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Abstract 51 

Metaproteomics is an emerging approach for studying microbiomes, offering the ability to 52 

characterize proteins that underpin microbial functionality within diverse ecosystems. As 53 

the primary catalytic and structural components of microbiomes, proteins provide unique 54 

insights into the active processes and ecological roles of microbial communities. By 55 

integrating metaproteomics with other omics disciplines, researchers can gain a 56 

comprehensive understanding of microbial ecology, interactions, and functional dynamics. 57 

This review, developed by the Metaproteomics Initiative (www.metaproteomics.org), serves 58 

as a practical guide for both microbiome and proteomics researchers, presenting key 59 

principles, state-of-the-art methodologies, and analytical workflows essential to 60 

metaproteomics. Topics covered include, among others, experimental design, sample 61 

preparation, mass spectrometry techniques, data analysis strategies, and statistical 62 

approaches. 63 

 64 
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1. Why metaproteomics?  127 

The importance of microbiomes in nearly all processes within the biosphere is increasingly 128 

clear. Composed of bacteria, bacteriophages, archaea, yeasts, fungi, protozoa, and viruses, 129 

microbiomes are highly diverse in taxonomic composition. A microbiome  and its theater of 130 

activity—including microbial elements such as genes, transcripts, proteins, and 131 

metabolites—together form a microbiome (Berg et al. 2020). Microbiomes are, in most 132 

cases, highly structured in both membership and function. This underscores the need to 133 

understand microbiomes and their interactions with their environment or eukaryotic hosts, 134 

whether beneficial or harmful. However, the complexity of these systems challenges 135 

traditional research tools, particularly cultivation-dependent approaches, which, given the 136 

wealth of intra-organism interactions, are not scalable for large-scale microbiome studies. 137 

The rapid advancement of omics-based approaches has opened new avenues for systems 138 

biology-based research into the complexity of microbiomes. Shotgun metagenomics, in 139 

particular, has proven to be a powerful tool, offering much deeper insights than older 140 

techniques such as 16S rRNA gene amplicon sequencing. Metagenomics enables the 141 

discovery of complete genomic inventories, even for uncultured microorganisms, revealing 142 

the metabolic and physiological capabilities of a microbiome. However, it is limited to 143 

predicting functions rather than identifying active processes. To overcome this limitation, 144 

omics approaches such as metatranscriptomics, metaproteomics, and metabolomics 145 

provide essential insights into actual gene expression and activity under specific conditions. 146 

Together, these techniques bridge the gap from taxonomic structure to genomic potential 147 

and dynamic, context-dependent functions. 148 

Among these tools, metaproteomics enables the comprehensive analysis of the proteins 149 

expressed and functional in a microbiome, quantifies their abundances, and characterizes 150 

their modifications, interactions, and localizations (Figure 1). Proteins serve as the primary 151 

catalytic units and structural elements of microbiomes, making metaproteomics a direct 152 

reflection of the microbiome’s phenotype. This approach provides a detailed functional 153 

description and examines specific protein changes associated with structure, homeostasis, 154 

and enzymatic activity. Differences in protein sequences allow researchers to determine 155 

the taxonomic origins of particular enzyme sets, linking functions to taxonomic units. 156 

Metaproteomics can address several important questions such as: 157 

● What are the metabolic and physiological processes of microorganisms in diverse 158 

habitats, including environmental, technical, and host-associated systems? 159 
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● How do microbiomes respond to changing conditions, as reflected by differential 160 

protein expression? 161 

● How do microbes interact with their environment, including extracellular and 162 

intracellular protein dynamics? 163 

● What post-translational modifications (PTMs) regulate protein activity and structure? 164 

● How do microbiome phenotypes change over time or across spatial scales? 165 

● How can stable isotope information from metaproteomes represent microbial activity 166 

and substrate utilization (Justice et al. 2014; Kleiner et al. 2023)?  167 

While ongoing technological advancements are driving rapid progress, metaproteomics has 168 

already been successfully applied in the context of many impactful studies. It has 169 

contributed to fundamental understanding of microbial ecology, host-microorganism 170 

interactions, and disease mechanisms (Wolf et al. 2023). It has also improved 171 

biotechnological processes such as anaerobic digestion and wastewater treatment 172 

(Kleikamp et al. 2023; Justice et al. 2014; Heyer et al. 2024; Francesco Delogu et al. 2024), 173 

supported environmental monitoring (Pan, Wattiez, and Gillan 2024), and improved 174 

agricultural productivity (Andersen et al. 2021; Xue et al. 2024). Furthermore, it has 175 

applications in describing historical heritage and solving forensic questions (Jarman et al. 176 

2018). Readers interested in further details on the benefits of metaproteomics can explore 177 

several recommended reviews (Heintz-Buschart and Wilmes 2018; Sun, Ning, and Figeys 178 

2024; Herbst et al. 2016; Hettich et al. 2013; Kleiner 2019) and perspectives on its future 179 

(Van Den Bossche, Arntzen, et al. 2021; Wilmes, Heintz-Buschart, and Bond 2015; X. 180 

Zhang and Figeys 2019; Armengaud 2023). 181 

This review, prepared by the Metaproteomics Initiative, aims to serve as a practical and 182 

accessible guide to metaproteomics. A detailed overview of the organization and 183 

presentation of this collaborative work is provided in Section 5, highlighting our dedication 184 

to delivering a comprehensive and valuable resource for the microbiome research 185 

community. 186 
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 187 

Figure 1. Overview of metaproteomics within the multi-meta-omics toolbox applied to diverse 188 

microbiome research domains. This figure highlights the role of metaproteomics in identifying 189 

proteins, quantifying their abundances, detecting post-translational modifications (PTMs), mapping 190 

protein-protein interactions (PPIs), and determining protein localizations. Metaproteomics 191 

complements other omics approaches, including metagenomics, metatranscriptomics, and 192 

metabolomics, to provide a comprehensive understanding of microbial systems. Examples of 193 

microbiome research domains include the human microbiome (oral, skin, gut, lung, vaginal), animal 194 

microbiomes (farm, wild, and laboratory animals), environmental microbiomes (soil, ocean), and 195 

special sample sources (e.g., ancient microbiome samples). 196 
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2. Basics of proteomics  197 

Proteins are the essential structures and machinery that execute the instructions encoded 198 

in DNA, performing tasks ranging from catalyzing biochemical reactions to providing 199 

structural support. The term "proteome" refers to the complete set of proteins expressed in 200 

a cell, tissue, or organism (Wilkins et al. 1996). Proteomics, as a field, seeks to uncover the 201 

identities, quantities, structures, interactions, and modifications of proteins to better 202 

understand their roles in biological systems. 203 

Although the term "proteome" was coined in the mid-1990s, its foundations lie in decades 204 

of protein biochemistry research that continues to shape modern proteomics. One of the 205 

earliest applications of proteomics combined gel electrophoresis (1D and 2D) with mass 206 

spectrometry techniques such as MALDI and ESI-MS/MS (James et al. 1993). Initially, 207 

protein samples were separated on a combination of 1D and 2D gels. One gel was electro-208 

blotted onto a nitrocellulose membrane and stained using amido black, while the other gel 209 

was silver-stained for higher sensitivity. Protein bands or spots were excised from the 210 

nitrocellulose membrane, digested with trypsin, and identified using mass spectrometry. 211 

Aligning the nitrocellulose membrane with the silver-stained gel allowed researchers to 212 

locate bands that were difficult to visualize on the less-sensitive stain. Subsequent 213 

improvements, such as in-gel digestion, eliminated the need for electro-blotting. Early 214 

proteomics efforts also gave rise to software tools that automated protein identification, and 215 

therefore replacing manual annotation of peptide sequences. Many of these early 216 

innovations however, formed the basis for modern proteomics workflows. 217 

The development of gel-free proteomics marked a significant advancement in the field. This 218 

approach bypasses gel-based separation, proceeding directly from protein extraction to 219 

digestion and mass spectrometry. Gel-free methods catalyzed a wave of new techniques, 220 

reagents (e.g., SILAC, ICAT, ITRAQ), and software, which collectively improved protein 221 

identification, PTM analysis, quantitation, and multiplexing. Tasks that were once labor-222 

intensive with 2D gel MS became faster and more accessible through gel-free workflows. 223 

Moreover, mass spectrometers, which were initially optimized for small molecule research, 224 

were adapted for proteomics. Over the past 15 years, proteomics-dedicated mass 225 

spectrometers have been developed, offering greater speed, sensitivity, and accuracy in 226 

peptide identification and quantitation. 227 

Proteomics today falls into two broad methodological categories: shotgun (or bottom-up) 228 

proteomics (Diz and Sánchez-Marín 2021) and top-down proteomics (Habeck et al. 2024). 229 

Shotgun proteomics, the more widely used approach, involves enzymatic digestion of 230 
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proteins into peptides, which are analyzed by mass spectrometry. This method is robust 231 

and effective for protein identification and quantification. In contrast, top-down proteomics 232 

directly analyzes intact proteins, providing insights into sequences, structures, and 233 

modifications. Although top-down proteomics offers unique advantages, it is technically 234 

demanding, less commonly used in single-species proteomics, and not currently applied in 235 

metaproteomics. 236 

A typical bottom-up proteomics workflow begins with the enzymatic digestion of proteins, 237 

most commonly using trypsin, into smaller peptides. These peptides are separated through 238 

liquid chromatography and analyzed by tandem mass spectrometry (LC-MS/MS). In the 239 

mass spectrometer, the peptides are ionized, and their intact forms are detected to generate 240 

MS1 spectra. The peptides are further fragmented to produce MS2 spectra, which are 241 

analyzed by proteomics software. In most cases, database searches match these spectra 242 

to theoretical spectra derived from protein databases. This approach enables the 243 

identification and quantification of peptides and their corresponding proteins. For those 244 

seeking a deeper understanding of proteomics, numerous resources and reviews provide 245 

detailed insights into the field (Matthiesen and Bunkenborg 2013; Shuken 2023; Jiang et al. 246 

2024; Sinitcyn, Rudolph, and Cox 2018).  247 

3. Experimental methods in metaproteomics  248 

Metaproteomics expands upon proteomics techniques, leveraging high-resolution LC-249 

MS/MS instruments (Gómez-Varela et al. 2023; Dumas et al. 2024) and accompanying 250 

software tools for mass spectra identification. However, metaproteomics goes beyond the 251 

straightforward application of proteomics to microbiome research. Its added complexity 252 

arises from the requirement to consider both species-specific and functional annotations for 253 

each protein. Additionally, the presence of protein homologs across phylogenetically related 254 

species within a single sample further complicates protein inference. 255 

The key distinctions between proteomics and metaproteomics lie in the taxonomic and 256 

functional complexity of microbiomes, the vast size of microbiome databases, and the 257 

challenges associated with sample processing, as well as the identification and quantitation 258 

of peptides and proteins. Additionally, specialized bioinformatic and statistical tools are 259 

required to track both the taxonomic and functional annotations of peptides and proteins. 260 

These aspects, which are unique to metaproteomics, will be discussed in detail throughout 261 

the remainder of this article. 262 
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This section provides an essential foundational guide to start with metaproteomics studies 263 

(Figure 2). We outline the basic principles for each step, starting with experimental design 264 

(Section 3.1), followed by sample collection, preservation, and preprocessing (Sections 265 

3.2–3.3). Protein sample preparation is then described, covering both manual workflows 266 

(Sections 3.4–3.5) and automated workflows (Section 3.6). Next, we explain the basics of 267 

MS data acquisition (Section 3.7), before delving into the detailed bioinformatics workflows 268 

used in metaproteomics (Sections 4.1–4.3). 269 

 270 

Figure 2. Overview of key principles and workflows in metaproteomics, aligned with 271 

corresponding subsections in this review.  272 

 273 
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3.1. Experiment design  274 

3.1.1. Aligning experimental design with the scientific question 275 

A well-designed metaproteomics experiment forms the basis for generating meaningful 276 

insights that directly address the scientific question being studied. Most importantly, the 277 

experimental design must align with the specific scientific question being addressed and 278 

the resources available to answer that question. Broadly, three experimental scenarios can 279 

be outlined (Figure 3A): 280 

i) Unique sample without a control: The goal here is to provide a comprehensive 281 

description of the taxonomic and functional units present in the sample, although 282 

comparisons with a control are not possible. Examples include desiccated material from a 283 

historical Antarctic ice core (Lezcano et al. 2022), a unique biofilm from an industrial storage 284 

pool (Pible et al. 2023), residues from an ancient tomb (Charlier et al. 2024) , or medieval 285 

dental calculus (Jersie-Christensen et al. 2018) were analyzed using metaproteomics. 286 

Differential functional abundances among the identified microorganisms can reveal their 287 

metabolic specialization. 288 

ii) Comparison of microbiomes under different conditions: This common approach 289 

highlights differences between conditions. Comparisons may involve two conditions (i.e., 290 

condition A vs. condition B) or more complex setups with multiple conditions. Specific cases 291 

include dose-response analyses, where a single parameter such as stress intensity is 292 

modified, or spatial comparisons. Examples include characterizing microbial communities 293 

along a 5,000 km Pacific Ocean transect (Saunders et al. 2022) or analyzing microbiome 294 

responses to various xenobiotics in vitro (L. Li et al. 2020). 295 

iii) Longitudinal analysis of a single microbiome or multiple microbiomes: This 296 

strategy captures temporal dynamics within a microbial community, and potentially the 297 

host's response, by analyzing the same microbiome at different time points. A more 298 

complex approach examines temporal changes across multiple conditions or sampling sites. 299 

Examples include monitoring gut microbiomes in Crohn's disease patients post-resection 300 

surgery over one year (Blakeley-Ruiz et al. 2019) or monthly analyses of specialized 301 

microbiomes in a two-stage anaerobic digester for lignocellulose breakdown, tracking the 302 

dynamics between hydrolytic and methanogenic subsystems (Heyer et al. 2024). 303 
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 304 

Figure 3. Metaproteomic experimental designs and their comparison with metagenomics in 305 

studying microbiome dynamics. (A) Overview of common metaproteomic experimental designs. 306 

The left panel illustrates the comparison of microbial protein expression between species within a 307 

unique sample source, lacking a control. The middle panel compares microbiomes under varying 308 

conditions, such as drug treatments, using ex vivo microbiomes to assess microbial responses. The 309 

right panel shows longitudinal studies that monitor temporal changes in microbial protein expression 310 

over time. (B) Metagenomic responses to perturbations, showing shifts in taxonomic composition 311 

while assuming genome content remains relatively constant. (C) Metaproteomic responses to 312 

perturbations, showing changes in both taxonomic composition and proteome content. This 313 

approach captures microbial abundances and their functional contributions, providing deeper 314 

insights into microbiome dynamics. 315 

 316 
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Some readers may already have experience designing experiments for metagenomics and 317 

understand its principles. In contrast, metaproteomics offers a different perspective on 318 

microbiome changes (Figure 3B). Metagenomics captures shifts driven by changes in 319 

taxonomic composition, as genomic content within a sample is relatively constant. This 320 

approach reveals species abundance and diversity but does not provide functional insights. 321 

Metaproteomics, on the other hand, measures not only taxonomic changes through taxon-322 

specific peptide intensities but also dynamic functional responses through proteome 323 

variations across taxa. This makes metaproteomics particularly well-suited for comparing 324 

microbiomes under different conditions or for longitudinal studies.  325 

When selecting conditions or time points for a kinetic analysis, careful consideration is 326 

essential. Comparisons between vastly different samples, such as a soil microbiome versus 327 

a human gut microbiome, are in general uninformative, while overly similar samples may 328 

show no significant differences. Selection should be guided by a clear rationale and 329 

preliminary observations. The reference condition or time point depends on the scientific 330 

question but may involve using a mixture of all samples as a reference. While this approach 331 

increases peptide diversity in the reference sample, it can complicate analysis if the full 332 

diversity is not captured by the analytical workflow (Armengaud 2023) as further detailed in 333 

Sections 3.5 and 3.7. 334 

Potential confounding factors must also be accounted for during experimental design. 335 

Comprehensive metadata collection is critical, including information on sampling location, 336 

timing, storage, processing conditions, and data acquisition. Additional metadata, such as 337 

weather conditions on sampling days, patient medication, or health status, may also be 338 

essential for interpreting results. Additionally, researchers should also consider using 339 

additional material to create appropriate databases for matching spectra to peptides and 340 

for testing methodologies before processing all samples. More details on proteomics 341 

software and database creation are provided in Section 4.1.1 and 4.1.2, respectively. 342 

Finally, while a limited number of metaproteomics studies have used metabolic labeling 343 

(e.g., to study host-microbiome or plant rhizosphere interactions (Z. Li et al. 2019; Smyth et 344 

al. 2020; Sachsenberg et al. 2015), this approach is often impractical for environmental or 345 

human microbiome samples. Metabolic labeling, as briefly mentioned in Section 2, involves 346 

incorporating heavy isotopes like 15N or 13C into proteins through labeled substrates, 347 

enabling the study of metabolic crosstalk and protein production rates. However, its limited 348 

applicability means that it is not further discussed in this review.  349 
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3.1.2. Reproducibility & statistics 350 

The high complexity and heterogeneity of metaproteomics samples necessitate careful 351 

consideration of statistical power and steps to ensure reproducibility during experimental 352 

design. Biological, technical, and analytical replicates are key to producing reliable data and 353 

accurate interpretations. Increasing the number of biological replicates improves the ability 354 

to detect smaller differences, even in the presence of high variability. When only slight 355 

differences between conditions are expected, the use of pooled samples may also be 356 

considered. Technical and analytical replicates are necessary to account for noise 357 

introduced during measurement. It is advisable to first evaluate the variability of sample 358 

preparation and the analytical workflow using a representative sample. Additionally, 359 

randomizing the order of samples before LC-MS/MS analysis reduces the risk of bias due 360 

to the sequence in which they are processed (Nakayasu et al. 2021). For cases where 361 

specific sources of variability, such as batch effects, are known, blocked randomization is 362 

preferable to further minimize bias (Oberg and Vitek, 2009). Rigorous quality control (QC) 363 

is essential during the LC-MS/MS phase of the metaproteomics workflow to ensure data 364 

reliability and consistency. Section 3.7.4 provides further details on these QC procedures. 365 

Determining the appropriate number of biological replicates is essential to detect 366 

meaningful biological differences, such as variations in taxon biomasses, protein 367 

abundances, or metabolic pathways. Power analysis is typically used to calculate the 368 

required sample size, but it can be challenging in metaproteomics due to the complexity of 369 

experimental designs and the inherent variability of samples. When precise endpoints are 370 

unavailable, rough estimates from similar studies can serve as a guide. Power analysis 371 

considers several key factors: the effect size, which reflects the expected magnitude of 372 

differences between groups and helps determine the necessary sample size; the 373 

significance level (α), usually set at 0.05 to allow a 5% risk of false positives; statistical 374 

power (1 - β), often set at 0.8 or higher to reduce the likelihood of failing to detect a true 375 

effect; and the variability in the data, which can be estimated from pilot studies or previous 376 

literature on comparable experiments. In studies involving complex microbial communities, 377 

deriving precise sample size estimates may be impractical, but approximate estimates 378 

remain a valuable approach (Ferdous et al. 2022). Conducting power analysis is critical for 379 

avoiding underpowered studies and ensuring efficient use of resources (Levin 2011; 380 

