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Abstract

Computational studies of self-assembly have the potential to provide rich insights
into their underlying thermodynamics and identify optimal system conditions for appli-
cations, such as nanomaterial synthesis or drug delivery. However, both self-assembly
and supramolecular transitions can be hindered by free energy barriers, rendering them
rare events on molecular timescales and making it challenging to sample them. Here, we
show that the use of enhanced sampling techniques, when combined with a judiciously
chosen set of order parameters, offers an efficient and robust route for characterizing
the thermodynamics of self-assembly and supramolecular transitions. Specifically, we
show that transitions between states with different periodicities or symmetries can be
reversibly sampled by biasing a relatively small number of Fourier components of the
particle density. We illustrate our approach by computing the free energy required to
cleave a liquid slab and estimating the corresponding liquid-vapor surface tension. We
also characterize the free energetics of the transition between spherical and rod-shaped
droplets. These results serve as a first step towards the development of a systematic
computational framework for exploring transitions in diverse supramolecular systems,
such as surfactants or block copolymers, and characterizing the thermodynamics of

their self-assembly.

Introduction

The organization of molecular building blocks, such as surfactants, peptides or block copoly-

mers, into self-assembled structures, such as micelles, condensates or ordered mesophases,

6 ranging from soft matter and nanotech-

plays an important role in a diverse disciplines,!”
nology” * to interface science and biophysics.!® '8 Consequently, both experimental and
computational techniques have sought to better understand the molecular driving forces

24,25

that underpin self-assembly. 123 In addition to monomer chemistry and shape, 20728 self-

assembly can also be influenced by collective solvation effects.?? 33 Moreover, small changes
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in system properties, such as temperature or pH, can trigger supramolecular transitions from

34-38

one self-assembled mesophase to another. Thus, being able to design systems that self-

assemble into desired structures and identifying the conditions under which self-assembly
can be carried out in a reproducible and /or tunable manner remains a grand challenge.3% 45

In addition to predicting and controlling the supramolecular structure of a system, knowl-
edge of the robustness and stability of such nano-scale phases is especially important in the
manufacture of low-cost, industrial materials. In these applications, manufacturers want to
maintain control over the material properties and prevent failure (e.g. unexpectedly crossing
a phase boundary) when control over the feedstock and manufacturing process is heavily
constrained. Accomplishing this experimentally can be impractical, as it may take weeks or
months for supramolecular transitions to occur. Consequently, the use of modeling tools to
quantify the proximity to phase transitions and alternate microstructures could help with
assessing the risks of such failures.

Molecular simulations offer the promise of uncovering the complex relationships be-
tween the molecular characteristics of the building blocks (e.g., surfactants) and the self-
assembled structures they might form (e.g., micelles) as well as the conditions under which
such assembly might occur (e.g., critical micelle concentration). In particular, all-atom
molecular dynamics (MD) simulations with explicit consideration of solvent have become in-
creasingly adept at accurately capturing the molecular interactions that drive self-assembly.

Moreover, such simulations are also transferable, and can be used to explore how subtle

46-49 50-52 53,54

changes in solvent conditions as well as surfactant architecture or chemistry
influence self-assembly. However, all-atom explicit-solvent MD simulations can be computa-
tionally expensive, especially when the presence of free energy barriers renders self-assembly
and/or supramolecular transitions rare events on molecular timescales.?* *® Consequently,
the vast majority of computational studies of self-assembly have employed coarse-grained

32,59-63

approaches, such as dissipative particle dynamics (DPD) 246467 or self-consistent field

theory (SCFT).% ™ Such coarse-grained approaches provide a computationally efficient al-
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ternative to atomistic simulations, and by facilitating exploration of the space of monomer
chemistry (e.g., polarity) and/or system conditions (e.g, temperature), they can provide
important insights into the physics of self-assembly.

Both all-atom and coarse-grained approaches would benefit from the development of
methods for characterizing the free energetics of self-assembly and/or supramolecular tran-
sitions. "' In principle, enhanced sampling techniques, such as umbrella sampling or meta-

TT7 can facilitate the sampling of rare self-assembly or supramolecular transition

dynamics,
events and the characterization of the underlying free energy landscapes. However, such tech-
niques require the identification of robust order parameters that can be biased to reversibly

t.2672 Order parameters, such as radius of gyration,” aggre-

sample the transition of interes
gation number,”™ and similar such quantities, %! have been used for studying self-assembly,
and shape matching functions that capture the salient features of self-assembled structures

82-84

have also been used to define order parameters. However, a versatile set of order param-

eters that can be deployed to study the vast array of complex supramolecular structures®
associated with polymer and surfactant self assembly remains elusive.

