based models were developed using 2D descriptors, such as 

Estate, Mordred, Mold2, CDK, Morgan, Avalon, and AtomPair. Only one team used 3D RBF descriptors. 

 

Conclusions 

There has been significant progress in development of advanced ML tools that can be used for toxicity 

predictions since the Tox21 challenge took place. In particular, representation learning methods have gained 

strong momentum and were used in the majority of studies done by the “group winners” of the Tox24 

challenge, which included both winning and runner-up models. Fine-tuned Foundation Chemistry Models 

also demonstrated high predictive accuracy. Many of these approaches are less than five years old and did 

not exist during the Tox21 Challenge. These observations clearly demonstrate the high impact that advanced 

ML/AI methods have made on the field. 

 

The Tox24 Challenge had 78 participating teams in total - almost twice the number of teams (40) that 

participated in Tox21.2 This is indicative of an increasing interest and a wide engagement of the scientific 

community in the use of New Approach Methodologies (NAMs) for toxicity prediction. 

 

Considering the high accuracy of novel methods, the OECD principles on the Validation of (Quantitative) 

Structure-Activity Relationship [(Q)SAR] Models42 may need to be extended to describe/exemplify how 

these approaches and their intrinsic features (e.g., consensus, multitasking, pre-training, fine-tuning, transfer 

learning, etc.) can be reliably used in regulatory assessments. In combination with explainable AI, these 

methods could be used to create more accurate and interpretable risk assessments for chemicals.  
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Supporting Information 

 

Examples of descriptions of methods submitted by teams. The full descriptions can be found in the 

respective articles with challenge results. 

 

Team #1: Amidoff 

 

Dmitriy M. Makarov, Alexander A. Ksenofontov 

G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia 

At the outset of the Challenge, we constructed a baseline CatBoost model utilising filtered Mold2 

descriptors and sought to enhance it by incorporating additional properties. In order to achieve this, 

preliminary models were created in order to predict water solubility, melting point and various 

toxicity endpoints. The predictions from these models were combined with the Mold2 descriptors in 

order to generate the final prediction of TTR binding activity. As the inclusion of these additional 

properties did not result in an improvement in model performance, a transition was made to modelling 

on the OCHEM web platform. 

A variety of descriptor packages were employed in the OCHEM, including Mold2, ALogPS and 

OEstate, Mordred, PaDEL, and MACCS fingerprints. Following the generation of the descriptors, a 

filtration process was conducted to remove those deemed ineffective for describing structure-activity 

relationships. Given that approximately 10% of the dataset consisted of mixtures and salts, it was 

deemed inappropriate to remove small fragments and neutralise the molecules during the calculation 

of the descriptors. 

In order to ascertain the most efficacious algorithms, a number of methods based on pre-computed 

descriptors were subjected to evaluation. The evaluation included Random Forest, XGBoost, 

CatBoost, and Associative Neural Networks. Additionally, several representation learning methods 

that do not necessitate the pre-calculation of descriptors were employed: the Transformer 

Convolutional Neural Network (TransCNN), the Transformer Convolutional Neural Fingerprint 

(TransCNF), and the Graph Convolutional Neural Network from Chemprop. 

Initially, the best models were selected and their performance was assessed using 5-fold cross-

validation on a combined dataset comprising the training set and leaderboard set. The top-performing 

models were integrated into a consensus model, which was then evaluated on the blind test set. Our 

team's winning model was based on the averaged predictions of four individual models: 

CatBoost/ALogPS and OEstate, CatBoost/Mold2, TransCNF, and TransCNN. 
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Team #2: tcirino 

 

Thalita Cirino 

Molecular Biotechnology and Health Sciences Department, University of Torino, Italy 

 

In the Tox24 Challenge,1 I secured 2nd position out of 79 participants, with a final predictions set submission 

reaching an RMSE of 20.7. My modeling strategy relied primarily on two key approaches: data 

augmentation through tautomer generation and consensus modeling. The integration of data augmentation 

provided a comprehensive representation of the dataset. 

 

Data Preprocessing. Compounds were standardized through the OCHEM2 preprocessing built‑in tools, 

which includes (I) correction functional group (e.g., nitro and azido groups) chemical representation; (II) 

charge neutralization by attaching additional hydrogen atoms, and (III) converting structures into canonical 

SMILES before generating 3D structures, eliminating inconsistencies due to uploaded conformations and 

(IV) salt counterions and other small molecules remotion from chemical structures, leaving just the parent 

compound. 