Ferdous et al. 2022). 381 
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3.2. Sample collection, preservation and storage prior to 382 

preprocessing 383 

3.2.1 Sample collection and preservation 384 

Metaproteomics has been applied to a variety of samples, including microbial communities 385 

from environmental niches such as water, soil, sewage, aerosols, and rocks (Starke, 386 

Jehmlich, and Bastida 2019; Nebauer, Pearson, and Neilan 2024). It has also been used 387 

to analyze microbiomes in fermented foods and beverages (L. Yang, Fan, and Xu 2020; 388 

Okeke et al. 2021) and in associations with various higher eukaryotes, including arachnids, 389 

insects, worms, mollusks, fish, plants, birds, and mammals (Ezzeldin et al. 2019; Andersen 390 

et al. 2021). In mammals and other vertebrates, metaproteomics has been applied to 391 

numerous body sites across the digestive, respiratory, and urogenital systems (Y. Wang et 392 

al. 2020; Wolf et al. 2023).  However, many microbiomes remain unexplored by 393 

metaproteomics. 394 

The choice of collection method significantly influences the resulting metaproteomic profile 395 

by altering the ratios of microbial to non-microbial components and the relative abundances 396 

of microbial taxa. Collection strategies also introduce operator-dependent variability, 397 

making user-friendly devices especially valuable for self-sampling of clinical specimens. 398 

Microbiome samples are often collected directly into sterile tubes or containers. This 399 

method is common for non-invasive clinical samples, such as feces, saliva, sputum, and 400 

urine, which can often be self-collected by study participants (Long et al. 2020; Arıkan et al. 401 

2023; Graf et al. 2021; XiaoLian Xiao et al. 2022). For clinical specimens requiring surface 402 

sampling, swabs, spatulas, or syringes are often used for oral, nasal, and cervicovaginal 403 

samples (Chen et al. 2024; Bihani et al. 2023; Berard et al. 2023), while periodontal curettes 404 

or paper strips are used for tooth- and gingiva-associated microbiomes (Rabe et al. 2022; 405 

Xiaolian Xiao et al. 2023). Invasive procedures, such as bronchoalveolar lavage, 406 

endotracheal aspiration (Pathak et al. 2020), intestinal biopsies (Jabbar et al. 2021), colonic 407 

luminal aspirates (X. Zhang et al. 2020), and surgical collection of colonic contents (Tanca 408 

et al. 2022), are necessary for some specimens. Similarly, gastrointestinal fistulation 409 

(Deusch et al. 2017) and post-mortem dissection (Haange et al. 2019) are used for 410 

collecting samples from laboratory or field animals. For environmental samples, specialized 411 

devices such as quartz filters for bioaerosols (Meyer et al. 2023) and large-volume water 412 

transfer/filter systems for aquatic environments (L.-F. Kong et al. 2021; S. Wang et al. 2024) 413 

are commonly employed. More complex ecosystems may require multi-step collection 414 

protocols (Aylward et al. 2012). 415 
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Microbiome sampling inherently involves the translocation of microbial communities from 416 

their native environment to laboratory conditions. During this transition, microbial 417 

communities are highly sensitive to environmental changes such as temperature, humidity, 418 

and exposure to chemical or biological agents. These factors can induce substantial 419 

alterations in the metaproteome profile. To minimize artifacts, protein extraction should 420 

ideally occur immediately after sampling. However, immediate processing is often 421 

impractical, particularly in large-scale studies or field collections. In such cases, proper 422 

transport and storage procedures are crucial to preserving the microbiome's original 423 

biological functions. This is especially important for low-biomass or low-diversity 424 

microbiomes, which are more vulnerable to rapid shifts in their composition and activity due 425 

to external stimuli. 426 

3.2.2. Storage conditions to maintain sample integrity 427 

 428 

Proper storage is critical to preserving the integrity of microbial proteins and ensuring 429 

reliable downstream analyses. Exposure to environmental changes, such as air exposure, 430 

temperature fluctuations, or nutrient depletion, can significantly alter protein profiles, 431 

leading to misleading results. For instance, air exposure can introduce oxidative stress and 432 

enrich bacterial superoxide dismutase enzymes, which may bias colorectal cancer studies 433 

by mimicking disease-specific characteristics (Long et al. 2020). Therefore, appropriate 434 

storage immediately after sample collection is essential to maintain the microbiome's 435 

original state. 436 

The standard practice for preserving metaproteomic samples involves flash-freezing in 437 

liquid nitrogen, followed by storage at −80°C. This approach minimizes molecular 438 

degradation and prevents alterations in protein abundances. While this method is highly 439 

effective, some experimental setups do not allow for immediate freezing. In such cases, 440 

alternative preservation methods may be employed. Solutions like PBS (Delgado-Diaz et 441 

al. 2022), Amies liquid medium (Bankvall et al. 2023), NAP buffer (Mordant and Kleiner 442 

2021), and other commercially available liquid reagents (Birse et al. 2020) have been tested 443 

for their ability to enhance storage conditions or enable room-temperature preservation in 444 

metaproteomics. Protease inhibitors are often added to biological fluids such as saliva to 445 

prevent uncontrolled proteolysis (Ruan et al. 2021). RNAlater or RNAlater-like treatments 446 

have shown potential for preserving protein profiles in intestinal and marine samples, 447 

although with conflicting results (Mordant and Kleiner 2021; Jensen, Wippler, and Kleiner 448 

2021; Saito et al. 2011). Regardless of the method used, compatibility with downstream 449 

protein extraction, digestion, and analysis steps is crucial. Common pitfalls, including 450 
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polyethylene glycol (PEG) contamination from plasticware, keratin contamination from 451 

handling, and interference from detergents or salts, must be carefully managed. 452 

Alternative long-term storage strategies, such as freeze-drying or storing samples at −20°C, 453 

in liquid nitrogen tanks, or as lyophilized powders, also require careful evaluation. These 454 

approaches may be suitable for some sample types but may not consistently maintain 455 

protein integrity. For example, frozen intact stool material has been shown to be more stable 456 

than extracted proteins when stored at −80°C, underscoring the importance of selecting 457 

storage strategies tailored to the specific sample type (Morris and Marchesi 2016). 458 

It is important to note that the stability of proteins during storage is highly dependent on the 459 

sample type and storage conditions. For example, the activity and stability of soil proteins 460 

are influenced by temperature, duration of storage, and soil organic matter content (Bandick 461 

and Dick 1999; Keiblinger et al. 2016). For studies involving prolonged transport or storage, 462 

incorporating a straightforward mock community can provide valuable controls to assess 463 

sample stability and detect potential storage-induced changes (Nebauer, Pearson, and 464 

Neilan 2024). 465 

3.3. Sample preprocessing 466 

Sample preprocessing ensures  the removal of contaminants and debris, which can hinder 467 

protein extraction, degrade analytical quality (Heyer et al. 2019), and dilute biologically 468 

relevant signals. This step, as in other gene expression measurement workflows, ensures 469 

the enrichment of microbial fractions and improves the quality of downstream analysis. 470 

Ideally, preprocessing should involve minimal, rapid, and reproducible steps. Since no 471 

standardized protocols for metaproteomics (or metagenomics) currently exist, methods 472 

must be tailored to the specific sample type and evaluated based on the study's objectives 473 

(Tanca et al. 2015; Salvato, Hettich, and Kleiner 2021; Pettersen et al. 2022). While the 474 

breadth of samples processed for metaproteomics remains limited, this field is rapidly 475 

evolving, and many more methods are expected to emerge. 476 

For soil samples, humic substances derived from decomposed organic material often co-477 

extract with proteins, interfering with MS measurements (Benndorf et al. 2007; Waibel et al. 478 

2023). To address this, several methods have been developed to remove humic 479 

compounds while preserving protein integrity before digestion (Keiblinger et al. 2012; 480 

Giagnoni et al. 2011; Chourey et al. 2010; Bastida, Hernández, and García 2014). 481 

Alternatively, filter-aided sample preparation (FASP) can directly digest proteins within 482 

humic complexes. This method uses acidification to precipitate humic compounds and 483 
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undigested proteins while peptides are extracted via centrifugation through molecular 484 

weight cut-off filters (Qian and Hettich 2017). 485 

For human gut microbiome samples, non-microbial proteins from host cells and food debris 486 

are often much more abundant than microbial proteins, reducing the efficiency of microbial 487 

metaproteome identification (X. Zhang and Figeys 2019). Techniques such as double 488 

filtering (Xiong et al. 2015) and differential centrifugation (Tanca et al. 2014) can enrich 489 

microbial cells to improve identification. However, these methods may introduce biases and 490 

depend on the study's goals (Tanca et al. 2015). For example, double filtration can remove 491 

host cells and exoproteins, while differential centrifugation may non-specifically remove 492 

microbial cells and proteins (Speda et al. 2017; Armengaud et al. 2012; A. Wang et al. 493 

2024). Moreover, these methods are time-consuming and may be influenced by fecal 494 

variability, such as texture, fiber, and water content. Automation technologies, including 495 

solid-phase extraction clean-up, have been proposed to streamline processing for large 496 

longitudinal studies, reducing variability and improving reliability (Gonzalez et al. 2020).  497 

In studies analyzing heterogeneous samples with high host protein content, such as viscous 498 

sputum of cystic fibrosis patients, certain plant tissues or environmental samples, a 499 

homogenization step can improve sample consistency. This step should be performed 500 

under conditions (temperature and duration) that minimize alterations to the in vivo 501 

metaproteome. Various mechanical strategies can achieve homogenization, including 502 

laboratory mills (Graf et al. 2021) and glass homogenizers (Salvato et al. 2022). The 503 

addition of protease inhibitors and DNase I to prevent protein degradation and disrupt DNA-504 

based aggregates may also be beneficial, yet should be carefully evaluated based on the 505 

sample type and study objective. 506 

For clinical samples containing bacterial or viral pathogens, inactivation is required before 507 

further processing outside appropriate biosafety level (BSL) containment. Since no 508 

standardized pipeline exists for this step, protocols must be tailored to the specific pathogen 509 

and sample type. Methods such as heat inactivation in lithium dodecyl sulfate buffers 510 

(Grenga et al. 2022) and MPLEx extraction, which uses chloroform, methanol, and water 511 

(8:4:3) for simultaneous pathogen inactivation and fractionation into metabolite, protein, and 512 

lipid phases, are commonly used (Burnum-Johnson et al. 2017). These approaches ensure 513 

both safety and compatibility with downstream metaproteomics workflows. 514 
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3.4 Protein sample preparation: from extraction to digestion  515 

Preparing protein samples from biological material involves a series of interconnected steps, 516 

each essential for obtaining high-quality metaproteomic data. The term "protein extraction" 517 

is often used broadly to describe the entire workflow of isolating proteins from a biological 518 

sample. This process typically begins with cell lysis using extraction buffers and may also 519 

include subsequent protein clean-up steps, such as precipitation, filtration, or other methods. 520 

In some workflows, however, protein clean-up is treated as a distinct step, especially in 521 

protocols where extraction, clean-up, and digestion are streamlined into a single process. 522 

This section provides an overview of the key stages in protein sample preparation: cell lysis 523 

and extraction (Section 3.4.1), protein clean-up (Section 3.4.2), protein concentration 524 

(Section 3.4.3), and protein digestion (Section 3.4.4). 525 

3.4.1 Cell lysis and protein extraction 526 

Cell lysis releases the proteome from microbial cells, with a variety of methods available, 527 

each with distinct advantages (Hansmeier, Sharma, and Chao 2022). Mechanical disruption 528 

methods, such as direct ultrasonication, non-contact ultrasonication, and bead beating, are 529 

commonly used. Ultrasonication usually involves direct ultrasonication, where the probe is 530 

directly inserted into the sample, or non-contact ultrasonication, where the sample in a tube 531 

receives sonication energy from a cup horn through a coupling fluid. An advanced non-532 

contact method termed Adaptive Focused Acoustic (AFA) technique provides precise 533 

control over parameters like amplitude and duration, achieving efficient lysis while 534 

minimizing protein denaturation (Dhabaria et al. 2015). Bead beating, which uses zirconia 535 

or silica beads, is effective for cell disruption, with bead size modulating efficiency (X. Zhang 536 

et al. 2018). 537 

Chemical lysis methods use detergents such as urea buffers containing Triton X-100 or 538 

sodium dodecyl sulfate (SDS) to disrupt microbial cell membranes, often in combination 539 

with mechanical disruption/ultrasonication (X. Zhang et al. 2018). Notably, when combining 540 

urea-containing buffers with mechanical disruption or ultrasonication, one should be aware 541 

of the risk of urea-induced carbamylation caused by sample overheating (Kollipara and 542 

Zahedi 2013). Physical methods, including freeze-thaw cycles or high-pressure 543 

homogenization, are also effective, with pressure settings tailored to specific sample types 544 

(Cai et al. 2022). Since microbial cell structures vary significantly, for example between 545 

Gram-positive bacteria, Gram-negative bacteria, and fungi, optimizing lysis conditions is 546 
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crucial to preserve protein integrity, maximize yield, and ensure unbiased protein extraction 547 

(Starke et al. 2019; J. Wang et al. 2020). 548 

Recently, some of the above approaches have been compared and found that a urea- and 549 

SDS-containing lysis buffer coupled to ultrasonication yielded higher protein recovery than 550 

bead beating in microbiome samples, with minimal sample loss, though both methods 551 

achieved similar peptide and protein identifications (X. Zhang et al. 2018). Careful selection 552 

of lysis buffers is also critical to avoid interference with downstream MS analysis. For 553 

example, ion suppression-inducing detergents like Tween-20 should be avoided unless 554 

they are removed during cleanup, as in methods like suspension trapping (S-trap) or FASP. 555 

Table 1 compares commonly used protein sample preparation methods, summarizing their 556 

key advantages and disadvantages. The choice of lysis method depends on factors such 557 

as sample type, desired protein yield, and sensitivity of proteins to denaturation or 558 

degradation. The listed lysis methods can also be combined, for example, detergent-559 

containing urea lysis buffers are often coupled with ultrasonication to achieve fast and 560 

unbiased bacterial cell lysis in complex microbiome samples. 561 

Table 1. Comparison of standard protein sample preparation methods. This table summarizes 562 

commonly used protein sample preparation techniques, outlining their key advantages and potential 563 

disadvantages. 564 

Method Description Advantages Disadvantages 

Chemical Lysis Disrupts cell 

membranes with 

chemicals like urea 

or guanidine 

hydrochloride. 

Can unfold complex 

proteins. 

If not removed or 

sufficiently diluted, it 

can interfere with 

protease activity. 

Risk of urea-

induced 

carbamylation. 

Detergent Lysis Uses detergents 

(e.g., SDS, Triton X-

100) to solubilize 

cell membranes. 

Mild, preserves 

protein function,  

ideal for membrane 

proteins. 

If a detergent is not 

removed or 

sufficiently diluted, it 

can interfere with 

protease activity. 

Freeze-Thaw Repeatedly freezes Simple, no special Time-consuming, 
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Cycles and thaws the 

sample to rupture 

cell membranes. 

equipment needed. may not fully lyse 

cells, risk of protein 

degradation. 

Bead beating Physical force such 

as using bead 

beating to break cell 

walls. 

Effective for 

bacterial cell lysis. 

Requires specific 

instrument, sample 

loss due to contact 

with beads, can 

generate heat, risk 

of protein 

degradation.  

Ultrasonication Uses ultrasound 

waves to break cell 

membranes/walls 

and release 

proteins. 

Fast, effective and 

can be non-contact 

for small samples, 

no need for harsh 

chemicals. 

Can denature 

proteins if overused, 

heat generation 

requires sample 

cooling. 

 565 

3.4.2 Protein clean-up: precipitation and alternative methods 566 

Protein precipitation addresses the challenges of complex environmental and fecal samples 567 

by removing contaminants such as lipids, nucleic acids, and polysaccharides that can 568 

interfere with downstream MS analysis. Following microbial cell lysis, effective separation 569 

of proteins from cellular debris and contaminants is essential to ensure high protein yield 570 

and purity. Removing contaminants not only improves protein recovery but also enhances 571 

MS sensitivity, enabling more accurate and reliable protein identification. 572 

The trichloroacetic acid (TCA)/acetone precipitation method is widely employed for this 573 

purpose. This method involves adding cold (-20°C) TCA or acetone, or both, to the protein 574 

lysate to precipitate proteins, followed by centrifugation to pellet the proteins. The pellets 575 

are then washed with cold acetone (-20°C) to remove residual contaminants and insoluble 576 

particles (Nickerson and Doucette 2020). This approach has proven effective for high-yield 577 

protein precipitation in diverse sample types, including marine sediment and forest soil 578 

samples, which contain complex organic matrices (Niu et al. 2018). Similarly, acidified 579 

acetone/ethanol buffer has also been used in metaproteomics (X. Zhang et al. 2016). 580 
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An alternative method, phenol extraction, separates proteins into the organic phase while 581 

partitioning nucleic acids into the aqueous phase. This approach is particularly beneficial 582 

for "dirty" samples, such as soil and wastewater sludge, which are rich in organic and 583 

inorganic contaminants. Phenol extraction can reduce the interference caused by 584 

contaminants, thus improving the downstream analysis of target proteins (Benndorf et al. 585 

2009). Phenol extraction also enables the simultaneous extraction of nucleic acids from the 586 

same sample, making it highly suitable for integrated omics studies, especially in 587 

microbiome research (Baldrian 2017). 588 

For samples with low microbial load, such as fecal samples, river sediment, or air filters, 589 

maximizing protein recovery is critical. Organic solvent systems, such as 590 

chloroform/methanol or chloroform/methanol/water mixtures, have proven effective for 591 

enhancing protein recovery and minimizing the loss of low-abundance proteins by 592 

optimizing solvent ratios and conditions (Vertommen et al. 2010). Biphasic systems, such 593 

as phenol/chloroform or Triton X-114, can also be used to selectively partition proteins and 594 

facilitate the removal of contaminants (Wessel and Flügge 1984). 595 

Traditional protein precipitation methods, while effective, can be labor-intensive and may 596 

not always completely eliminate contaminants that interfere with downstream analyses. To 597 

address these limitations, alternative methods have been developed to improve protein 598 

clean-up and digestion efficiency. Techniques such as FASP, SP3, and suspension 599 

trapping (S-Trap) have shown promise for processing challenging samples like human fecal 600 

protein extracts (Tanca et al. 2024). Solid-phase alkylation, a novel strategy designed for 601 

low-loss and anti-interference sample preparation, utilizing covalent binding and purification 602 

of proteins, has also been proved effective for marine microbiome samples (S. Wang et al. 603 

2024). These approaches integrate clean-up and digestion steps into a single workflow, 604 

facilitating high-throughput applications. 605 

3.4.3 Measuring protein concentration 606 

Accurate protein concentration measurement ensures uniform loading in downstream LC-607 

MS/MS analyses and for facilitating reliable data interpretation (Sapan and Lundblad 2015). 608 

Consistent peptide loading in LC-MS/MS is essential for accurate peptide quantification, as 609 

it maintains signal intensity and ensures reliable peptide detection across samples. Uniform 610 

loading also optimizes column performance, reducing variability in peak shapes and 611 

retention times. This consistency minimizes technical artifacts, enabling clearer biological 612 

insights when comparing samples. 613 
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Various methods are commonly used to determine protein concentration. The Bradford 614 

Assay, which utilizes Coomassie Brilliant Blue dye, measures protein concentration through 615 

a colorimetric change, requiring a standard curve prepared with known protein 616 

concentrations to ensure precision. The bicinchoninic acid (BCA) assay forms a purple-617 

colored complex for protein quantification, with sensitivity optimized by adjusting reagent 618 

ratios and incubation conditions. Fluorescence-based assays, such as the Qubit Protein 619 