To address this challenge, here we explore the use of order parameters based on Fourier
transforms of particle densities, which have been used extensively for nanostructure charac-

8486792 11t seldom for enhanced sampling.?3%* As most self-assembled structures

terization ,
possess simple, periodic motifs, their density and/or composition profiles can be succinctly
described using a small set of wavevectors. We thus hypothesize that the transition between
two different morphological states can be studied by identifying the Fourier components that
vary most between the two states, and biasing the Fourier amplitudes of the most pertinent
wave vectors. To test this hypothesis, here we study a series of increasingly complex model
systems. We first illustrate our approach by studying the clustering of ideal gas particles,
then study the rupturing of a Lennard-Jones liquid slab, and finally investigate the transition

between spherical and cylindrical droplets. In each case, we are able to reversibly sample the

transition of interest, characterize the underlying free energy landscape, and shed light on
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the transition pathway. Our work uncovers important heuristics for accurately and efficiently
sampling morphological transitions in self-assembled systems, and paves the way for a robust
and generalizable framework for computational studies of self-assembly and supramolecular

transitions.

Methods

Theory
Fourier components of the particle density field

For a system with N particles, the particle density field is defined as:

N

p(ri{r,}) =) o(r—r,), (1)

p=1

where 1, is the position of the pth particle and 0 stands for the Dirac delta function. The

Fourier transform of the particle density field is given by:

px = Flp(r)] = /Vdrp(r) exp (—ik - r) (2)

where k is the wave vector and the integral is performed over the simulation box volume, V.
For cuboidal systems with periodic boundary conditions, py takes on non-zero values only
for k = (2mn,/L,,2mn,/L,,2mn,/L,), where n,, n, and n, are integers and L,, L, and L,
are the lengths of the simulation box in the corresponding directions.

The particle density field can be expressed as a plane-wave basis-set expansion using the

Fourier amplitudes, gy, (inverse Fourier transform) as follows:

o) = 3 eesp (ik ) )
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Using Euler’s formula, pyx can be decomposed into real and imaginary components as:

Pk = PR T 1Pk, (4)
with the components being given by:
N N
Prp = Z cos(k-ry) , pxg=— Z sin (k - rp) (5)
p=1 p=1

Bias Potentials

To reversibly transition between configurations with different periodicities or symmetries,
here we independently bias the real, px », and imaginary, px g, components of py, such that

our biasing potential, Uy(pk), can be written as:

Uk(px) = Uk n(pxn) + Uk s(Prs), (6)

with Ux g (pxn) and Uy s(pks) chosen to be harmonic functions:

Uk p(prw) = T(ﬁkm — pex)’, and
~ '%k,% A Ak
Uk s(prs) = T(Pk,s — Prs)’, (7)

where the spring constants, rx g and ki g as well as the set-points, py ¢ and py g, are user-
specified parameters, chosen according to the rules of thumb described in refs. % When it is
desirable to bias the px » and/or px g-values of multiple wavevectors, {k;}, the overall biasing
potential is obtained by simply adding the biasing potentials for the pertinent wavevectors,
U = Zki Ug,. Because pxx and pxg are continuous and differentiable functions of the

particle positions (Equation 5), the force, fi,, on the p™ particle, arising from the bias on
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px can be readily obtained as follows:

fkp = _vak(fak>
= —V,Uk (P ) — VpUks(Prs)
= — kR (Per — Prn) Vplr — Frs(Pes — Prs) Vs

= [Fn(Pen — Prg) sin (k- 1p) + Fics(Prs — Pig) cos (k- 1) k. (8)

Thus, fi, acts in the direction of k. To exercise control over p(r) and drive the system
towards increasingly complex configurations, we can bias the Fourier amplitudes, py, of
multiple wavevectors, with the total force, f,, on the p™ particle being f, = 3", fi,.

In each of the processes we study here, the pertinent configurations possess reflection
symmetry around the center of the simulation box, which implies that the average particle
density can be expressed solely as a sum of even functions. Consequently, px g is expected to
be zero, on average, for all k, and biasing py » is sufficient to exercise control over the average
density field (Equation 5). To restrain configurations sampled in our biased simulations to
obey reflection symmetry, for every px s that we bias, we include a harmonic bias on px g
with a set-point, py 4, of 0 and a spring constant, rx g = Kk (Equation 7).

To sample px w-values spanning the range of interest, we perform a series of biased simu-
lations by systematically varying py . To obtain the corresponding free energy profile, e.g.,
F(pxx), we then employ the Weighted Histogram Analysis Method (WHAM).?" % When
biasing along multiple wave vectors, {k;}, we choose to sample along a linear path in the
high dimensional space of {px,»}. In particular, to sample the transition between initial
and final configurations defined by {p,) 5} and {p,’ »}, respectively, we define the variable
A* that linearly interpolates between the two configurations. For every wave-vector that we
bias, the set-point, g z(A*) = Ao g + A - (A % — Aie w), 1s chosen such that configurations
consistent with {p,) »} are preferred when \* = 0, whereas those with {/,! 5} are preferred

as \* — 1. In other words, the total bias potential, Uy, xe = Y "R [, 0 — fp, n(A*)]%-
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To quantify how far along the high-dimensional linear pathway each configuration in our
biased simulations sits, we introduce the order parameter, A, which depends on {pk, »} and

is defined as follows:

Zi (ﬁki,%‘: - ﬁk?,én) ' (ﬁkt,?}t - ﬁk?,%)
Zi (fskli,&e o ﬁk?,ére)z

)‘({ﬁku%}) =

We estimate the change in free energy along the linear path F()\), using WHAM. 979