 

Data augmentation. To broaden the representation of the chemical space, tautomeric forms of each 

compound were generated using the TautomerEnumerator class in RDKit 2020.03.1.3 Tautomerism, a form 

of structural isomerism where compounds can exist in different forms through the migration of a hydrogen 

atom and reorganization of double bonds, can significantly influence molecular properties and interactions.4 

To maintain computational feasibility, the number of tautomers was limited to 20 per molecule. This 

approach expanded the dataset from 1,212 to 3,438 compounds, providing a more comprehensive coverage 

of potential molecular conformations that could influence toxicological properties. 

 

Model Development. A 5-fold cross-validation (5CV) protocol was used to evaluate the performance of 

various machine learning models available in OCHEM. Models with the lowest processing errors and the 

best 5CV metrics were selected for the final consensus model, which consisted in combining models selected 

through a non-weighted average to produce the final predictions. The models selected were based on the 

following methods: 

● CatBoost5 - Mold26, a gradient-boosting algorithm combined with a set of 2D molecular descriptors;  

● Message Passing Neural Network,7 a graph-based algorithm that has each node receiving messages 

from its neighbours to then update its representation based on the aggregated message, which 

promotes it adaptabilidy in learning from a hybrid representation, merging task-specific encodings 

and fixed descriptors;  

● Transformer Convolutional Neural Networks (TransCNN),8 a Natural Language Processing  method 

that was pre-trained over 1.7M molecules from the ChEMBL database9 to learn the task of 

canonisation of chemical structures. The learned latent representation is used as input to one-

dimensional Convolutional Neural Network (CNN) and its output is correlated with the target 

properties of molecules using fully connected neural networks;  

● Transformer Convolutional Neural Network Fingerprint (CNF2)10 extends the previous method and 

uses a combination of several CNNs with different receptive fields to provide a richer representation 

(fingerprint) to be correlated with target properties of molecules.  
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Team #3: znavoyan 
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Team #8: alx.dga 

Alexis Dougha1 

1 BFA, Université Paris Cité, CNRS UMR 8251, INSERM U1133, Paris, France 

1.  Data preprocessing and featurisation 

First, drop salt from SMILES using RDKit SaltRemover. Then, 2 types of features were compared: 

a)  RDKit physicochemical features 

b)  Latent features generated with graph transformer KPGT (Li et al. 2023) 

2.  Data split (Train/Val) 

2 splitting strategies with the initial 999 compounds dataset to find best parameters for each model: 

a)  “Hard split”: For each compound, computational of Tanimoto Similarity for all pairs of 

compounds. Compounds with max similarity to any other compound < 1/3 are in Val 

set, the other compounds in Train set 

b)  “Easy split”: Random 774/225 split (to obtain same ratio as hard split) 

3.  Benchmarked models 

I chose to compare and optimise the hyperparameters of the following models: Support Vector Machine 

(SVM) and Random Forest (RF) with a grid search, the D-MPNN Chemprop (Yang et al. 2019) with 

Bayesian Optimisation. 

➔ Some of the best performing models (criterium is RMSE on leaderboard set): 

A.  SVM with rbf, C=100, epsilon=0.5, KPGT features 

B.  RF with n_estimators=500, max_features=1/6, min_samples_split=6, RDKit features 

C.  SVM with rbf, C=65, epsilon=1.5, KPGT features selected with recursive feature 

elimination using RF 

D. Chemprop (with hard split for training and validation sets) 

Note that for A and C, the hyperparameters were best performing with the easy split while for B and D, 

they were best performing with the hard split. 

4.  Model selection in similarity intervals 

I tried to find the best combination of models A, B, C, D to predict different subsets of the leaderboard 

set based on their Tanimoto similarity to the 999 compounds dataset. 

Max similarity vs 

training set 

[0, 0.25[ [0.25, 0.4[ [0.4, 0.7[ [0.7, 1] 

  C 0.75*C + 0.25*B 0.5*C + 0.5*(0.75*A + 

0.25*B) 

D 

Table 1: Partition of the leaderboard set into 4 subsets depending on the Tanimoto similarity 

5.  Retrain adding the leaderboard dataset 

For A, B, C I simply use 100% of available data for training. For D, I add the leaderboard compounds to 

the training set if max similarity to any other compound (initial 999-training set + leaderboard) is > 1/3, 

else it is added to validation set. 