Assay, use dye-binding technology for highly sensitive quantification with minimal 620 

interference, making them suitable for samples with low protein concentrations.  621 

The 2-D Quant Kit is another option, which quantitatively precipitates proteins while leaving 622 

interfering substances in solution. This method produces a color density inversely related 623 

to protein concentration, with a linear response in the range of 0–50 µg and a volume range 624 

of 1–50 µL. When selecting a protein concentration method, it is important to consider the 625 

required sensitivity, dynamic range, and compatibility with buffer components, as some 626 

assays show varying tolerance to substances like SDS or protease inhibitors, including 627 

PMSF. 628 

If no suitable quantification assay is available, running SDS-PAGE gels can provide a rough 629 

estimate of protein abundance. While less precise, this approach can offer a practical 630 

alternative for assessing protein concentrations in certain scenarios. 631 

This systematic approach to protein concentration measurement ensures consistency and 632 

reliability in downstream analyses, particularly when dealing with complex microbial 633 

samples containing proteins spanning a wide range of abundances. 634 

3.4.4 Protein digestion 635 

Bottom-up (shotgun) metaproteomic studies involve the enzymatic digestion of proteins into 636 

peptides, a process known as proteolysis, for untargeted protein identification. This method 637 

requires several preparatory steps to ensure efficient proteolysis. Initially, proteins are 638 

denatured using agents such as urea or guanidine hydrochloride to expose cleavage sites. 639 

Disulfide bonds are then reduced using reducing agents like dithiothreitol (DTT) or tris(2-640 

carboxyethyl)phosphine (TCEP). To prevent the re-formation of disulfide bonds, cysteine 641 

residues are alkylated with agents like iodoacetamide, which react with sulfhydryl groups to 642 

form stable thioether adducts (Sechi and Chait 1998). This alkylation introduces mass 643 

changes that must be accounted for during peptide identification, as discussed in Section 644 

4.1.1. 645 
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Following these preparatory steps, proteins are enzymatically cleaved into peptides suitable 646 

for downstream LC-MS/MS analysis (Hustoft et al. 2012). The most commonly used 647 

protease is trypsin due to its high specificity and efficiency. It cleaves proteins at the C-648 

terminal side of lysine and arginine residues, producing peptides ideal for shotgun MS 649 

analysis. Lys-C, another commonly used protease, complements trypsin digestion by 650 

cleaving at the C-terminal side of lysine residues, particularly in high urea concentrations 651 

(8 M), enhancing peptide coverage. Alternative proteases such as chymotrypsin, Glu-C, 652 

and Asp-N may also be used to increase peptide diversity or for specific applications. 653 

However, the combination of trypsin and Lys-C is often the most practical and widely 654 

applied choice. 655 

The enzyme-to-substrate ratio is another important factor, with typical ratios ranging from 656 

1:50 to 1:100 (w/w). Digestion time is also critical and usually involves incubating the 657 

proteome mixture at an appropriate temperature (e.g., 37°C) for several hours to overnight, 658 

depending on sample complexity and enzyme properties. Digestion is quenched by 659 

acidification, commonly using formic acid or trifluoroacetic acid to achieve a pH of 2–3. In 660 

methods such as S-trap or FASP, peptides may also be eluted without an acidification step. 661 

Peptide lysates are subsequently desalted or purified to remove salts and contaminants. 662 

Solid-phase extraction (SPE), C18 ZipTips (Millipore), or ultrafiltration are commonly used 663 

for this purpose. In some cases, the desalting step can be omitted if peptides are desalted 664 

on a trap column in the LC system. 665 

Direct in-solution protein digestion methods have been developed to streamline the 666 

workflow, offering efficient and high-throughput options. Notable examples include SP3 667 

(Hughes et al. 2014), FASP (Wiśniewski et al. 2009), S-trap (HaileMariam et al. 2018) and 668 

a commercial kit based on the in-StageTip (iST) (Kulak et al. 2014). These methods are 669 

designed to ensure high protein recovery and compatibility with downstream MS analysis, 670 

even when working with low protein amounts. 671 

3.5 Separation and fractionation techniques  672 

Separation and fractionation enable researchers to reduce sample complexity and enhance 673 

the depth and sensitivity of protein identification and quantification. These processes can 674 

be performed at multiple levels, including the peptide, protein, and cellular stages, 675 

depending on the specific goals of the analysis (Cheng et al. 2018). Techniques such as 676 

peptide fractionation are frequently used to enhance LC-MS/MS performance (Section 677 

3.5.1), while enrichment approaches allow for the targeted analysis of PTMs (Section 3.5.2). 678 
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At the protein or cellular level, fractionation strategies can further refine sample complexity 679 

or enrich specific components of interest (Section 3.5.3).  680 

3.5.1 On-line and off-line peptide fractionation 681 

Peptide separation workflows can generally be categorized into one-dimensional (1D) and 682 

two-dimensional (2D) or multi-dimensional approaches. In 1D liquid chromatography (LC), 683 

which is widely used in metaproteomics, reverse-phase (RP) nano-high-performance liquid 684 

chromatography (nanoHPLC, mostly just abbreviated as LC or HPLC) employs C18 685 

columns to separate peptides based on their hydrophobicity and is coupled directly with 686 

mass spectrometry for peptide analysis. 2D-LC, often based on multidimensional protein 687 

identification technology (MudPIT) (Washburn, Wolters, and Yates 2001), combines strong 688 

cation exchange (SCX) with RP-HPLC. Peptides are first fractionated on the SCX column 689 

based on their charge using salt or pH gradients for elution, and then further separated 690 

based on hydrophobicity on an RP-HPLC column  (Verberkmoes et al. 2009). The 2D-LC 691 

strategy has been applied in metaproteomic analyses to improve identification depth, with 692 

online 2D LC-MS setups used for shotgun proteomics in studies of human gut and 693 

environmental microbiomes (Verberkmoes et al. 2009).  694 

Off-line pre-fractionation, although less commonly used in metaproteomics due to its labor-695 

intensive nature and the increased MS time required, offers potential for deeper peptide 696 

and protein identification (X. Zhang et al. 2017). High-pH RP chromatography is one such 697 

method and is orthogonal to low-pH RP-LC-MS gradients. This fractionation can be 698 

achieved using either stage-tip methods or HPLC systems. Stage-tip-based fractionation is 699 

straightforward to implement and is supported by commercially available kits (e.g., Pierce™ 700 

High pH Reversed-Phase Peptide Fractionation Kit). On the other hand, micro-flow HPLC 701 

systems enable higher-resolution fractionation through continuous collection of numerous 702 

fractions and stepwise concatenation. 703 

While extensive fractionation can significantly enhance the depth of metaproteomic analysis, 704 

it also increases costs, sample requirements, and instrument time, making it less feasible 705 

for large cohort studies. The adoption of multiplexing techniques, such as tandem mass 706 

tags (TMT) (Creskey et al. 2023), has mitigated these limitations by reducing MS time and 707 

the required sample quantity per condition. The combination of off-line peptide fractionation 708 

and multiplexing presents a promising and accessible option for researchers, particularly 709 

beginners, aiming to conduct in-depth metaproteomic analyses to investigate microbiome 710 

functionality.  711 
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3.5.2 Enrichment of peptides with post-translational modifications 712 

PTMs are critical regulators of protein activity and function, and their study is uniquely 713 

possible through metaproteomics. Unlike other omics approaches, metaproteomics 714 

provides the direct capability to identify and quantify PTMs in microbial proteins, offering 715 

unparalleled insights into microbiome functionality. While analyzing PTMs at the 716 

metaproteome level is particularly challenging, several studies have successfully performed 717 

metaPTMomics on environmental and human gut microbiomes (Z. Li et al. 2014; W. Zhang 718 

et al. 2016; X. Zhang et al. 2021; 2020). These studies identified various PTMs, including 719 

methylation, hydroxylation, acylations, citrullination, deamination, phosphorylation, and 720 

nitrosylation, among others, with abundances varying across different microbiome types. 721 

Understanding the diversity and distribution of PTMs is essential for uncovering microbiome 722 

functionality. Recent advancements in the field have been detailed in two comprehensive 723 

reviews (Duchovni, Shmunis, and Lobel 2024; Duan, Zhang, and Figeys 2023).  724 

Microbiome PTMs can be analyzed using non-enriched samples combined with tailored 725 

bioinformatics workflows (Z. Li et al. 2014; W. Zhang et al. 2016) or quantitatively profiled 726 

using enrichment techniques at the peptide or protein level (X. Zhang et al. 2021; 2020). 727 

Depending on the type of PTM, specific enrichment strategies may be employed to facilitate 728 

detection during MS analysis.  729 

Immuno-affinity enrichment is widely used for protein acylations, such as lysine acetylation, 730 

propionylation, and succinylation, and has recently been applied to human gut microbiomes 731 

(X. Zhang et al. 2021). This technique uses antibodies bound to agarose or magnetic beads 732 

to selectively enrich acylated peptides, improving MS sensitivity and specificity. However, 733 

this approach can be limited by the availability of motif-specific antibodies and the inability 734 

to capture the full spectrum of modified peptides. 735 

Immobilized metal affinity chromatography (IMAC) is a commonly used strategy in 736 

proteomics to enrich phosphorylated peptides for phosphoproteomic studies. Ti-IMAC and 737 

Fe-IMAC are typical examples, offering robust enrichment prior to LC-MS/MS analysis (Low 738 

et al. 2021).  739 

Hydrophilic interaction liquid chromatography (HILIC) is another effective technique, 740 

particularly for enriching glycopeptides. This method capitalizes on its high selectivity and 741 

specificity for hydrophilic glycan moieties (Mysling et al. 2010). These enrichment 742 

approaches have been extensively applied to mammalian cells, tissues, and single bacterial 743 

strains, and they show potential for broader applications in microbiome studies. 744 
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3.5.3 Protein, cell-level and functional fractionation techniques 745 

The high complexity of microbiomes often necessitates cellular and protein-level 746 

separations to complement peptide-level fractionation, enhancing the depth and resolution 747 

of metaproteomic analysis. Although high-speed, high-resolution mass spectrometers have 748 

made peptide fractionation sufficient for many proteomics workflows, the added complexity 749 

of microbiomes can still benefit from upstream fractionation approaches. 750 

Capillary zone electrophoresis (CZE), a technique used to separate charged particles, 751 

shows promise for separating intact proteins and even bacterial cells (Cheng et al. 2018). 752 

Another method for separating proteomes from different bacteria is differential lysis, which, 753 

despite its relatively low granularity, can distinguish between bacterial types based on cell 754 

wall structure (J. Wang et al. 2020). In this approach, sequential lysis is achieved using 755 

buffers of increasing strength, such as those containing urea or varying concentrations of 756 

SDS. This method can separate the proteomes of Gram-negative bacteria, which have 757 

thinner cell walls, from those of Gram-positive bacteria with thicker, multilayered cell walls 758 

(J. Wang et al. 2020).  759 

For host-associated microbiomes, removing abundant host cells is often critical to 760 

improving microbial signal detection. Techniques such as differential centrifugation and 761 

density gradient centrifugation (Hinzke, Kleiner, and Markert 2018) are commonly used to 762 

enrich microbial cells. Following lysis, additional separation of cellular components can be 763 

achieved through methods like ultracentrifugation (Henry et al. 2022), further increasing 764 

protein identification coverage. 765 

Functional fractionation techniques, such as Activity-Based Protein Probing (ABPP), can 766 

be used to study enzymatic functions at the proteome level (Cravatt, Wright, and Kozarich 767 

2008). ABPP employs small-molecule probes that covalently bind to active sites of proteins 768 

with specific functions or residues. These labeled proteins can then be captured or enriched 769 

for LC-MS/MS analysis, enabling detailed profiling of protein functions and aiding in drug 770 

target discovery. ABPP is particularly useful for annotating proteins with unknown functions 771 

(Barglow and Cravatt 2007), making it a relevant approach in microbiome studies. Recent 772 

applications of ABPP in both host-associated and environmental microbiomes have 773 

uncovered diverse microbial enzymes, including thiol-containing proteases, bile salt 774 

hydrolases (BSHs), glycoside hydrolases (GHs), and β-glucuronidases (Han and Chang 775 

2023). 776 
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3.6 Automation 777 

High-throughput techniques have transformed sample preparation, simplifying labor-778 

intensive steps and revolutionizing workflows in proteomics, especially as datasets continue 779 

to grow in scale and complexity (Fu et al. 2023; Burns et al. 2021). These advancements 780 

have facilitated applications such as chemical proteomics (Lin et al. 2023), biomarker 781 

detection (Paramasivan et al. 2023) and drug target discovery (Qiong Wu et al. 2024). 782 

Although automation in metaproteomics has not advanced as rapidly as in proteomics, its 783 

potential for transforming the field is immense.  784 

Automating metaproteomics workflows offers multiple benefits, including reduced sample 785 

handling time, minimized operator-induced variability, and enhanced reproducibility. These 786 

improvements provide broader coverage of microbiome responses to environmental factors 787 

within limited experimental timeframes. Furthermore, high-throughput automated workflows 788 

allow researchers to scale up the discovery of microbiome-associated biomarkers and 789 

explore dynamic functional landscapes across diverse microbiomes. Automation also 790 

generates large datasets, enabling the application of artificial intelligence (AI) to uncover 791 

hidden patterns within metaproteomic profiles. 792 

Automated sample processing in metaproteomics can be broadly divided into four key steps: 793 

microbial cell disruption and protein extraction (Section 3.6.1), protein digestion and 794 

peptide clean-up (Section 3.6.2), and multiplexing (Section 3.6.3).  795 

3.6.1 Microbial cell disruption and protein extraction 796 

In certain scenarios, such as working with complex clinical samples like human stool or 797 

saliva, microbial cell enrichment is often required but poses significant challenges. Sample 798 

properties can vary greatly within a dataset, complicating efforts to standardize technical 799 

parameters for automated microbial cell purification. As a result, current automated 800 

metaproteomics workflows often exclude fully automated raw sample handling steps. For 801 

example, the RapidAIM 2.0 pipeline (L. Li et al. 2024) includes manual bacterial enrichment 802 

and cell washing, with a 96-channel liquid handler accelerating pipetting steps. In contrast, 803 

the SHT-Pro protocol (Gonzalez et al. 2020), the first high-throughput pipeline specifically 804 

designed for large-scale stool sample processing, begins with the lysis of raw stool samples 805 

without prior microbial enrichment. This approach is particularly beneficial when both host 806 

and microbial proteins are of interest. 807 

https://doi.org/10.26434/chemrxiv-2025-rh2q9 ORCID: https://orcid.org/0000-0003-2063-4441 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2025-rh2q9
https://orcid.org/0000-0003-2063-4441
https://creativecommons.org/licenses/by-nc/4.0/


29 

Microbial cell disruption for protein extraction can be effectively automated in a 96-well 808 

format using ultra-sonication devices designed for high-throughput workflows. These 809 

instruments facilitate efficient protein extraction, enabling downstream high-throughput 810 

protein clean-up. Several methods, including FASP, SP3, and S-Trap, have been 811 

successfully adapted to microplate-based formats, with studies showing that the 812 

combination of FASP and SP3 with iST yields the most robust results for high-throughput 813 

protein processing (Tanca et al. 2024). 814 

3.6.2 Protein digestion and peptide clean-up 815 

Similar to manual metaproteomics workflows, automated protein preparation typically 816 

involves protein denaturation, reduction, alkylation, and protease digestion. These steps 817 

are relatively straightforward to automate and can be performed using liquid handling 818 

platforms equipped with low-volume pipetting accuracy and heater-shaker capabilities. 819 

Therefore, protein digestion is often considered one of the least complex steps to automate 820 

in metaproteomic workflows. 821 

Peptide clean-up, however, presents greater challenges. Typically, this step is carried out 822 

manually by skilled personnel using solid-phase extraction (SPE), C18 ZipTips, or 823 

ultrafiltration, as described in Section 3.4.4. During automation, sample heterogeneity at 824 

this stage can introduce variability, complicating experimental parameter control. A 825 

promising solution involves replacing centrifugation through reverse-phase columns with 826 

pipette-based mixing of reverse-phase resins. This approach has been incorporated into 827 

workflows like RapidAIM 2.0 (L. Li et al. 2024) and is supported by established proteomics 828 

automation protocols. For example, the autoSISPROT system offers all-in-tip sample 829 

preparation capabilities, demonstrating compatibility with automated platforms (Qiong Wu 830 

et al. 2024). 831 

3.6.3 Multiplexing 832 

The integration of automated sample handling with techniques like TMT labeling 833 

significantly enhances throughput and accelerates the discovery process in 834 

metaproteomics. However, the high cost of TMT reagents might be a challenge for broader 835 

application. One solution involves pre-aliquoting and drying TMT reagents in a 96-well plate 836 

format, a strategy that reduces reagent waste and preparation time. This approach is 837 

compatible with automated workflows, such as those used in the RapidAIM 2.0 platform, 838 

and facilitates more efficient reagent utilization (L. Li et al. 2024). 839 
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While advancements in automation have enabled notable progress in metaproteomics, 840 

most current systems are semi-automated rather than fully automated. Continued 841 

development of automation technologies is essential to further streamline workflows, 842 

enhance sample processing speed, and achieve higher throughput. 843 

3.7 Mass spectrometry data acquisition methods  844 

Mass spectrometry analysis of (meta)proteomes is predominantly carried out using (HP)LC-845 

MS/MS. A fundamental limitation of mass spectrometers, even when combined with 846 

multidimensional separations, is their inability to generate fragmentation spectra (or MS/MS 847 

spectra) for all peptides in a sample within a single run. This constraint has led to the 848 

widespread adoption of data-dependent acquisition (DDA) as the dominant approach in 849 

proteomics over the past 25 years. 850 

DDA, as discussed in Section 3.7.1, involves selecting the most abundant precursor ions 851 

from the MS1 spectra for fragmentation in the MS2 (or MS/MS) stage, dynamically 852 

excluding previously fragmented ions to prioritize unfragmented targets. This strategy 853 

increases the diversity of identified peptides and proteins. In metaproteomics, however, the 854 

complexity of the samples presents significant challenges for DDA, particularly in achieving 855 

comprehensive sequencing depth and coverage. Even with the latest high-resolution and 856 

highly sensitive mass spectrometers, DDA is inherently biased toward the most abundant 857 

ions, leaving many lower-abundance peptides uncharacterized. Nevertheless, DDA 858 

remains the most widely used method due to its extensive validation, established workflows, 859 

and compatibility with a broad range of analytical tools. 860 

Data-independent acquisition (DIA), as discussed in Section 3.7.2, is a more recent 861 

advancement that offers an alternative approach by fragmenting all peptide ions within 862 

predefined mass-to-charge (m/z) windows, rather than selectively targeting the most 863 

abundant ones. DIA addresses some of the limitations of DDA, particularly in terms of 864 

peptide coverage and reproducibility, making it increasingly attractive for metaproteomics. 865 

However, the broader data capture in DIA results in significantly more complex datasets 866 

that require advanced computational tools for processing and analysis. While progress has 867 

been made in developing such tools, further validation and optimization are needed before 868 

DIA can become a routine method for metaproteomics. 869 

Both DDA and DIA have distinct advantages and limitations, and their choice depends on 870 

the specific goals of the experiment, the complexity of the sample, and the available 871 

computational resources. 872 
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3.7.1 DDA 873 

DDA is the most widely used method in proteomics, particularly in shotgun proteomics, for 874 

identifying peptides in biological samples. In DDA mode, the mass spectrometer 875 

dynamically selects a specified number of the most abundant precursor ions (commonly 876 

referred to as the "topN") for fragmentation. This prioritization ensures that the most intense 877 

ions within each acquisition cycle are fragmented into smaller ions, generating MS/MS 878 

spectra that serve as unique fingerprints for peptide identification. To enhance the detection 879 

of lower-abundance peptides, DDA incorporates a process known as dynamic exclusion. 880 

Previously selected precursor ions are temporarily excluded from subsequent 881 

fragmentation, increasing the diversity of peptides analyzed within a single run. These 882 

MS/MS spectra are then analyzed using proteomics software packages (Section 4.1.1).  883 

DDA has several advantages, making it a popular choice for metaproteomics workflows. It 884 

is relatively simple to configure and analyze compared to more complex approaches like 885 

DIA, making it accessible for both beginners and experienced researchers. The one-to-one 886 

relationship between spectra and peptides reduces computational demands during data 887 

analysis, particularly when a well-curated protein database is available. More information 888 

on creating a protein database is provided in Section 4.1.2. Furthermore, DDA supports 889 

relative quantification of proteins using both label-free quantification (LFQ) and labeling 890 

approaches, offering flexibility for various experimental designs (Section 4.1.5). Its 891 

longstanding use in proteomics has also led to the development of numerous software tools 892 

and well-established workflows, enhancing its reliability and versatility. 893 

Despite its strengths, DDA has notable limitations. Its reliance on selecting the most intense 894 

precursor ions means that low-abundance proteins may go undetected, especially in 895 

complex samples. Additionally, DDA often fails to identify the same peptides consistently 896 

across multiple runs, resulting in missing values for low-abundance proteins and 897 

complicating large-scale quantitative studies.  898 

Overall, while DDA is not without its limitations, it remains the most widely used and 899 

versatile technique in metaproteomics (Van Den Bossche, Kunath, et al. 2021). For studies 900 

requiring deeper proteome coverage or greater reproducibility, alternative methods like DIA 901 

may offer complementary advantages. 902 
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3.7.2 DIA 903 

DIA mass spectrometry has emerged as a powerful approach in proteomics, providing 904 

broad protein coverage, high reproducibility, and quantitative accuracy. Unlike DDA, which 905 

focuses on fragmenting a limited number of the most intense precursor ions, DIA fragments 906 

all ions within predefined m/z windows. These windows are repeatedly scanned across the 907 

entire m/z range, generating complex MS/MS spectra that provide a more comprehensive 908 

view of the proteome. This inclusivity is particularly advantageous in metaproteomics, 909 

where samples contain an overwhelming diversity of peptides and low-abundance proteins 910 

that might be missed by DDA (E. Wu et al. 2024). 911 

DIA has demonstrated significant potential in metaproteomics applications. Its application 912 

in metaproteomics was first evaluated in gut microbiome studies (Aakko et al. 2020) and  913 

has since expanded to various contexts, including Chinese liquor fermenter starters (Zhao, 914 

Yang, Chen, et al. 2023), and multicenter diagnostic research on tongue coating samples 915 

for gastric cancer (Chen et al. 2024). Recent advances in MS instrumentation, such as DIA-916 

PASEF (Gómez-Varela et al. 2023) and the Orbitrap Astral (Dumas et al. 2024), have 917 

significantly improved DIA’s sensitivity and resolution, enabling deeper proteome coverage 918 

in highly complex microbial communities. 919 

One of DIA's key advantages lies in its ability to capture a broader range of peptides 920 

compared to DDA, enabling deeper proteome coverage and improved detection of low-921 

abundance proteins (Chen et al. 2024; Gómez-Varela et al. 2023; Pietilä, Suomi, and Elo 922 

2022; Zhao, Yang, Xu, et al. 2023; Zhao, Yang, Chen, et al. 2023; Aakko et al. 2020; Zhao, 923 

Yang, Teng, et al. 2023). Another significant advantage is its reproducibility across samples, 924 

as it is less susceptible to variations in ionization efficiency (Fernández-Costa et al. 2020). 925 

This consistency makes DIA particularly well-suited for large-scale quantitative studies. 926 

Despite its advantages, DIA also comes with challenges, particularly in data analysis. 927 

Indeed, analyzing the complex MS/MS spectra generated by DIA requires advanced 928 

computational tools and specialized expertise which is further discussed in Section 4.1.1. 929 

Additionally, because DIA fragments all ions within a given m/z window simultaneously, the 930 

resulting spectra are more complex and less specific to individual peptides compared to 931 

DDA. This reduced specificity can make it challenging to confidently resolve detailed 932 

structural or sequence-level information for single peptides, limiting DIA's utility for 933 

applications that require precise characterization, such as studying PTMs or differentiating 934 

highly similar peptide sequences. These inherent trade-offs highlight the importance of 935 

carefully tailoring DIA workflows to specific research objectives. 936 
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Nevertheless, DIA's rapid advancements make it a promising tool for metaproteomics, 937 

providing the depth and reproducibility required to explore the functional landscape of 938 

microbial communities comprehensively. 939 

3.7.3 Critical parameters to optimize the HPLC and MS methods 940 

Optimization of HPLC and MS methods is crucial for obtaining high-quality data in 941 

metaproteomics workflows. Each parameter below plays a significant role in ensuring 942 

accurate peptide separation, identification, and quantification. Metaproteomics, with its 943 

added complexity compared to standard proteomics workflows, requires specific 944 

adjustments to many of these parameters. 945 

i) Analytical column quality, gradient and flow rates 946 

Peptides are commonly separated using HPLC, which is directly coupled to the MS, using 947 

either commercial or in-house analytical HPLC columns. These separations are achieved 948 

with a mobile phase composed of increasing concentrations of acetonitrile (ACN). For 949 

laboratories using in-house columns, stringent QC checks are crucial to ensure consistent 950 

column performance, as explained in Section 3.7.4. 951 

Metaproteomics samples present significantly greater chromatographic challenges than 952 

single-species proteomics due to their inherent complexity (Duan et al. 2022). To address 953 

this, typical mobile phase gradients of 5–35% of 80% ACN or 5–30% of 100% ACN over 954 

1–2 hours are generally sufficient for tryptic peptide elution. However, adjustments may be 955 

required for specific experimental setups. For example, chemically labeled digests with 956 

increased hydrophobicity often require a steeper gradient with a higher final concentration 957 

of ACN for complete peptide elution. 958 

Efficient gradient design is essential to optimize runtime and achieve an even distribution 959 

of peptide elution across the gradient. Since fewer peptides elute at the beginning and end 960 

of the gradient, tailoring the gradient can improve separation and detection (Xu, Duong, and 961 

Peng 2009). Accurate peptide quantification requires sufficient sampling points per LC peak, 962 

making short gradients (e.g., 10-minute gradients) generally unsuitable for metaproteomics 963 

in data-dependent acquisition (DDA) mode. Comprehensive tutorials on gradient 964 

optimization are available for general proteomics (Lenčo et al. 2022), and metaproteomics 965 

specifically (Hinzke et al. 2019). 966 

LC flow rates typically range from 200–300 nL/min. Recently, higher flow rates have gained 967 

popularity to accelerate sample duty cycles. However, these higher flow rates compromise 968 

sensitivity. Strategies to offset this limitation include increasing the sample loading amount 969 
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or using dimethyl sulfoxide (DMSO) to boost signal intensity, making higher flow rates more 970 

viable for metaproteomics workflows. 971 

ii) MS Settings in DDA workflows 972 

Optimizing MS parameters plays a key role in obtaining high-quality data in metaproteomics. 973 

While those new to the field are generally not expected to configure MS settings, 974 

understanding key optimization steps can provide valuable context for interpreting data and 975 

troubleshooting issues. 976 

Accurate mass measurements require regular calibration of the mass spectrometer, which 977 

is crucial for reliable peptide identification and quantification. Additionally, source 978 

parameters such as source temperature, flow rates, and nebulizer gas pressure must be 979 

optimized to enhance ionization efficiency and maximize signal intensity. The specific 980 

optimization steps vary depending on the type of mass analyzer used, such as time-of-flight 981 

(TOF) or Orbitrap instruments. Key parameters for these analyzers include scan range, 982 

resolution, and scan speed, which must be fine-tuned to ensure precise mass 983 

measurements and resolve closely spaced peptide ions. Similarly, collision energy settings 984 

for peptide fragmentation need careful adjustment to generate high-quality fragment 985 

spectra for peptide identification. 986 

Dynamic exclusion is a critical parameter in DDA workflows, requiring careful calibration to 987 

align with the chromatographic gradient and peak width. This setting prevents repeated 988 

fragmentation of the same peptide by excluding it temporarily after its initial fragmentation, 989 

thereby increasing peptide diversity. However, this approach poses challenges, particularly 990 

in metaproteomics. Many researchers rely on spectral counting for relative quantification, 991 

as it has been shown robust for metaproteomic datasets with significant differences in cell 992 

numbers and total protein amounts between community members (Kleiner et al. 2017). 993 

Nonetheless, dynamic exclusion can limit the number of spectra acquired for abundant 994 

peptides, leading to fewer spectral counts than expected and potentially skewing 995 

quantification accuracy. This issue is exacerbated with modern high-resolution instruments, 996 

where the correlation between peptide abundance and peptide-spectrum matches (PSMs) 997 

becomes less relevant due to faster scan rates and increased resolving power. Dynamic 998 

exclusion times must therefore strike a balance, ensuring high-quality fragmentation 999 

spectra while maximizing the diversity of peptides analyzed. The choice between spectral 1000 

counting and MS1-based quantification methods like area under the curve (AUC) remains 1001 

a topic of debate in metaproteomics.  1002 
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In DDA, selecting the isolation window width for precursor ions is a critical optimization step. 1003 

A wider isolation window, up to 2 Da, allows the collection of more ions, resulting in higher-1004 

quality MS spectra. However, this increases the risk of generating chimeric spectra, where 1005 

fragments from multiple precursor ions are combined, complicating peptide identification. 1006 

Conversely, narrower isolation windows, down to 0.7 Da, reduce the likelihood of chimeric 1007 

spectra but limit the number of ions isolated, potentially impacting signal intensity. In 1008 

metaproteomics, the high density and diversity of precursor ions in certain mass ranges 1009 

complicates this balance, as even narrow windows can capture multiple ions. Advances in 1010 

mass spectrometers, such as faster scan speeds, now enable higher topN settings in DDA 1011 

workflows, helping to address this challenge by acquiring more fragmentation spectra within 1012 

a given run. 1013 

iii) MS Settings in DIA workflows 1014 

Optimizing data-independent acquisition (DIA) workflows requires careful calibration of 1015 

several key parameters to achieve accurate and comprehensive peptide identification. The 1016 

width of mass isolation windows is particularly critical, as narrower windows, such as 2 m/z, 1017 

provide higher resolution and more precise fragmentation spectra, which are essential for 1018 

resolving complex peptide mixtures. However, narrower windows can reduce proteome 1019 

coverage, as fewer ions are isolated in each cycle. Balancing resolution with proteome 1020 

coverage is thus a central challenge in DIA optimization. Recent advancements, such as 1021 

the Orbitrap Astral mass spectrometer, support exceptionally narrow isolation windows 1022 

while maintaining high scanning speeds, effectively bridging the gap between DDA and DIA 1023 

methodologies. 1024 

In addition to tuning isolation windows, optimizing collision energy is required for generating 1025 

high-quality fragment ions, while chromatographic conditions, including gradient length and 1026 

flow rate, must be carefully calibrated to align with the DIA cycle time. Ensuring sufficient 1027 

acquisition points across peptide elution peaks is essential for accurate quantification and 1028 

peptide identification. DIA workflows in metaproteomics are advancing rapidly, providing 1029 

enhanced resolution and deeper proteome coverage in complex microbial samples (E. Wu 1030 

et al. 2024; Dumas et al. 2024). Detailed guidelines for these optimization strategies can 1031 

be found in recent studies exploring advancements in DIA methodologies (Ishikawa et al. 1032 

2022; Demichev et al. 2022; Gu et al. 2024). 1033 

3.7.4 Quality control of LC-MS/MS  1034 

A comprehensive QC workflow begins with a blank injection of solvent without any sample 1035 

to check for background contamination. Ideally, a blank run should produce minimal 1036 

https://doi.org/10.26434/chemrxiv-2025-rh2q9 ORCID: https://orcid.org/0000-0003-2063-4441 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2025-rh2q9
https://orcid.org/0000-0003-2063-4441
https://creativecommons.org/licenses/by-nc/4.0/


36 

identifications, which can be verified visually or through database searches. Contamination 1037 

sources can include transport solvents used in HPLC systems, so these should be carefully 1038 

monitored. Next, a standard injection of a known peptide mixture, such as cytochrome C or 1039 

BSA digest, is performed to confirm instrument calibration and performance. Simple 1040 

mixtures like these are useful for testing HPLC performance, while more complex peptide 1041 

mixtures, such as HeLa digest, assess the mass spectrometer’s ability to analyze complex 1042 

samples. A representative microbiome sample digest can also be injected to refine the LC 1043 

gradient profile, and such standards should be injected regularly throughout the run. 1044 

Additionally, using reference microbiome material as a positive control can help verify the 1045 

efficiency of protein extraction protocols. This ensures that the extraction method reliably 1046 

captures a representative set of proteins from the sample, which is particularly important 1047 

for metaproteomic studies. Database searches on complex standards should be used to 1048 

monitor metrics like number of PSMs, peptide and protein identifications. Consistently 1049 

tracking these values over time helps detect performance declines, signaling when the 1050 

instrument requires cleaning or recalibration. 1051 

During the LC-MS/MS run, retention times for known peaks should be monitored closely, 1052 

as significant shifts compared to previous runs may indicate issues such as column 1053 

blockage, connector leakage, or valve wear. Similarly, column back pressure should be 1054 

monitored as a potential indicator of problems. Peak shape should also be evaluated for 1055 

symmetry and sharpness; tailing or broadening peaks may suggest problems with 1056 

chromatography or ionization efficiency. Signal intensity is another important parameter, 1057 

and any significant drop compared to expected values may point to reduced instrument 1058 

sensitivity or ionization issues. 1059 

After the run, each raw file must be carefully reviewed to identify potential issues. Failed 1060 

runs should be rerun immediately to avoid batch effects caused by delayed reanalysis. The 1061 

total ion current (TIC) chromatogram provides valuable information on instrument 1062 

performance, and it should be examined for unexpected peaks or a noisy baseline, both of 1063 

which may point to contamination or hardware issues. The base peak chromatogram 1064 

provides additional insights into LC resolution. Comparing the TIC-to-base peak intensity 1065 

ratio is also informative, as higher values often reflect increased sample complexity or poor 1066 

chromatographic performance. Retention times and peak intensities across samples should 1067 

be consistent, indicating good repeatability. Additional QC checks, such as PCA clustering 1068 

or heatmaps, can help pinpoint variations between runs and ensure data quality. 1069 

Metrics collected after protein identification and quantification are also essential for 1070 

evaluating QC (Bielow, Mastrobuoni, and Kempa 2016). For example, the number of 1071 
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identified PSMs to the total number of MS2 spectra, the PSM identification rate, serves as 1072 

a key indicator of data quality. Using a 1-hour gradient on a Q-Exactive mass spectrometer 1073 

with optimized conditions and high-quality sample preparation, metaproteomic samples can 1074 

achieve an ID rate of approximately 50%, meaning that 50% of spectra yield identified 1075 

peptide sequences after 1% FDR filtering. Note that for samples in less trivial environments, 1076 

such as soil, the PSM identification rate will be much lower. It is crucial to analyze high-1077 

quality QC samples using the same LC-MS/MS methods, as the identification rate depends 1078 

heavily on both the instrument's performance and sample preparation. 1079 

In large-scale projects lasting several weeks, retention time drift and signal drops are 1080 

common. Blocking and randomizing samples during analysis is recommended to reduce 1081 

systematic biases caused by these performance variations (Oberg and Vitek 2009). 1082 

Implementing rigorous QC procedures at each step of LC-MS/MS is essential to maintain 1083 

data reliability and consistency, with standardized QC samples serving as valuable 1084 

benchmarks for long-term performance evaluation. 1085 

Several dedicated QC tools, such as MaCProQC (Rozanova et al. 2023), QCloud2 (Olivella 1086 

et al. 2021), Rawtools (Cortay et al. 1988) are available to evaluate the quality of LC-MS/MS 1087 

data. These tools provide a range of functionalities, from tracking performance metrics to 1088 

generating clustering analyses for data quality evaluation. However, more recently, the 1089 

HUPO-PSI Quality Control working group has introduced the mzQC file format, a JSON-1090 

based standard designed to streamline the reporting and exchange of mass spectrometry 1091 

(MS) quality control metrics. To facilitate adoption, they have also developed open-source 1092 

software libraries in Python (pymzqc), R (rmzqc), and Java (jmzqc), which provide 1093 

functionalities for creating, validating, and analyzing mzQC files. These libraries enable 1094 

researchers to integrate mzQC into diverse workflows for proteomics, metabolomics, and 1095 

other MS applications, ensuring consistent data quality assessment and fostering 1096 

interoperability across different analytical platforms (Bielow et al. 2024).  1097 

3.7.5 Data management and data sharing 1098 

Effective data management and sharing are essential to advancing metaproteomics 1099 

research, ensuring data integrity, reproducibility, and collaboration. A robust data 1100 

management plan should include secure, redundant storage solutions to protect against 1101 

data loss, particularly for large-scale studies conducted over extended periods. 1102 

Implementing version control for raw and processed data facilitates systematic tracking of 1103 

updates and reanalyses, improving reproducibility and transparency. 1104 
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Adhering to community standards, such as those established by the Human Proteome 1105 

Organization Proteomics Standards Initiative (HUPO-PSI) (Deutsch, Vizcaíno, et al. 2023), 1106 

is crucial for consistency and interoperability. The HUPO-PSI defines data representation 1107 

standards in proteomics to facilitate data comparison, exchange, and verification. Using 1108 

standardized formats like mzML for mass spectrometry data (Martens et al. 2011), 1109 

mzIdentML for identification results (Combe et al. 2024), and the Universal Spectrum 1110 

Identifier (USI) for referring to any mass spectrum in publicly deposited proteomics datasets 1111 