Finally, I divide the blind set into 4 subsets following the same partition as presented in Table 1 

(criterium: max similarity vs any compound of the full 1199 compounds training set, same intervals), I 

predict the activity for the blind set with models A, B, C, D and I weight the predicted values by each 

model following Table 1. Ensembles of 1000 RF (B) and 50 Chemprop (D) models were used because 

of their sensitivity to random seeds. 
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Team #9: luispintoc 

  

Luis Pinto 

Independent Researcher 

  

Abstract: 

In this competition, I developed a solution that combined an ensemble of four models: two MolFormer 

models, SMI-TED, and UniMol. This approach secured 9th place, achieving an RMSE of 21.4. Notably, 

with a slightly different ensemble, my blind test set RMSE could have dropped to 20.4, lower than the first 

place, but this lower submission was not selected as my final submission. 

Data Preprocessing: 

The molecules were cleaned using the molvs package, which led to some molecules sharing the same 

SMILES representation. To handle this, I averaged the target values for these duplicates, reducing the 

dataset to 1165 unique molecules. It might be beneficial to retain salt/neutralized pairs as separate data 

points, as their target values can vary significantly. 

Model Training and Internal Test Set Creation: 

After the release of leaderboard data, I retrained the models to incorporate this new information. I 

separated 20 molecules as an internal test set, with a final train set of 1145 molecules. Consistent 5-fold 

cross-validation with the same seed and data ordering was applied across all models. The ensemble was 

built on the out-of-fold (OOF) predictions and validated on my internal test set. 

Use of Auxiliary Targets: 

In an effort to enhance the performance of the deep learning models, I incorporated the OOF predictions 

from tree-based models (LGBM and CatBoost) trained on different chemical descriptors as auxiliary 

targets. This approach allowed the deep learning models to learn from the implicit chemical knowledge 

captured by the tree-based models. However, this method is prone to overfitting, making it essential to 

establish a robust cross-validation (CV) strategy. Additionally, a strong correlation between CV scores 

and leaderboard performance is crucial to ensure that the models generalize well. Ideally, the leaderboard 

and test set distributions should align closely, which fortunately seemed to be the case in this competition. 

Training on these auxiliary targets did decrease the leaderboard RMSE (and OOF score) by a few points 

on each model individually. 

Model-Specific Details: 

●   MolFormer: Two versions of the MolFormer model were included in the ensemble. Both were 

pretrained on a subset of the ZINC dataset (~50,000 data points closest to the Tox24 

molecules using ECFP), Tox21, and Tox24 datasets using multitask regression (MTR) on 27 

Mold2 descriptors. This pretraining improved both CV and leaderboard performance by a few 

RMSE points. 

○   The first model was trained with the predictions of an LGBM model using OEState 

descriptors as auxiliary targets. 

○   The second model was trained with the predictions from a CatBoost model using 

Mold2 descriptors. 

●   SMI-TED: This transformer model was fine-tuned without additional pretraining. It was trained 

with LGBM predictions using OEState descriptors as auxiliary target. 

●   UniMol: The UniMol model was only fine-tuned and included in the final ensemble. It was 

trained with LGBM predictions using Mold2 descriptors as auxiliary target. 
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Challenges and Alternative Approaches: 

Interestingly, a previously submitted ensemble version that did not include the MolFormer model trained 

with CatBoost predictions achieved an RMSE of 20.4, outperforming the eventual 1st place. 

Other models tested included XGB, LGBM, CatBoost, ChemBERTa2, and Giraffe, with descriptors from 

RDKit, Mordred, fingerprints, Mold2, and OEState. Additionally, I experimented with adding docking 

scores obtained via PyRx as auxiliary outputs and compiled various datasets related to TTR binding as 

auxiliary tasks, though these efforts didn’t improve results. 

The two data points at the bottom of the plot correspond to the results that secured 9th place (lowest 

internal test set RMSE) and the potential 1st place in the competition (second lowest internal test set 

RMSE). In retrospect, selecting my best model solely based on the performance of 20 internal test data 

points proved to be a suboptimal approach due to the limited sample size. 

 

Team #10 
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Team #11: vchupakhin 
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