(Deutsch et al. 2021), ensures compatibility across platforms and tools, thereby 1112 

streamlining collaborative efforts and enabling more efficient data use. 1113 

Metadata plays a critical role in making datasets interpretable, reusable, and comparable 1114 

across studies. Comprehensive metadata should capture sample origins, preparation 1115 

protocols, instrument settings, and data processing workflows, ideally using standardized 1116 

ontologies like PSI-MS Ontology. In proteomics, this information is collected in the Sample 1117 

and Data Relationship Format for Proteomics (SDRF-Proteomics) format, which provides a 1118 

structured, tab-delimited format for describing the relationships between samples and data 1119 

files, mirroring the experimental workflow in proteomics (Dai et al. 2021). Tools like 1120 

lesSDRF offer user-friendly interfaces to annotate metadata in SDRF format, facilitating 1121 

standardization (Claeys et al. 2023). Recognizing the added complexity of microbial 1122 

environments, the Metaproteomics Initiative is developing SDRF-Proteomics templates 1123 

tailored for metaproteomics, as current formats for single-species proteomics do not fully 1124 

address the nuances of microbial data. Standardized metadata not only supports 1125 

computational analyses but also ensures structured inputs for machine learning models, 1126 

advancing reproducibility and consistency across the field. 1127 

Depositing both data and metadata in recognized international ProteomeXchange 1128 

repositories (Deutsch, Bandeira, et al. 2023), such as PRIDE (Perez-Riverol et al. 2024), 1129 

aligns with the FAIR (Findable, Accessible, Interoperable, and Reusable) principles, 1130 

promoting open science and innovation. These repositories make data accessible to the 1131 

broader research community, enabling others to validate findings, conduct systematic 1132 

reviews, and perform large-scale analyses. Sharing practices in metaproteomics help with 1133 

benchmarking studies, development of new interpretation tools, and the ability to draw 1134 

broader conclusions, significantly improving the field's collaborative potential and impact. 1135 
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4. Computational analysis of metaproteomics 1136 

data 1137 

4.1 Peptide identification, protein inference and quantification 1138 

After acquiring MS/MS spectra from mass spectrometry, the next step is to identify the 1139 

peptides present in the sample. This involves analyzing the fragmentation patterns in the 1140 

MS/MS spectra to determine the specific amino acid sequences of the peptides. This 1141 

process is performed using search engines, often integrated into comprehensive 1142 

proteomics software packages (Section 4.1.1). Typically, these algorithms match the 1143 

experimental MS/MS spectra to a theoretical protein sequence database, and the success 1144 

of this step depends heavily on the selection or construction of an appropriate database, as 1145 

outlined in Section 4.1.2. The search engine then applies a false discovery rate (FDR) 1146 

threshold to filter out potential false positives (Section 4.1.3). Peptides passing this filter 1147 

are subsequently used for protein inference (Section 4.1.4) and quantification (Section 1148 

4.1.5). All these sections focus on DDA MS, while Section 4.1.6 is dedicated to tools 1149 

specifically designed for analyzing DIA MS data. 1150 

4.1.1 Peptide identification with proteomics search engines  1151 

Shotgun metaproteomics experiments generate large datasets of MS1 and MS2 spectra, 1152 

which form the basis for downstream analysis. With advancements in high-throughput MS, 1153 

these datasets now range from thousands to millions of spectra, making manual 1154 

interpretation impractical. To address this challenge, search engines are essential for 1155 

interpreting the data and identifying peptides. Peptide identification relies on three main 1156 

strategies: (i) sequence database searching, where experimental spectra are matched to 1157 

theoretical spectra derived from protein or peptide sequences in a database; (ii) de novo 1158 

sequencing, which directly infers peptide sequences from spectra without a reference 1159 

database; and (iii) spectral library searching, where experimental spectra are compared to 1160 

curated libraries of previously validated spectra. These methods are often complemented 1161 

by post-processing steps to enhance accuracy and confidence in peptide identification, as 1162 

outlined in Section 4.1.3. Additionally, most proteomics software packages integrate 1163 

peptide identification with protein inference and quantification, a topic discussed in Section 1164 

4.1.4 and Section 4.1.5. Some specific metaproteomics software also integrates taxonomic 1165 

and functional analyses, as outlined in Section 4.2.  1166 
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i) Protein sequence database searching 1167 

Database search algorithms are fundamental for interpreting mass spectrometry data, 1168 

particularly in metaproteomics, where the complexity of microbial communities poses 1169 

significant analytical challenges. These algorithms match experimental MS/MS spectra to 1170 

theoretical spectra generated from protein sequence databases. The success of this 1171 

process depends on the choice of search engine, the search parameters used, and the 1172 

composition of the database, all of which influence the number and type of peptides and 1173 

proteins detected. 1174 

Database search engines start by using a selected reference protein sequence database, 1175 

which is in silico digested to emulate the cleavage rules of the enzyme used during protein 1176 

digestion, most commonly trypsin. From these digested sequences, theoretical MS/MS 1177 

spectra are generated and compared to the experimental MS/MS spectra obtained during 1178 

mass spectrometry. Each combination of theoretical peptide and spectrum (peptide-1179 

spectrum match, PSM) is assigned a similarity score, with the search engine ranking and 1180 

filtering potential PSMs based on the score and peptide properties. The exact method of 1181 

score calculation varies between search engines, and these differences can affect both 1182 

sensitivity and specificity. An in-depth explanation of the various scoring algorithms used in 1183 

database search engines can be found in this comprehensive review (Verheggen et al. 1184 

2020).  1185 

Each database search engine offers unique advantages and limitations, including variations 1186 

in processing speed, compatibility with input and output formats, support for post-1187 

processing tools, and overall user-friendliness. These factors significantly influence their 1188 

performance in metaproteomics workflows, where the complexity and scale of datasets 1189 

demand highly efficient and reliable analysis tools. A detailed discussion of these tools and 1190 

their applications is available in a comprehensive review (Schiebenhoefer et al. 2019). A 1191 

selection of database search engines and proteomics software commonly used in 1192 

metaproteomics research is highlighted below:  1193 

● SearchGUI (Vaudel et al. 2011) provides simultaneous access to multiple 1194 

complementary search algorithms, including X!Tandem (Craig and Beavis 2004), 1195 

Comet (Eng, Jahan, and Hoopmann 2013), Andromeda (Cox et al. 2011), OMSSA 1196 

(Geer et al. 2004), Sage (Lazear 2023), and others. Its companion tool, 1197 

PeptideShaker (Vaudel et al. 2015), seamlessly imports SearchGUI output and 1198 

offers a comprehensive, user-friendly interface for interpreting and visualizing 1199 

results. Additionally, PeptideShaker includes a direct export feature to Unipept, 1200 
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enabling streamlined downstream taxonomic and functional analysis (Vande 1201 

Moortele, Devlaminck, et al. 2024; Van Den Bossche et al. 2020). A detailed 1202 

tutorial is available on the CompOmics web page to guide users through these 1203 

workflows (Vaudel et al. 2014). 1204 

● Andromeda (Cox et al. 2011), used in MaxQuant (Cox and Mann 2008), is widely 1205 

used for its ease of use and MS1 quantitative capabilities. Users benefit from a 1206 

well-established community, including annual user meetings and a dedicated 1207 

forum for support. 1208 

● Mascot (Matrix Science) and Proteome Discoverer (Thermo Fisher Scientific) are 1209 

popular commercial tools with extensive user bases.  1210 

● FragPipe, using MSFragger (A. T. Kong et al. 2017), and pFind (Le-heng Wang et 1211 

al. 2007) incorporate open search strategies, which improve sensitivity by enabling 1212 

the identification of PTMs.  1213 

● Sipros (Guo et al. 2018), ProteoStorm (Beyter et al. 2018) and COMPIL 2.0 (Park 1214 

et al. 2019) are tailored specifically for metaproteomics but are perceived less 1215 

user-friendly than mainstream software.  1216 

● Tools such as Sage (Lazear 2023) and MSFragger (A. T. Kong et al. 2017) 1217 

leverage advanced spectral and sequence indexing strategies to significantly 1218 

accelerate database searches, making them highly promising for improving the 1219 

speed of metaproteomics analysis. 1220 

For researchers that want more integrated solutions, several software suites can simplify 1221 

metaproteomics workflows by consolidating multiple steps and managing the high density 1222 

of information inherent to the field.  1223 

● Galaxy for Proteomics (Galaxy-P) is another versatile platform offering numerous 1224 

tools and workflows tailored to metaproteomics, including database generation, 1225 

discovery analysis, verification, quantitation, and statistical analysis (Blank et al. 1226 

2018; P. D. Jagtap et al. 2015; Do et al. 2024). With public gateway availability (The 1227 

Galaxy Community 2024) and access to training resources via the Galaxy Training 1228 

Network (Hiltemann et al. 2023), Galaxy-P is a valuable resource for researchers 1229 

seeking an open and user-friendly platform for users to access metaproteomic 1230 

workflows. 1231 

● The MetaProteomeAnalyzer (MPA) software suite (Muth, Behne, et al. 2015) offers 1232 

modules for protein database creation, database searching, protein grouping, 1233 

annotation, and results visualization. Its user-oriented design makes it a suitable 1234 

option for both beginners and experienced researchers.  1235 
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● MetaLab (Cheng et al. 2017) is an integrated data processing pipeline that includes 1236 

tools for sample-specific database generation, peptide determination, taxonomic 1237 

and functional profiling, and abundance analysis. Its open search strategy enables 1238 

comprehensive profiling of PTMs and improved sensitivity. Additionally, MetaLab 1239 

offers workflows for taxonomic analysis based on metagenome-assembled genome 1240 

(MAG) databases, allowing peptide-to-genome linkages for improved specificity 1241 

compared to traditional lowest common ancestor (LCA) methods. 1242 

In these tools, selecting appropriate search parameters is essential for reliable and 1243 

meaningful results. The choices regarding modifications, enzyme specificity, and mass 1244 

tolerance significantly impact the identification of PSMs. Below are key considerations: 1245 

● Selection of modifications: It is important to distinguish between modifications 1246 

introduced by the experimental workflow and biological modifications. Fixed 1247 

modifications, like carbamidomethylation of cysteine, are commonly applied across 1248 

all peptides to account for standard sample preparation artifacts, as discussed in 1249 

Section 3.4.4. Variable modifications, such as methionine oxidation, are applied 1250 

selectively to explore biologically relevant modifications. However, including too 1251 

many variable modifications can expand the search space excessively, reducing 1252 

identification rates. It is often best to limit variable modifications to the most 1253 

biologically relevant ones. 1254 

● Enzyme specificity and number of missed cleavages: Choosing the correct enzyme 1255 

and setting an appropriate number of allowed missed cleavages affects the range 1256 

of detectable peptides. For instance, trypsin, the most commonly used enzyme in 1257 

proteomics, may occasionally miss cleavages after lysine (K) or arginine (R). 1258 

Allowing one or two missed cleavages is generally a good compromise in 1259 

metaproteomics, as it accounts for incomplete digestion without excessively 1260 

broadening the search. Semi-specific or non-specific cleavage settings might be 1261 

useful in some cases but can lead to longer processing times and a lower 1262 

identification rate due to the expanded search space. 1263 

● Mass tolerance: Mass tolerance settings should match the resolution capabilities of 1264 

the mass spectrometer. For example, on a high-resolution Q Exactive instrument 1265 

with HCD data, setting a precursor mass tolerance of 10 ppm (for MS1) and a 1266 

fragment mass tolerance of 0.02 Da (for MS2) can balance accuracy and 1267 

computational efficiency, restricting the search to relevant matches while taking 1268 

advantage of the instrument’s resolution. 1269 
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Thoughtful parameter selection helps balance sensitivity and specificity, leading to high-1270 

quality data that accurately reflects the sample’s biological characteristics. Parameter 1271 

adjustments should consider the mass spectrometer type, sample complexity, and specific 1272 

research objectives. 1273 

ii) de novo searching 1274 

De novo peptide sequencing assigns amino acid sequences to MS/MS spectra without 1275 

requiring a protein sequence database for spectral matching. This approach provides an 1276 

unbiased method for detecting peptides, independent of the quality and completeness of 1277 

the protein sequence database. Several de novo sequencing algorithms have been 1278 

introduced in recent years, including PEAKS, Casanovo (Yilmaz et al. 2024), PepNovo 1279 

(Frank and Pevzner 2005), and the newly developed π-HelixNovo (T. Yang et al. 2024), 1280 

metaSpectraST (Hao et al. 2023), and NovoBridge (Kleikamp et al. 2021).  1281 

When applied effectively, de novo sequencing can sensitively and accurately estimate the 1282 

taxonomic composition and functional content of the microbiome without prior knowledge 1283 

of the system under study. It also has the potential to identify unsequenced members of the 1284 

microbial community. Furthermore, de novo sequencing can be used to evaluate the 1285 

completeness and suitability of a protein sequence database for metaproteomics research 1286 

(R. S. Johnson et al. 2020). Recently, the progress and opportunities in de novo sequencing 1287 

for metaproteomics were reviewed, emphasizing its potential for unsequenced species 1288 

detection and deeper functional insights into microbial communities (Van Den Bossche, 1289 

Beslic, et al. 2024). 1290 

Despite its promise, there remains a need for systematic benchmarking of de novo 1291 

sequencing tools to assess their applicability to metaproteomics. In particular, most tools 1292 

and approaches for de novo metaproteomic analysis still require some input from databases 1293 

either to help selecting peptides or to gain information from the identified peptides. 1294 

Evaluating their performance in terms of sensitivity, accuracy, and throughput is essential 1295 

to ensure their effectiveness in the complex and diverse datasets characteristic of 1296 

microbiome studies. 1297 

iii) Spectral library searching 1298 

Spectral library search engines operate on principles similar to database searching but 1299 

differ by directly comparing experimental MS/MS spectra to pre-existing libraries of 1300 

validated spectra. These libraries consist of MS/MS spectra previously acquired through 1301 

the analysis of complex peptide mixtures and conventional sequence database searches 1302 
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or generated using predictive deep-learning algorithms. Unlike sequence database 1303 

searching, spectral library searching can incorporate additional parameters, such as 1304 

retention time on the LC column and the relative intensities of fragment peaks within the 1305 

spectra, enhancing both accuracy and confidence in peptide identification. 1306 

The development of AI-based tools like MS²PIP (Degroeve, Maddelein, and Martens 2015) 1307 

and Prosit (Gessulat et al. 2019) has made it possible to generate high-quality spectral 1308 

libraries from protein sequence databases (Lautenbacher et al. 2024). These 1309 

advancements have expanded the applicability of spectral library searches by enabling the 1310 

generation of predictive libraries tailored to specific experiments. Newer spectral library 1311 

search tools designed for data-dependent acquisition (DDA) data, such as Mistle (Nowatzky 1312 

et al. 2023) and Scribe (Searle, Shannon, and Wilburn 2023), have also emerged for 1313 

metaproteomics research. 1314 

Spectral library searching offers a fast and efficient approach to match peptide sequences 1315 

to MS/MS data, often outperforming traditional database searching in terms of speed and 1316 

precision for well-curated libraries. However, despite its potential, spectral library tools for 1317 

metaproteomics require further evaluation, particularly regarding their usability and 1318 

effectiveness for highly complex microbial datasets.  1319 

4.1.2 Database construction or selection 1320 

For single-organism proteomics, constructing a protein sequence database is relatively 1321 

straightforward, as it can be derived directly from the organism's genome. In 1322 

metaproteomics, however, the complexity of microbial communities, the diversity of 1323 

organisms, and the prevalence of unknown proteins present significant challenges. 1324 

Selecting or generating an appropriate database is crucial, as the database must balance 1325 

comprehensiveness and specificity. An incomplete database risks missing or falsely 1326 

identifying proteins, while an excessively large database decreases the sensitivity of the 1327 

analysis and inflates the FDR, as detailed in Section 4.1.3 (Nesvizhskii and Aebersold 2005; 1328 

Blakeley-Ruiz and Kleiner 2022).  1329 

An optimal database for metaproteomics should be both comprehensive and specific. 1330 

Comprehensive, as it should include all proteins potentially present in the sample. Missing 1331 

sequences lead to false negatives, reducing peptide and protein identification rates. 1332 

Specific, because it should exclude sequences unexpected to be present in the sample. 1333 

Including irrelevant sequences increases random matches, inflates the FDR, and therefore 1334 

negatively affects peptide (and protein) identification (see also Section 4.1.3). Additionally, 1335 
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metaproteomic analyses often include contaminants from sample processing, such as 1336 

leftover trypsin, BSA carry-over, or keratin from handling. Incorporating these contaminants 1337 

into the database, using resources like the common Repository of Adventitious Proteins 1338 

(cRAP, https://www.thegpm.org/crap/), allows for their accurate identification and prevents 1339 

misidentification with other proteins in the sample. 1340 

To create a suitable database, prior knowledge of the community composition is essential. 1341 

This information can be derived from various sources, including prior literature, 16S rRNA 1342 

amplicon sequencing, or metagenomic and/or metatranscriptomic sequencing, each 1343 

offering different levels of resolution and success. Literature reviews provide only limited 1344 

insights, whereas meta-omics approaches offer the most comprehensive and detailed 1345 

characterization of the community (Kleiner et al. 2012; Blakeley-Ruiz et al. 2022; Minniti et 1346 

al. 2019). Additionally, depending on the sample's environment, host or dietary proteins 1347 

may need to be included in the database. While adding these proteins can improve 1348 

identification rates, it also increases database size and complexity, potentially complicating 1349 

the analysis. The inclusion of nearly identical sequences, often inevitable in large databases, 1350 

can further exacerbate protein inference issues (see Section 4.1.5). Sequence clustering 1351 

algorithms (W. Li, Jaroszewski, and Godzik 2001) or protein grouping tools (Audain et al. 1352 

2017; The et al. 2016) can address these challenges by consolidating redundant entries 1353 

while retaining essential taxonomic and functional annotations. 1354 

The choice of database type depends on the sample type, the level of understanding of the 1355 

microbial community, and the available resources. Based on these factors, different types 1356 

of databases can be used, each with its own set of advantages and limitations (see Table 1357 

2). These include public repositories, reference catalogs, and meta-omic databases, as 1358 

detailed below. 1359 

i) Public repositories 1360 

Public repositories like UniProtKB (The UniProt Consortium 2023) and NCBI RefSeq 1361 

(O’Leary et al. 2016) provide extensive reference collections of protein sequences. 1362 

However, these untailored (or unrestricted) databases often lack specificity and contain 1363 

many unrelated sequences, leading to reduced identification rates and increased FDR 1364 

(Section 4.1.3). Furthermore, public repositories are biased toward well-characterized 1365 

microbes, such as model organisms or pathogens, and heavily studied environments or 1366 

systems, such as clinical and human samples. This bias results in significant gaps for less-1367 

studied environmental microbial communities, making these repositories incomplete for 1368 

many metaproteomics applications. Filtering (or restricting) these repositories based on 1369 
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16S rRNA analysis results can improve specificity, but the resolution of 16S rRNA 1370 

sequencing is limited. Entire genera or sets of species often need to be included, preventing 1371 

strain-level specificity (Odom et al. 2023; J. S. Johnson et al. 2019). 1372 

ii) Reference catalogs 1373 

Reference catalogs are curated collections of protein sequences tailored to specific 1374 

environments or systems. They are available for well-studied ecosystems such as the 1375 

human gut (J. Li et al. 2014; Almeida et al. 2021), the cow rumen (Stewart et al. 2019; Xie 1376 

et al. 2021), and the mouse gut (Kieser, Zdobnov, and Trajkovski 2022; Beresford-Jones et 1377 

al. 2022; Lesker et al. 2020). These catalogues are typically constructed by combining data 1378 

from isolated microbes and metagenomic studies  (Gurbich et al. 2023). Although smaller 1379 

and more targeted than public repositories, reference catalogs can still be relatively large 1380 

for metaproteomic analyses and often aggregate data from many samples, including 1381 

different individuals and studies - yet, not from the study itself, therefore also called 1382 

unmatched meta-omics databases. This composite nature introduces challenges, as even 1383 

samples from similar environments can exhibit substantial variation in species composition 1384 

and strain diversity. Consequently, reference catalogs can suffer from inaccuracies, 1385 

incompleteness, and overrepresentation of certain subsamples (Van Den Bossche, Kunath, 1386 

et al. 2021; Abdill, Adamowicz, and Blekhman 2022). Like repositories, the specificity of 1387 

reference catalogs can be improved by incorporating prior knowledge of the microbial 1388 

community, such as results from 16S rRNA analysis, to narrow down the included 1389 

sequences to those most relevant to the sample.  1390 

 1391 

Alternatively, to address the challenges posed by large and composite catalogs, database-1392 

reduction methods have been developed. These methods include the two-step search 1393 

approach (P. Jagtap et al. 2013), iterative workflows such as MetaPro-IQ (X. Zhang et al. 1394 

2016) and MetaLab (Cheng et al. 2017), next to others. While these methods are often used 1395 

in the field and increase the number of identified PSMs and peptides, some have been 1396 

shown to significantly raise the number of false positives at both levels, exceeding the FDR 1397 

estimate (Muth, Kolmeder, et al. 2015). These methods should therefore be treated with 1398 

caution, and additional validation might be appropriate prior to drawing biological 1399 

conclusions. 1400 

 1401 

iii) (matched) meta-omics databases 1402 

 1403 
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Meta-omic databases are constructed using metagenomic and/or metatranscriptomic data 1404 

collected from the same sample as the metaproteomic analysis, making them the most 1405 

specific databases available. These databases accurately reflect the species composition 1406 

and strain diversity of the sample (Blakeley-Ruiz and Kleiner 2022; Heintz-Buschart and 1407 

Wilmes 2018; B. J. Kunath et al. 2022). However, generating a high-quality meta-omic 1408 

database requires significant sequencing effort, cost, computational resources, and 1409 

technical expertise. Although the specific details of this process are beyond the scope of 1410 

this manuscript, they have been extensively covered elsewhere (Blakeley-Ruiz and Kleiner 1411 

2022; Benoit J. Kunath et al. 2019). Briefly, constructing a meta-omic database involves 1412 

four key steps: sequencing, assembly, binning, and annotation. 1413 

To create a comprehensive database suitable for metaproteomic analysis, the sequencing 1414 

effort must be sufficiently deep to capture the complexity of the community. One major 1415 

advantage of meta-omic databases is their ability to provide precise insights into the species 1416 

and strain diversity of the sample, enabling direct linkage between genomes and identified 1417 

proteins. This requires genome reconstruction through binning, where contigs are grouped 1418 

into MAGs based on shared features. However, due to the complexity of microbial 1419 

communities and limitations in sequencing depth, some MAGs may remain incomplete. 1420 

Therefore, a robust meta-omic database should include both binned and unbinned 1421 

sequences to retain as much information as possible (Benoit J. Kunath et al. 2017; 1422 

Narayanasamy et al. 2016).  1423 

Once reconstructed, MAGs and contigs are taxonomically annotated, and protein 1424 

sequences or open-reading frames (ORFs) are predicted and functionally annotated. The 1425 

choice of tools and resources for these steps depends on the study's objectives (Queirós 1426 

et al. 2021). Despite their specificity, meta-omic databases can still be incomplete due to 1427 

insufficient sequencing depth or the inability to recover all relevant MAGs from the sample. 1428 

This issue can be partially addressed by performing exploratory 16S rRNA gene 1429 

sequencing to assess the required sequencing depth for optimal metagenomic analysis 1430 

(Blakeley-Ruiz et al. 2022).  1431 

Combining metagenomic data with metatranscriptomic data further improves the quality 1432 

and specificity of the database (Narayanasamy et al. 2016; F. Delogu et al. 2020). Since 1433 

metatranscriptomics focuses on mRNA, it captures the active portion of the community, 1434 

providing a gene-centric view that aligns closely with the functional content of interest for 1435 

metaproteomics. 1436 
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Table 2: Comparison of database types for metaproteomics: public repositories, reference 1437 

catalogs, and meta-omic databases. The color indicates our preference: green represents 1438 

favorable choices, yellow indicates intermediate choices, and red highlights unfavorable choices. 1439 

 1440 

 Public repositories (*) Reference catalogs Meta-omic databases 

Monetary cost Free Free 

Sample type 

dependent $100-

$2,000/sample or 

pooled samples 

Time cost (labor 

& computation) 
Days Days 

Genome-resolved 

month-year, otherwise 

weeks 

Comprehensiven

ess 

Low to Medium 

depending on the 

sample representation 

in the repository 

Medium to High 

depending on sequencing 

effort and multi-omics 

integration 

Medium to High 

depending on 

sequencing effort and 

multi-omics integration 

Identification 

probability 
Low Medium High 

Specificity 

Low due to high 

diversity of the 

repository 

Medium due to lack of 

strains resolution 

High due to sample 

specificity 

Misidentification 

probability 
High Medium Low 

Sequence 

Redundancy and 

Impact 

High and difficult to 

resolve due to high 

diversity of the 

repository 

Medium but can be 

resolved depending the 

curation level 

Low and can be 

resolved as part of the 

metagenomic 

processing 

Taxonomic 

Annotation and 

Resolution 

Taxonomy not curated 

and potentially 

outdated 

Depends on curation level 

(potential for 

misidentification due to 

closely related taxa) 

Possibility of de novo 

annotation and species 

resolution based on 

metagenomic 

processing 

Certainty/Applica

bility 

Easily available but 

lacks the guarantee of 

appropriate sequences 

Available for few sample 

types only and lacks of 

accuracy 

High accuracy but 

requires particular 

expertise and extra 

time/cost 
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(*) Restricted repositories have similar characteristics to reference catalogs in terms of 

specificity and sequence redundancy. 

 1441 

 1442 

4.1.3 PSM FDR control  1443 

A critical step in the process of peptide identification is acquiring a set of reliable PSMs. 1444 

After PSMs are acquired, they are evaluated based on the scoring function of the search 1445 

engine, retaining the highest-ranked PSM for each spectrum — that is, the peptide 1446 

sequence whose theoretical spectrum most closely matches the experimental MS/MS 1447 

spectrum. However, regardless of the scoring algorithm used, some PSMs will inevitably 1448 

represent false matches, making robust control of false positives essential. 1449 

The most commonly used strategy to manage false positives in (meta)proteomics is the 1450 

target-decoy approach (Elias and Gygi 2007). In this approach, the protein sequences in 1451 

the target database are processed in silico to emulate enzymatic digestion, generating 1452 

theoretical peptides. The same procedure is applied to the reversed or shuffled sequences 1453 

of a decoy database, ensuring that these decoy peptides are biologically implausible and 1454 

not present in the sample. During the search, the experimental spectra are matched to both 1455 

the target and decoy sequences in a concatenated target-decoy database. This process 1456 

results in PSMs being labeled as either target or decoy. The proportion of decoy PSMs in 1457 

the final result serves as an estimate of the FDR, calculated as the number of decoy PSMs 1458 

divided by the total number of accepted PSMs (Figure 4). The FDR is typically controlled 1459 

at 1% in proteomics and metaproteomics experiments, but for highly complex samples such 1460 

as soil microbiomes, the FDR threshold can be increased to 5% to retain a sufficient number 1461 

of identifications for biological interpretation. 1462 

 1463 
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 1464 

Figure 4. Principle of target-decoy analysis and False Discovery Rate (FDR) calculation. (Top) 1465 

The experimentally obtained MS/MS spectra are matched to in silico generated spectra of the 1466 

concatenated target/decoy protein sequence database. (Middle) For each obtained spectrum, the 1467 

match with the highest score is retained, together with the assigned in silico digested peptide 1468 

sequence and its target or decoy label. (Bottom) The score distribution is used to select which PSMs 1469 

will be considered as true matches. The metric to control the false positives is the FDR, and is 1470 

calculated as the number of decoy PSMs divided by the number of target PSMs (in the Figure 1471 

depicted as area B divided by the sum of areas B and A). Figure of (schematic) target/decoy 1472 

distribution adjusted from (Käll et al. 2008). 1473 

The specific challenges of metaproteomics add complexity to FDR control. The larger, more 1474 

diverse protein sequence databases required for metaproteomics often increase the search 1475 

space significantly, leading to a greater overlap between the score distributions of target 1476 

and decoy PSMs. This overlap reduces the resolution of FDR estimation and necessitates 1477 

careful database construction to limit irrelevant sequences, as discussed in Section 4.1.2. 1478 

Overly large but unspecific databases inflate the FDR by increasing random matches to 1479 

both target and decoy sequences, resulting in fewer confident peptide identifications 1480 

(Schiebenhoefer et al. 2019; Tanca et al. 2016). Conversely, overly restrictive databases 1481 

risk excluding true target sequences, resulting in missed matches, false negatives, and 1482 

reduced proteome coverage. Therefore, achieving an optimal balance between database 1483 
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specificity and comprehensiveness is crucial to minimize false positives from decoy 1484 

matches while maximizing target identifications, ensuring effective FDR control. 1485 

Metaproteomics workflows often rely on advanced post-processing tools to improve the 1486 

accuracy and confidence of peptide identifications. Tools such as Percolator (Käll et al. 1487 

2007) and MS²Rescore (C. Silva et al. 2019) refine PSM scores using machine learning 1488 

algorithms that consider additional features beyond the initial search engine score, such as 1489 

precursor intensity, fragmentation patterns, and retention time. These tools can 1490 

substantially improve the separation between target and decoy PSMs, enabling more 1491 

accurate FDR estimation even for complex datasets. 1492 

In metaproteomics, where samples often contain thousands of species, the challenge of 1493 

FDR control is even larger by the inherent complexity and diversity of the microbial 1494 

communities under study. Careful database construction (Section 4.1.2), combined with 1495 

robust FDR control during the search and advanced post-processing techniques, is critical 1496 

to ensure reliable peptide and protein identifications, thereby enabling meaningful biological 1497 

insights from metaproteomics datasets. 1498 

4.1.4 Protein inference  1499 

Protein inference is a fundamental challenge in shotgun proteomics where the goal is to 1500 

determine the proteins present in a sample based on the peptides identified through tandem 1501 

mass spectrometry (Nesvizhskii and Aebersold 2005). This process is complicated by the 1502 

fact that peptides can often be mapped to multiple proteins or protein isoforms present in 1503 

the commonly large protein database. This is especially the case in complex samples such 1504 

as microbial communities where multiple species may contribute homologous proteins, 1505 

making it difficult to conclusively infer which proteins are actually present (Schallert et al. 1506 

2022).  1507 

To address this complexity, protein grouping is commonly used to generate a more 1508 

manageable list of identified protein (sub)groups for downstream analysis. However, 1509 

different methods for protein grouping exist, as depicted in Figure 5, and these are typically 1510 

performed by the search engine. It is essential to verify the default settings of the search 1511 

engine to understand which grouping approach it applies, and if needed, adjust it to align 1512 

with your research hypothesis. The two main approaches are Occam's razor and anti-1513 

Occam's razor.  1514 

Occam’s razor is based on the principle of maximum parsimony, providing the smallest set 1515 

of proteins that can explain all observed peptides. However, this approach discards proteins 1516 
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not matched by a unique peptide, potentially losing their associated taxonomy and functions 1517 

that might be present in the sample. Occam's razor is particularly suited for simpler, single-1518 

species samples or targeted proteomics experiments, where reducing complexity is key. 1519 

In contrast, anti-Occam’s razor adopts a more inclusive strategy, retaining all proteins that 1520 

can be mapped to at least one peptide, regardless of whether those peptides are shared 1521 

with other proteins. This approach is beneficial for complex metaproteomic samples, where 1522 

the goal is to capture as much protein diversity as possible. By being more inclusive, anti-1523 

Occam's razor ensures that proteins from different species with minimal unique peptides 1524 

are not overlooked, providing a more comprehensive picture of the microbial community. 1525 

However, this inclusivity comes at the cost of increased complexity in the resulting protein 1526 

list. 1527 

After choosing between Occam's and anti-Occam's razor principles, proteins can then be 1528 

grouped into protein groups or protein subgroups. Protein groups cluster proteins that share 1529 

at least one peptide, offering a broader overview of potential protein identifications. Protein 1530 

subgroups, on the other hand, are more specific and include proteins that share the exact 1531 

same set of peptides. For example, the anti-Occam’s razor approach often benefits from 1532 

subgrouping to prevent excessively large and uninformative protein groups. In 1533 

metaproteomics, this approach helps disentangle the contributions of individual species, 1534 

even when closely related proteins share substantial sequence similarity (Schallert et al. 1535 

2022).  1536 

 1537 

Figure 5: Practical example of (sub)grouping approaches. This grouping case deals with distant 1538 

group members, meaning that certain proteins in the group don’t share a single peptide, in this case 1539 

protein 1 and 3. Applying the rule of parsimony separates the group in this specific case. In the anti-1540 

Occam case, protein 2 remains in a separate subgroup. 1541 

The choice of protein inference approach should align with the complexity of the sample 1542 

and the research objectives. For single-species or targeted studies, Occam’s razor 1543 
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combined with protein grouping is advantageous for reducing false positives and simplifying 1544 

downstream analyses. This strategy was used, for example, in analyzing the SIHUMIx mock 1545 

community (Schäpe et al. 2019) as part of the CAMPI study (Van Den Bossche, Kunath, et 1546 

al. 2021). For complex, multi-species metaproteomic samples, anti-Occam’s razor 1547 

combined with protein subgrouping is often preferred, as it maximizes protein diversity while 1548 

maintaining manageable group sizes. This inclusive approach was used for fecal sample 1549 

analysis in the CAMPI study (Van Den Bossche, Kunath, et al. 2021). Ultimately, the 1550 

selection of a protein inference method depends on the specific characteristics of the 1551 

sample and the research objectives. Researchers must balance the need for 1552 

comprehensive protein identification with the practical considerations of data complexity 1553 

and interpretability (Schallert et al. 2022). 1554 

4.1.5 Protein quantification  1555 

Protein quantification is a central component of metaproteomics, offering valuable insights 1556 

into the functional dynamics of microbial communities. By quantifying proteins, researchers 1557 

can assess how microbes respond to environmental changes, revealing shifts in physiology 1558 

and metabolic processes. For example, changes in nutrient availability can trigger 1559 

significant alterations in protein expression within individual microbes (Caglar et al. 2017) 1560 

or entire microbial populations (Patnode et al. 2019). This section outlines the key concepts, 1561 

strategies, and challenges in metaproteomic quantification, focusing on label-free and 1562 

labeling-based approaches, as well as methods for downstream data analysis. 1563 

Metaproteomics workflows typically rely on two main quantification strategies: label-free 1564 

quantification (LFQ) and labeling-based quantification. LFQ methods are widely used 1565 

because they do not require stable isotope labels, making them more suitable for diverse 1566 

and complex samples. Two common LFQ approaches are MS1 intensity-based 1567 

quantification and MS2 spectral counting. MS1 quantification measures precursor ion 1568 

intensities by calculating the area under the curve or apex intensity for each identified 1569 

peptide, with tools such as MaxQuant (Cox et al. 2014) or standalone alternatives like moFF 1570 

(Argentini et al. 2019) or FlashLFQ (Millikin et al. 2018). MS2 spectral counting, in contrast, 1571 

quantifies peptides based on the number of matched MS2 spectra. Although simpler to 1572 

implement, spectral counting typically has a narrower dynamic range and slightly lower 1573 

precision. Currently, there is limited validation to determine which of the two primary 1574 

quantification approaches—MS1 intensity-based quantification or MS2 spectral counting—1575 

is more accurate for metaproteomics, or under which conditions one might outperform the 1576 

other. One study demonstrated that spectral counting provided a more accurate measure 1577 

of the proteinaceous biomass of members within a synthetic community compared to MS1 1578 

https://doi.org/10.26434/chemrxiv-2025-rh2q9 ORCID: https://orcid.org/0000-0003-2063-4441 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2025-rh2q9
https://orcid.org/0000-0003-2063-4441
https://creativecommons.org/licenses/by-nc/4.0/


54 

intensities (Kleiner et al. 2017). Nonetheless, the prevailing consensus in the field suggests 1579 

that both methods are generally suitable for metaproteomic quantification, with their 1580 

applicability depending on the specific context and experimental goals. 1581 

Labeling-based quantification approaches, while valuable in proteomics, are less commonly 1582 

used in metaproteomics due to the complexity of microbial communities. These methods, 1583 

including TMT and stable isotope labeling by amino acids in cell culture (SILAC), enable 1584 

absolute quantification and are particularly effective for controlled experimental designs 1585 

requiring precise comparisons across samples. However, applying these methods to 1586 

metaproteomics presents significant challenges. The diverse microbial populations and 1587 

high sample complexity of environmental or clinical samples make labeling-based 1588 

approaches less practical, favoring label-free strategies for most metaproteomics workflows. 1589 

Nevertheless, labeling remains a viable option for targeted studies with well-defined 1590 

microbial communities. 1591 

Quantification in metaproteomics faces several challenges, particularly in aggregating 1592 

peptide-level data to infer protein abundances. This aggregation process is influenced by 1593 

the protein inference problem (Nesvizhskii and Aebersold 2005), which determines how 1594 

peptides are assigned to proteins or protein (sub)groups (see also Section 4.1.4). Most 1595 

software tools automatically assign peptides to proteins or protein groups, facilitating the 1596 

quantification process. Once protein abundance data is obtained, normalization and 1597 

transformation steps are crucial for meaningful statistical analysis. While various 1598 

normalization methods have been proposed for proteomic data (Bubis et al. 2017; Pavelka 1599 

et al. 2008; Välikangas, Suomi, and Elo 2018), the optimal approach for metaproteomics 1600 

remains an area of active research.  1601 

One widely used normalization method, particularly for spectral count data, is the 1602 

normalized spectral abundance factor (NSAF) (Florens et al. 2006). This approach 1603 

compensates for biases introduced by protein length and sample variability. It involves 1604 

dividing a protein’s PSM count by its amino acid length to account for protein size, followed 1605 

by normalizing against the total PSM count within the sample to reduce between-run batch 1606 

effects. NSAF is relatively simple to calculate, robust to missing values, and particularly 1607 

suited to the sparse data often encountered in metaproteomics. Further transformation, 1608 

such as log or square root normalization, is typically applied to meet the assumptions of 1609 

statistical tests. 1610 

A key distinction between standard proteomics and metaproteomics is the need to account 1611 

for the diverse and complex nature of microbial communities. In metaproteomics, it may be 1612 
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advantageous to normalize protein abundances specifically for organisms or groups of 1613 

organisms within the community. This targeted normalization allows researchers to focus 1614 

on changes in gene expression and function within specific taxa, providing more granular 1615 

insights into microbial activity. The normalized spectral abundance factor per organism 1616 

(orgNSAF) normalization method has been proposed as a solution for this purpose, as it 1617 

enables normalization of protein abundances within defined taxonomic groups (Hinzke et 1618 

al. 2021; Mueller et al. 2010; Ponnudurai et al. 2020). 1619 

A unique advantage of metaproteomic data is its ability to generate multiple datasets based 1620 

on the research question. These datasets generally involve summing the abundance of 1621 

constituent proteins into relevant categories. Broadly, there are three main categories: (1) 1622 

individual proteins or groups of proteins with similar sequences, which can offer insights 1623 

into the specific functionalities of individual organisms within the community; (2) categories 1624 

of biological functions assigned to proteins associated with the measured peptides, 1625 

enabling researchers to investigate shifts in overall community functions; and (3) taxonomic 1626 

categories, where protein abundances can be used to estimate the relative contributions of 1627 

different organisms within a microbial community. 1628 

The accuracy of both functional and taxonomic quantification is heavily dependent on the 1629 

quality and completeness of protein annotations in the databases used. Functional 1630 

categories can range from highly specific annotations, such as biochemical reactions, to 1631 

broader descriptions of cellular processes like metabolism, gene expression, transport, or 1632 

replication. Similarly, taxonomic quantification can achieve high resolution, down to the 1633 

strain or species level (Brooks et al. 2015; Xiong et al. 2017), but this depends on the depth 1634 

and accuracy of protein annotations. In some cases, it is limited to higher taxonomic ranks 1635 

when annotations are incomplete or ambiguous (Blakeley-Ruiz et al. 2019). Metaproteomic 1636 

measurements, when processed correctly, can provide an accurate representation of the 1637 

relative proteinaceous biomass of microbial species within a community (Kleiner et al. 2017). 1638 

However, the specificity and accuracy of these measurements are closely tied to the 1639 

reliability of the annotations used for protein classification (Blakeley-Ruiz and Kleiner 2022; 1640 

Tanca et al. 2016). 1641 

While these approaches enable the generation of robust datasets for understanding 1642 

microbial abundance and function, further validation is necessary to refine these 1643 

methodologies. Current quantification strategies in metaproteomics require additional 1644 

benchmarking to identify optimal or equivalent approaches for various types of studies. 1645 

Future research using mock communities with defined compositions and spike-in proteins 1646 
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will be crucial for systematically evaluating the accuracy, reproducibility, and reliability of 1647 

protein quantification methods in metaproteomics. 1648 

4.1.6 DIA data analysis 1649 

The application of DIA-MS in metaproteomics, as discussed in Section 3.7.2, demands 1650 

tailored analytical workflows to manage the unique challenges posed by the complexity and 1651 

scale of microbial communities. Unlike DDA, which prioritizes peptide selection, DIA 1652 

generates complex spectra by fragmenting all ions within a predefined m/z range 1653 

simultaneously. This comprehensive approach requires advanced computational tools and 1654 

strategies to handle the resulting data. 1655 

Extracting quantitative and identification data from DIA-MS involves specialized software, 1656 

such as Spectronaut (Bruderer et al. 2017), DIA-NN (Demichev et al. 2020), and 1657 

EncyclopeDIA (Searle et al. 2018). These tools rely heavily on pre-existing spectral libraries 1658 

to match experimental spectra to theoretical peptides. Such libraries are often generated 1659 

through prior DDA experiments or predicted from protein sequence databases. While 1660 

promising, library-free approaches that predict spectra directly from protein sequences 1661 

remain computationally intensive and impractical for complex metaproteomics samples 1662 

without additional data reduction strategies. One effective approach is using genome 1663 

sequencing to limit the database search space or performing a preliminary DDA step to 1664 

construct a targeted spectral library. These steps, although resource-intensive, are 1665 

essential for reducing ambiguity in protein and peptide identifications. 1666 

Metaproteomics datasets amplify the inherent analytical challenges of DIA-MS due to their 1667 

immense scale, which frequently involves millions of proteins and peptides. This complexity 1668 

can lead to significant computational demands and requires extensive data processing 1669 

pipelines. Direct library-free DIA analysis for such datasets is virtually impossible with 1670 

current technology unless supplemental genome sequencing or DDA-based library 1671 

construction is performed. These preparatory steps add complexity but are critical for 1672 

optimizing DIA's utility in resolving the intricate dynamics of microbial communities. 1673 

Recent advancements in MS, including DIA-PASEF (Gómez-Varela et al. 2023) and the 1674 

Orbitrap Astral analyzer (Dumas et al. 2024), have shown potential for enhancing the 1675 

application of DIA-MS in metaproteomics. These technologies allow for deeper proteome 1676 

coverage, improved sensitivity, and more accurate quantification. However, their integration 1677 

into workflows must be carefully aligned with the computational tools and spectral library 1678 

strategies mentioned above to fully exploit their capabilities. 1679 
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A recent benchmarking study has demonstrated the reproducibility and accuracy of DIA-1680 

MS for metaproteomic workflows in comparison to DDA-MS methods (Rajczewski et al. 1681 

2024). Using mock communities of known taxonomic composition, DIA-MS consistently 1682 

identified and quantified more peptides and proteins across laboratories. Additionally, the 1683 

reproducibility of protein and peptide identifications was higher in DIA-MS workflows, which 1684 

also provided accurate quantification of both protein abundances and taxonomic groups. 1685 

These findings underscore the advantages of DIA-MS for metaproteomics, including its 1686 

capacity for deep sequencing, robust quantitation, and reproducibility across samples. 1687 

However, current studies also highlight the limitations of existing DIA tools when applied to 1688 

metaproteomic datasets, emphasizing the need for improvements in software capabilities 1689 

to handle the unique complexities of microbiome samples. These insights stress the 1690 

importance of optimizing library generation, computational tools, and workflows to fully 1691 

leverage the potential of DIA-MS for microbial community analysis. 1692 

Although DIA-MS presents substantial benefits for reproducible and quantitative analysis, 1693 

its application in metaproteomics is still evolving and faces several technical and 1694 

computational challenges. Advances in mass spectrometry and bioinformatics hold promise 1695 

for addressing these hurdles, enabling deeper insights into microbial community dynamics. 1696 

Ongoing research is needed to refine workflows, optimize computational methods, and 1697 

explore the potential of library-free approaches to broaden its applicability in 1698 

metaproteomics. 1699 

4.2 Taxonomic and functional analysis  1700 

In metaproteomics, researchers aim to characterize microbial communities by determining 1701 

the organisms present (taxonomic analysis) and elucidating their physiological roles 1702 

(functional analysis). These analyses provide critical insights into the composition, diversity, 1703 

and ecological functions of microbial communities across diverse environments. The 1704 

accuracy of these assignments depends on the quality of peptide and protein identifications 1705 

(see Section 4.1.1) and is significantly influenced by the choice of database (see Section 1706 

4.1.2). Below, we describe the methodologies and tools available for taxonomic and 1707 

functional annotation in metaproteomics, emphasizing the importance of robust annotation 1708 

strategies and computational resources. 1709 

4.2.1 Taxonomic analysis 1710 

Taxonomic analysis in metaproteomics identifies the organisms present in a sample based 1711 

on their expressed proteins. This analysis provides insights into microbial community 1712 
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composition and diversity, linking proteins to their taxonomic origins. Taxonomic 1713 

assignment can be achieved using exact matching or homology-based searches against 1714 

comprehensive databases such as UniProtKB (The UniProt Consortium 2023) or NCBI NR 1715 

(O’Leary et al. 2016). 1716 

While numerous metaproteomics-specific tools are available (described in Section 4.2.4), 1717 

researchers can also use tools originally developed for metagenomics, such as Centrifuge 1718 

(Kim et al. 2016) and Kraken 2 (Wood, Lu, and Langmead 2019). These tools match 1719 

peptides or proteins to known taxa, but their accuracy depends on the completeness of 1720 

publicly available genome databases. If organisms in the sample have not been previously 1721 

sequenced and deposited, taxonomic assignments may be incomplete or inaccurate. 1722 

Alternatively, taxonomic assignments can leverage meta-omics databases derived from 1723 

metagenomic assemblies. Proteins are inherently tied to genomes, and clustering 1724 

metagenomic sequences into MAGs enables genome-centric taxonomy assignment. Tools 1725 

like GTDB-Tk (Chaumeil et al. 2020) use MAG taxonomy to assign taxa to proteins. For 1726 

proteins not linked to MAGs, tools such as CAT (von Meijenfeldt et al. 2019) can infer 1727 

taxonomy based on the context of all the genes in an assembled contig. Advances in long-1728 

read sequencing are revolutionizing genome assembly from metagenomes, further 1729 

improving taxonomic assignments (Liu et al. 2022).    1730 

4.2.2 Functional analysis 1731 

Functional analysis of metaproteomes reveals how microbial communities contribute to 1732 

environmental processes, human health, and disease. By measuring the abundance of 1733 

proteins involved in processes such as metabolism, transport, replication, and defense, 1734 

functional analysis provides a window into microbial community dynamics and their roles in 1735 

ecosystems. 1736 

To describe microbial functions, various functional ontologies are used: 1737 

● Gene Ontology (GO): Organizes annotations into three categories: molecular 1738 

functions, biological processes, and cellular components. GO terms  are used to 1739 

describe what a gene product does (molecular function), the biological goals it helps 1740 

achieve (biological process), and where in the cell it acts (cellular component) 1741 

(The Gene Ontology Consortium 2019)  1742 

● Enzyme Commission (EC) numbers: Categorizes enzymes by the chemical 1743 

reactions they catalyze, particularly useful in studies of enzymatic activity and the 1744 

role these enzymes play in metabolic pathways.  1745 
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● Kyoto Encyclopedia of Genes and Genomes (KEGG): Maps proteins to 1746 

metabolic and signaling pathways, illustrating their interactions within larger 1747 

biological systems (Kanehisa and Goto 2000)  1748 

There are also more specialized ontologies such as MEROPS (Rawlings et al. 2018) for 1749 

proteases and CAZy (Drula et al. 2022) for carbohydrate-active enzymes, including 1750 

glycoside hydrolases, offer enhanced specificity for analyzing distinct functional categories 1751 

within microbial communities.  1752 

Functional annotations can rely on computational tools commonly used in metagenomics, 1753 

such as KoFamKOALA (Aramaki et al. 2020), InterProScan (Quevillon et al. 2005), and   1754 

eggNOG-mapper (Cantalapiedra et al. 2021). However, while these tools provide robust 1755 

frameworks for mapping protein functions, more tailored tools specifically designed for the 1756 

unique requirements of metaproteomics are available and discussed in Section 4.2.4. 1757 

4.2.3 Peptide-centric vs protein-centric approach 1758 

In metaproteomics, taxonomic and functional analyses can be performed using either a 1759 

peptide-centric or protein-centric approach: 1760 

● Peptide-centric approach: Peptides identified through MS are directly annotated 1761 

with taxa and functions based on their matches to in silico tryptic digests of known 1762 

protein sequences. This approach ensures that all potential protein matches are 1763 

retained during annotation, providing a broader view of possible taxa and 1764 

functions. 1765 

● Protein-centric approach: Peptides are first mapped to their corresponding 1766 

proteins or protein (sub)groups, aggregating peptides that share common proteins. 1767 

This step addresses the protein inference problem, a challenge in assigning 1768 

peptides to proteins due to shared sequences among multiple proteins (see 1769 

Section 4.1.4). 1770 

The peptide-centric approach typically considers all proteins that a peptide could originate 1771 

from, whereas protein-centric tools may discard information deemed redundant based on 1772 

the chosen protein (sub)grouping strategy. These different approaches may lead to 1773 

variations in the resulting annotations, and the debate over which method provides the most 1774 

accurate results remains an active topic in metaproteomics research (Van Den Bossche, 1775 

Kunath, et al. 2021). 1776 
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4.2.4 Metaproteomics tools for taxonomic and functional analysis 1777 

Various tools have been developed for taxonomic and functional analysis in 1778 

metaproteomics, each with distinct features and applications (Sajulga et al. 2020). 1779 

Unipept is a powerful ecosystem of tools for the taxonomic and functional analysis of 1780 

metaproteomics samples, offering a command-line interface (CLI), a desktop application, a 1781 

web application, and an application programming interface (API) to accommodate diverse 1782 

user preferences and workflows. (Vande Moortele, Devlaminck, et al. 2024; Verschaffelt et 1783 

al. 2023; 2020). It follows a peptide-centric approach, assigning taxa and functions directly 1784 

to peptides by mapping them to the UniProtKB database. For taxonomic classification, 1785 

Unipept calculates the LCA by identifying the most specific, or lowest, shared taxonomic 1786 

rank among all taxa associated with a peptide’s matched proteins (Figure 6). More details 1787 

on how the LCA is calculated can be found in a recent comprehensive tutorial (Van Den 1788 

Bossche, Verschaffelt, et al. 2024). Unipept also supports extensive functional analysis by 1789 

reporting functions based on the GO, EC, and InterPro classifications. For each peptide, it 1790 

aggregates all annotations associated with proteins matching the input peptide and counts 1791 

their occurrences. This information is displayed in a table within the web application. 1792 

Detailed tutorials and examples for using Unipept have been published (Mesuere et al. 1793 

2018; Van Den Bossche, Verschaffelt, et al. 2024), and the documentation available on the 1794 

website (https://unipept.ugent.be/) offers additional guidance to help users navigate the tool. 1795 

 1796 

Figure 6. Calculation of the Lowest Common Ancestor (LCA) for a tryptic peptide. In 1797 

this figure, the hypothetical Peptide 1 is present in eight different proteins, which are 1798 
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associated with seven distinct organisms. The LCA for these organisms is identified as the 1799 

hypothetical Family 1. Figure adjusted from (Van Den Bossche, Verschaffelt, et al. 2024) 1800 

The Peptonizer2000 is a novel metaproteomics pipeline for taxonomic inference that 1801 

models the errors and uncertainties introduced by a typical metaproteomics analysis 1802 

pipeline (Holstein et al. 2024). Indeed, the analysis of mass spectra is inherently challenging: 1803 

researchers need to match observed data to databases of protein sequences, where factors 1804 

such as database bias, ambiguous spectra, degenerate peptide sequences, and 1805 

interspecies sequence homology come into play. The Peptonizer2000 pipeline uses 1806 

Bayesian statistics to model peptide sequences, associated taxa, and the possible errors 1807 

and uncertainties introduced earlier as a graph. Then, subsequently, the Belief Propagation 1808 

algorithm is utilized on this graph to compute probability scores that indicate the potential 1809 

presence of a taxon in a sample under study. 1810 

MetaLab (Cheng et al. 2017; 2023; Liao et al. 2018; L. Li et al. 2022) is an integrated 1811 

software platform that provides a streamlined pipeline for microbial identification, 1812 

quantification, and taxonomic profiling using mass spectrometry raw data. Employing a 1813 

hybrid approach, MetaLab combines information derived from both peptide-centric and 1814 

protein-centric metaproteomics analyses. MetaLab utilizes a precomputed index of the 1815 

UniProtKB for taxonomic classification of identified peptides and retrieves functional 1816 

annotations from the eggNOG database (Hernández-Plaza et al. 2023). The latest version 1817 

supports DDA and DIA workflows across various mass spectrometry platforms (Cheng et 1818 

al. 2024). Comprehensive resources on iMetaLab (L. Li et al. 2022) can be found on their 1819 

dedicated Wiki-page (https://wiki.imetalab.ca/). 1820 

Prophane (Schiebenhoefer et al. 2020) is a software tool designed for taxonomic and 1821 

functional annotation of metaproteomes, offering interactive result visualization and an 1822 

intuitive web-based interface. It integrates data from various annotation databases, 1823 

including NCBI (Schoch et al. 2020), UniProtKB (The UniProt Consortium 2023), eggNOG 1824 

(Hernández-Plaza et al. 2023) or Pfam (Mistry et al. 2021). Unlike tools such as Unipept 1825 

and MetaLab, Prophane adopts a purely protein-centric approach for its analyses. The 1826 

software is accessible both as a Conda package (https://anaconda.org/bioconda/prophane) 1827 

and via a web service (https://prophane.de/login). Tutorials and example datasets are 1828 

available on the tool's website (https://prophane.de/about/tutorial). 1829 

The MetaProteomeAnalyzer (MPA) (Muth, Behne, et al. 2015) is an open-source Java tool 1830 

designed for the taxonomic and functional analysis of metaproteomics data. MPA employs 1831 

both sequence-based and spectral-based approaches to identify organisms and functional 1832 
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pathways in a sample, enabling researchers to explore the metabolic activities of microbial 1833 

communities and their environmental interactions. The software supports multiple search 1834 

engines and incorporates features to reduce data redundancy by grouping protein hits into 1835 

so-called meta-proteins. MPA is available as a desktop application, and extensive tutorials, 1836 

documentation, and other resources are provided on its homepage (www.mpa.ovgu.de). 1837 

4.3 Downstream statistics  1838 

A common question among researchers is how to determine the optimal approach for 1839 

downstream processing of metaproteomic data. Unfortunately, there is no universal 1840 

workflow that fits every scenario. This section aims to guide readers in constructing a 1841 

tailored decision tree for analyzing metaproteomic datasets. In earlier sections, we detailed 1842 

the generation of various metaproteomic data tables, including peptides, proteins, 1843 

taxonomy, and functional attributes. The next step involves uncovering the underlying 1844 

patterns and biological insights within these datasets through statistical analysis. Designing 1845 

a robust statistical analysis pipeline for metaproteomics requires researchers to make 1846 

several informed decisions, which are summarized in a “cheat sheet” in Figure 7. 1847 

4.3.1 Identifying relevant scientific questions 1848 

The foundation of any metaproteomics analysis begins with defining the key scientific 1849 

question(s) of the study. Metaproteomics allows us to address a variety of research 1850 

objectives. Below are some common examples of questions that can be explored (Figure 1851 

7A): 1852 

 i. Cohort studies: What differential features distinguish healthy individuals from 1853 

those with a disease? Are there potential biomarkers for specific conditions? 1854 

ii. Microbiome dynamics: How does the microbiome vary over space and time? 1855 

Can beta diversity be observed at the functional ecological level? What is the 1856 

impact of specific environmental factors on the microbiome? 1857 

 iii. Perturbation study: How do microbial communities respond to external 1858 

perturbations at the taxonomic, functional, and ecological levels? 1859 

 iv. Multi-omics study: What (holistic) insights can be gained by integrating 1860 

metaproteomics with other omics approaches? 1861 
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4.3.2 Selecting appropriate levels of analytical insights 1862 

Once the primary research questions are defined, the next step is to determine the level of 1863 

insights required to address these questions (Figure 7B). This involves selecting between 1864 

different analytical approaches tailored to the objectives of the study: 1865 

i. Feature-centric analysis: 1866 

Feature-based methods are the most commonly applied in metaproteomics. These 1867 

analyses focus on identifying differential features, which are quantifiable variables that 1868 

exhibit statistically significant differences between groups or conditions. Examples include 1869 

specific peptides, proteins, taxonomic groups, or annotated functions that vary significantly 1870 

under different experimental conditions. 1871 

There are two key considerations that underpin feature-centric analysis: (i) the assumption 1872 

of standard statistical distributions, such as normality, to validate analytical methods, and 1873 

(ii) the treatment of features as independent variables, enabling the use of widely applied 1874 

statistical approaches like parametric or non-parametric tests.  1875 

 1876 

By adhering to these principles, feature-centric analyses enable robust identification of 1877 

biologically meaningful differences across datasets. 1878 

 ii. Community-centric analysis: 1879 

Unlike feature-centric analysis, community-centric analysis considers the dataset as a 1880 

reflection of a living ecological community. Here, proteins are viewed not as isolated 1881 

features but as components of interconnected networks, with functions linked through 1882 

evolutionary relationships and taxonomic origins. For example, proteins from different taxa 1883 

may exhibit functional redundancy, while ecological dynamics may influence functional and 1884 

taxonomic interactions. 1885 

Due to these complex interactions, traditional statistical methods that assume feature 1886 

independence may not be suitable. To address these challenges, novel ecological 1887 

approaches have been developed in metaproteomics, inspired by advancements in 1888 

metagenomics. 1889 

For example, metrics for functional redundancy utilize bipartite networks to link 1890 

taxonomic and functional attributes, serving as indicators of community health and stability 1891 

(Blakeley-Ruiz et al. 2019; L. Li et al. 2023). Similarly, PhyloFunc, integrates phylogenetic 1892 
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composition into functional beta diversity analysis by incorporating functional distances at 1893 

nodes of phylogenetic trees and applying a unifrac-like weighting scheme (Luman Wang et 1894 

al. 2024). This approach distinguishes whether functional changes result from 1895 

compensation among closely related species or shifts between distantly related taxa, 1896 

offering valuable insights into ecological dynamics.  1897 

 iii. Cross-omics analysis 1898 

The metaproteome is not independent of other meta-omes; therefore, the integration of 1899 

multiple omics datasets is crucial for a deeper understanding of the systems ecology of 1900 

microbiomes. Different meta-omics approaches possess complementary strengths as they 1901 

collectively capture variations along the central dogma of molecular biology (DNA → RNA 1902 

→ Protein), favoring a comprehensive understanding of biological processes and ecological 1903 

interactions within microbiomes. 1904 

Despite the complementary nature of these datasets, most studies have traditionally 1905 

analyzed meta-omics using separate, stand-alone workflows. However, recent advances in 1906 

bioinformatics tools and platforms, such as Galaxy (Schiml et al. 2023) and MOSCA 1907 

(Sequeira et al. 2024), have facilitated the integration of these datasets, enabling more 1908 

seamless and coherent analysis. Cross-omics analysis can also provide an in-depth view 1909 

of the functional dynamics of community ecology. 1910 

In a recent study, metagenomics and metaproteomics were paired to assess whether 1911 

certain proteins serve as niche proteins (proteins that contribute to the ecological role or 1912 

niche that a microbial community occupies within its environment) or play essential 1913 

metabolic roles within a community (T. Wang et al. 2024). To achieve this, genome- and 1914 

proteome-level functional redundancy within the community were compared simultaneously. 1915 

A larger discrepancy might indicate that certain genes are present but not expressed as 1916 

proteins, suggesting a more specialized or niche role. Smaller discrepancies might indicate 1917 

that the genes are actively translated into proteins, suggesting essential metabolic functions.  1918 

4.3.3 Data preprocessing strategies 1919 

After making the relevant decisions outlined in Sections 4.3.1 and 4.3.2, the first step in 1920 

downstream analysis is data preprocessing. Common preprocessing steps include data 1921 
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filtering, data transformation, data imputation, and data scaling (Figure 7C). However, there 1922 

is no universal approach for data preprocessing; the best strategy depends on the specific 1923 

research questions under investigation. 1924 

i) Data transformation 1925 

Common data transformations used in proteomics and metaproteomics include logarithmic 1926 

transformations (e.g., log2 or log10) and square root transformations. However, not all 1927 

scenarios are suitable for data transformation. 1928 

When to use data transformation: Transformation is recommended when achieving near-1929 

normality in the data is necessary. For feature-level analyses, log transformation of peak 1930 

intensities can make the data approximate a normal distribution. Normal distributions are 1931 

crucial for many commonly applied metaproteomic feature selection methods, such as 1932 

linear models, empirical Bayes, univariate t-tests, partial least squares discriminant analysis 1933 

(PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). If the data 1934 

are not normally distributed, alternative non-parametric methods may be considered to 1935 

meet the assumptions of the chosen analysis. 1936 

When not to use data transformation: Transformation should be avoided when reflecting 1937 

protein abundance. For example, volcano plots, often used for identifying differential 1938 

features, plot statistical significance (-log10(p-value)) against fold change (log2 fold 1939 

change). While fold change values are log-transformed for visualization purposes, the 1940 

original fold change data should remain untransformed during statistical analyses or 1941 

comparisons. Additionally, in community-level analyses, log transformation can obscure 1942 

protein biomass information, which is essential for estimating taxonomic and functional 1943 

compositions. Protein intensities or PSM counts can serve as reliable measures of protein 1944 

biomass contributions by taxa (Kleiner et al. 2017). Therefore, composition-based analyses, 1945 

such as alpha and beta diversity or functional redundancy assessments, should use 1946 

untransformed data. 1947 

ii) Data centering and scaling 1948 

In standard metaproteomics workflows, an equal amount of protein is typically extracted 1949 

from each sample, digested, and loaded into the mass spectrometer to ensure consistency 1950 

and comparability. However, in specific cases, metaproteomics may quantify overall protein 1951 

biomass responses based on the total protein biomass in a given system volume rather 1952 

than standardizing based on protein content (L. Li et al. 2020). In such cases, centering and 1953 
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scaling are not recommended. Alternative normalization techniques, such as total spectral 1954 

count normalization or median normalization, may be more appropriate for these scenarios. 1955 

iii) Data filtering 1956 

Filtering the dataset typically helps remove noise, irrelevant features, or outliers. The 1957 

application of data filtering should be tailored to the specific context of the study: 1958 

When to use stringent data filtering? For feature-centric analysis. When identifying 1959 

biomarkers, it is essential to apply stringent data filtering. This involves setting a higher 1960 

threshold for the presence of proteins across samples to ensure that the identified 1961 

biomarkers are consistently found in the majority of subjects. By requiring proteins to be 1962 

present in a large percentage of samples (e.g., 70-90%), researchers can improve the 1963 

reliability and relevance of the identified biomarkers. This consistency is critical for 1964 

validating potential biomarkers, as it reduces the likelihood of identifying false positives. 1965 

Data filtering is also typically stringent for other types of feature-centric analysis to ensure 1966 

the validity of statistical hypotheses. However, the threshold and method of filtering (e.g., 1967 

by the whole dataset or by group) must be properly applied to prevent over-filtering, which 1968 

could remove features that are truly missing in specific subgroups. 1969 

When is data filtering optional? For community-centric analysis. While some level of 1970 

filtering is still beneficial to remove obvious noise, the thresholds can be less stringent 1971 

compared to feature-centric analysis. This allows for a more comprehensive view of 1972 

community dynamics. For example, unfiltered taxon-specific functional data can provide a 1973 

better review of the degree distribution of functions in a microbiome (L. Li et al. 2023). 1974 

iv) Data imputation 1975 

In a metaproteomic dataset, missingness often arises from two simultaneous mechanisms. 1976 

First, the diversity and sparse nature of the metaproteome lead to a significant proportion 1977 

of true missing proteins (missing not at random) (Plancade et al., 2022). Second, the 1978 

inherent depth limitation of current common metaproteomic techniques results in highly 1979 

sparse detection of low-abundance proteins across samples (missing at random) (Plancade 1980 

et al. 2022). 1981 

Data imputation is the step that requires the most caution. Improper selection of the data 1982 

imputation approach can induce false positives. When a large proportion (e.g., >50%) of a 1983 

feature is missing, excessive imputation can lead to the creation of artificial values that do 1984 

not reflect the true biological scenario and, in some cases, can further lead to false positives. 1985 
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If the imputation method does not accurately reflect the nature of the missing data, it can 1986 

introduce bias, particularly if the data contains a mixture of both missingness mechanisms. 1987 

If features have been selected through a statistical test following data imputation, it is 1988 

recommended to always revisit the un-imputed data to double-check if the feature-level 1989 

difference is true before drawing solid conclusions. 1990 

Alternatively, a univariate selection method has been which combines a test of association 1991 

between missingness and classes with a test for the difference in observed intensities 1992 

between classes. This method provides a robust alternative for handling missing data 1993 

without relying on imputation (Plancade et al. 2022). 1994 

Notably, data imputation is essential for feature selection analysis, whereas for community-1995 

level approaches, it is typically unnecessary, for reasons similar to those explained above. 1996 

4.3.4 Choosing data analysis methods  1997 

After a thorough understanding and careful selection of preprocessing steps, the final step 1998 

in downstream data analysis is the selection of appropriate methods. This stage presents 1999 

significant opportunities for deriving diverse insights from the dataset and is often the most 2000 

engaging and time-consuming phase, allowing researchers to explore the data and uncover 2001 

meaningful biological or ecological patterns and conclusions. These strategies typically 2002 

include, but are not limited to: 2003 

● Dimensionality reduction: Dimensionality reduction methods are commonly used 2004 

to uncover underlying patterns or structures within the dataset and to assess 2005 

similarities between samples. Unsupervised methods such as Principal Component 2006 

Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE), hierarchical 2007 

clustering, and k-means clustering are frequently applied. Supervised methods, 2008 

such as Partial Least Squares Discriminant Analysis (PLS-DA), are also widely 2009 

utilized. Dimensionality reduction is applicable not only to peptide, protein, 2010 

taxonomic, and functional tables but also at the MS1 level, especially when the 2011 

primary goal is to reveal patterns between samples (Simopoulos et al. 2022). 2012 

● Enrichment analysis: Enrichment analysis determines whether a subset of 2013 

selected features is significantly overrepresented compared to a background 2014 

database. While enrichment analysis can be implemented using programming 2015 

languages such as R, iMetaShiny (L. Li et al. 2022) offers interactive functionality 2016 

for taxonomic and functional enrichment analysis of protein IDs or COG IDs. 2017 
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However, protein ID-based enrichment analysis is currently restricted to human gut 2018 

metaproteome analysis using the IGC database. 2019 

● Feature Selection: Several online tools, such as MetaFS (Tang et al. 2021), 2020 

MetaQuantome (Easterly et al. 2019), MetaX (Qing Wu et al. 2024), iMetaShiny (L. 2021 

Li et al. 2022), and stand-alone tools, such as Meta4P (Porcheddu et al. 2023) have 2022 

been developed to facilitate feature-based metaproteomic data analysis without 2023 

requiring extensive programming expertise. 2024 

● Pathway analysis: Pathway analysis is typically employed to gain an overview of 2025 

detected functions or to compare differentially expressed or enriched pathways 2026 

across groups. The most commonly used tools for pathway analysis include KEGG 2027 

mapper (Kanehisa and Goto 2000) and iPath (Letunic et al. 2008). More recently, 2028 

PathwayPilot was developed to easily compare functions at the KEGG pathway 2029 

level, either between selected taxa within a single sample or across different 2030 

samples, by leveraging EC numbers to identify active enzymes as proxies for 2031 

metabolites linked to KEGG maps, thereby facilitating investigations into functions 2032 

associated with specific conditions while allowing targeted analysis of selected 2033 

species (Vande Moortele, Verschaffelt, et al. 2024).  2034 

● Community analysis: Beyond feature-driven analysis, community-level analysis 2035 

focuses on viewing the entire metaproteome as a dynamic system. Such analyses 2036 

may include inferring community composition, alpha diversity, beta diversity, and 2037 

functional redundancy using metaproteomic data. 2038 
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 2039 

Figure 7. Metaproteomics down-stream data analysis “cheat sheet” 2040 

 2041 
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5. A collaborative effort: writing a comprehensive 2042 

review with members of the Metaproteomics Initiative 2043 

The Metaproteomics Initiative is an international community dedicated to advancing the 2044 

field of metaproteomics within microbiome research. Supported by HUPO and EuPA and 2045 

in collaboration with ELIXIR, this initiative serves as a central hub for researchers to 2046 

disseminate advancements, share methodologies, and establish standards across the 2047 

metaproteomics community.  2048 

 2049 

This Initiative aims to facilitate communication between experts and newcomers, 2050 

standardize practices, and accelerate developments in metaproteomic methodologies. Its 2051 

primary mission is to be the go-to resource for metaproteomics fundamentals, 2052 

advancements, and applications, fostering a collaborative network to drive forward 2053 

experimental and bioinformatic methodologies. 2054 

The Metaproteomics Initiative supports on three pillars: 2055 

1. Communication & Collaboration: This pillar focuses on sharing field 2056 

advancements, organizing benchmark studies like CAMPI, and hosting the 2057 

International Metaproteomics Symposium (IMS). 2058 

2. Education & Outreach: The initiative educates the broader microbiome community 2059 

through accessible resources, including webinars and workshops, and facilitates 2060 

expert interactions. 2061 

3. Standardization: Efforts are directed toward developing robust (meta)data 2062 

standards, promoting FAIR data principles to ensure accessible and reusable 2063 

research outputs. 2064 

As part of our commitment to Education & Outreach, we created this review to make 2065 

metaproteomics accessible to a broad audience. To ensure a thorough and well-rounded 2066 

perspective, we first invited experts in various areas to draft individual sections. These 2067 

drafts were then reviewed internally, where initial feedback helped refine each section. 2068 

Once authors made adjustments, the document went through additional rounds, allowing 2069 

all contributors to share insights and address any remaining comments. 2070 

In the next step, we brought in microbiome researchers who were new to metaproteomics 2071 

to review the manuscript, helping us ensure it was clear and approachable for those outside 2072 

the field. With their feedback integrated, all co-authors—including section authors and both 2073 
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expert and novice reviewers—had a final opportunity to review the work. This collaborative 2074 

approach allowed us to prepare a comprehensive, accessible resource, which we shared 2075 

as a preprint before journal submission.  2076 

6. Conclusion 2077 

This Microbiologist’s Guide to Metaproteomics is designed for microbiome researchers 2078 

starting in metaproteomics, offering a practical introduction to reduce barriers to entry. It 2079 

covers the essentials of metaproteomics, including experimental design, sample 2080 

preparation, mass spectrometry data acquisition, peptide identification, protein inference, 2081 

taxonomic and functional analysis, and basic statistical methods. The guide provides the 2082 

foundational knowledge needed to apply metaproteomic technologies in microbiology and 2083 

microbiome studies. 2084 

Metaproteomics is a rapidly evolving field with unresolved technical challenges and 2085 

unexplored areas. This guide focuses on foundational concepts rather than providing 2086 

exhaustive coverage. To address these challenges, the Metaproteomics Initiative launched 2087 

the "Critical Assessment of Metaproteome Investigations" (CAMPI) series, which facilitates 2088 

multi-laboratory collaborations to compare and improve workflows, including sample 2089 

preparation, mass spectrometry methods, and bioinformatics.  2090 

Looking ahead, the next decade promises remarkable advancements in mass spectrometry, 2091 

with continually improving performance deepening the coverage of metaproteomic analysis. 2092 

These advancements, coupled with ongoing and future enhancements in wet-lab protocols, 2093 

strategies, and bioinformatic tools, will further propel the field. Collaborative efforts, such as 2094 

the CAMPI series of the Metaproteomics Initiative, underscores the power of cooperation 2095 

in driving metaproteomic progress. These developments, supported by input from 2096 

microbiome researchers, will help deepen our understanding of microbiomes and their 2097 

functions in diverse ecosystems. 2098 

Author contributions 2099 

This review is a collaborative effort led by Tim Van Den Bossche and Leyuan Li, and 2100 

overseen by the Scientific Committee of the Metaproteomics Initiative, who provided 2101 

overall guidance. Each section was contributed by nominated authors and internal 2102 

reviewers as follows: Section 1: Why metaproteomics? was written by Robert Hettich, 2103 

Jean Armengaud, Dirk Benndorf, and Paul Wilmes, and reviewed by Daniel Figeys. 2104 
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Section 2: Basics of proteomics was written by Zhibin Ning and Daniel Figeys, and 2105 

reviewed by Leyuan Li. Section 3: Experimental methods in metaproteoimcs includes 2106 

several subsections: 3.1 Experiment Design was written by Lucia Grenga and Jean 2107 

Armengaud, reviewed by Céline Henry and Leyuan Li; 3.2 Sample collection, 2108 

preservation, and storage prior to preprocessing, where 3.2.1 Sample collection and 2109 

preservation was written by Sergio Uzzau and Alessandro Tanca, and 3.2.2 Storage 2110 

conditions to maintain sample integrity was written by Lucia Grenga and Jean 2111 

Armengaud, both reviewed by Céline Henry and Leyuan Li; 3.3 Sample preprocessing 2112 

was written by Lucia Grenga and Jean Armengaud, reviewed by Céline Henry; 3.4 2113 

Protein sample preparation: from extraction to digestion was written by Nico 2114 

Jehmlich, reviewed by Xu Zhang and Céline Henry; 3.5 Separation and fractionation 2115 

techniques was written by Xu Zhang and Marybeth Creskey, reviewed by Céline Henry; 2116 

3.6 Automation was written by Leyuan Li, reviewed by Sergio Uzzau and Alessandro 2117 

Tanca; 3.7 Mass spectrometry data acquisition methods was written by Zhibin Ning 2118 

and Daniel Figeys, reviewed by Jean Armengaud and Céline Henry. Section 4: 2119 

Computational analysis of metaproteomics data includes several subsections: 4.1.1 2120 

Peptide identification with proteomics search engines was written by Pratik Jagtap, 2121 

Subina Mehta, and Timothy Griffin, reviewed by Tanja Holstein and Kai Cheng; 4.1.2 2122 

Database construction or selection was written by Paul Wilmes and Benoit Kunath, 2123 

reviewed by Jose Alfredo Blakely-Ruiz; 4.1.3 PSM FDR control, by Tim Van Den 2124 

Bossche and Lennart Martens, reviewed by Tanja Holstein; 4.1.4 Protein inference was 2125 

written by Tim Van Den Bossche, reviewed by Tanja Holstein; 4.1.5 Protein 2126 

quantification was written by Jose Alfredo Blakely-Ruiz and Manuel Kleiner, reviewed by 2127 

Tanja Holstein and Kai Cheng; 4.1.6 DIA data analysis was written by Pratik Jagtap, 2128 

reviewed by Tanja Holstein and Kai Cheng; 4.2: Taxonomic and functional Analysis 2129 

was written by Pieter Verschaffelt and Bart Mesuere, reviewed by Tanja Holstein and Tim 2130 

Van Den Bossche; 4.3 Downstream statistics was written by Leyuan Li, reviewed by 2131 

Tanja Holstein and Lucia Grenga. Section 5: A collaborative effort: writing a 2132 

comprehensive review with members of the Metaproteomics Initiative was written by 2133 

Tim Van Den Bossche, and reviewed by Leyuan Li. We invited Madita Brauer, Xuxa 2134 

Malliet, Jing Wang, Xin Zhang, Jong Kim to review the manuscript to ensure its 2135 

accessibility. All figures were artistically designed by Leyuan Li based on author drafts. To 2136 

homogenize the text, ensure consistency and avoid redundancy across sections, all 2137 

sections were rewritten by Tim Van Den Bossche. All authors commented and approved 2138 

the final version of the manuscript.  2139 

 2140 
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Abbreviations 2141 

ABP activity-based protein probing 

ACN acetonitrile  

AI artificial intelligence 

API application programming interface 

AUC area under the curve 

BSHs bile salt hydrolases  

BSL biosafety level 

CLI command-line interface 

cRAP common repository of adventitious proteins  

CZE capillary zone electrophoresis 

DDA data-dependent acquisition 

DIA data-independent acquisition 

FASP filter-aided sample preparation 

FDR false discovery rate 

Galaxy-P Galaxy for proteomics 

GHs glycoside hydrolases 

HILIC hydrophilic interaction liquid chromatography 

HPLC high-performance liquid chromatography 

IMAC Immobilized metal affinity chromatography 

iST in-stage tips 

LC liquid chromatography 

LCA lowest common ancestor 

LFQ label-free quantification 

MAG metagenome-assembled genome 

MPA MetaProteome Analyzer 

MS mass spectrometry 
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MuDPIT multidimensional protein identification technology 

NSAF normalized spectral abundance factor 

ORF open-reading frame 

PSMs peptide-spectrum matches 

PTM post-translational modification 

QC quality control 

RP reverse phase 

SCX strong cation exchange 

SILAC stable isotope labeling by amino acids in cell culture 

SP3 single-pot solid-phase-enhanced sample preparation 

SPE solid-phase extraction  

TMT tandem mass tags  
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