Simulation Details

All simulations are performed using the GROMACS package (version 4.5.3) ,%° suitably
modified to incorporate the required biases. The leap frog algorithm %! was used to integrate
the equations of motion with a 2 fs time-step; the center of mass motion was removed and the
neighbor list was updated every time-step. Periodic boundary conditions were employed in
all directions. The atoms were chosen to have a mass of 16.04 amu, and Lennard-Jones (LJ)
interaction parameters of o = 0.373 nm and e = 1.23047 kJ/mol were used; LJ interactions
were truncated at 4o0. All simulations are performed in the NVT ensemble. The system
temperature was maintained using the canonical velocity-rescaling thermostat '°? with a time
constant of 0.5 ps. Additional system-specific details are provided below.

Ideal systems A cubic simulation box that is 10 nm in each direction is populated with
20 non-interacting particles. The system is simulated at 148 K. All simulation runs are
performed for two 2 ns, with the first 0.2 ns discarded as equilibration time. For the wave
vector, k = (0,0,27/L,), we sample the entire range of py » using 13 biased simulations that
employ harmonic biasing potentials with a fixed spring constant, ks = 0.2 kJ/mol, and
different values of py g, equally spaced from —30 to 30.

Cleaving LJ Slabs A cuboidal simulation box that is 5 nm long in the z- and y-directions
and 30 nm in the z-direction is initialized with 4500 LJ particles. The temperature is

set to 148 K. After equilibration, a liquid slab forms in the center of the box with liquid-
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vapor interfaces that are orthogonal to the z direction (Figure 2a, top). From this unbiased
simulation, we obtain the density profile for the one-slab configuration with its center of
mass pegged to the center of the box (Figure 2b); the density profile is then fit using tanh
functions, which capture its sigmoidal behavior. The one-slab density profile is also used to
infer the corresponding two-slab density profile assuming that each slab has half the number
of L.J particles and that the interface shapes are not affected by the cleaving of the slabs
(Figure 2b). To compare two sets of density profiles, p1(z) and py(z), we define a root mean

squared deviation (RMSD) as follows:

RMSD = l\/ Li /O - [m(z) - pQ(z)]de (10)

P

where p; is the bulk liquid density.

The last frame of the equilibrium simulation is used as an initial configuration for the
biased simulations. To sample the transition between one-slab and two-slab configurations,
the linear biasing variable, \*, is systematically varied from -0.1 and 1.1 using 25 windows,
and kg is chosen to be 0.001 kJ/mol for all wavevectors. We also carried out a parallel set of
biased simulations, initialized in the two-slab configuration, to interrogate whether the free
energy profiles display hysteresis. All biased simulations are run for 2 ns, with the first 0.5 ns
being discarded for equilibration. To estimate the surface tension at different temperatures,
similar calculations are performed at 162.8 K and 125.8 K.

When computing the surface tension, we use a thermodynamic cycle with legs that feature
the biasing potential, Uy = Yo "R [pw, 1 — P, n(A9)]?, being turned on in the one-slab
configuration (A* = 0) and turned off in the two-slab configuration (A\* = 1). To compute the

free energy of turning on the biasing potential, we use thermodynamic integration:%6-193:104

AF, = /Om (%)dﬁ (11)

where F), \+ is the free energy of the system in a biased ensemble with a bias potential, Uy «,
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and OF, x—o/0k = (31 5[0, 5 — i, n(A* = 0)]?) . r=—o is estimated from biased simulations.

Similarly, we compute the free energy of turning off the biasing potential as:

AFy = — /0va (%)mi (12)

where OF, y—1/0k = (3. 5Pk — P, (A" = 1)]*)xr==1. To prevent slabs from coalescing
during the process of turning off the biasing potential, we additionally employ a well poten-
tial, Uyen, that penalizes large excursions away from the two-basin configuration, but does
not bias small fluctuations within the basin; only configurations with Uy = 0 are included
when computing the ensemble averages, (...),x—1. Additional details pertaining to the
definition and use of U, are included in the SI.

Changing Droplet Shapes By judiciously choosing the net particle density, we situate
our system at a point in phase space where both cylindrical and spherical droplets are
(meta)stable.'% In particular, we randomly place 9000 LJ particles in a cubic box with a
side of 15 nm and run several simulations to let the system equilibrate at 148K. Following
equilibration, either cylindrical or spherical droplets are observed, providing us with initial
configurations for our biased simulations. To sample the transition between spherical and
cylindrical droplets, the linear biasing variable, \*, is systematically varied from -0.1 and
1.2, and kg is chosen to be 0.0002 kJ/mol for all wavevectors. Each biased simulation was

run for 5 ns with the first 1 ns being discarded for equilibration.

Results and Discussion

Ideal system

To illustrate our approach, we first characterize the free energetics, F(pxr), for a system
of ideal gas particles, for which thermodynamic averages can be computed analytically and

compared to our simulation results. In particular, we study a system with 20 ideal particles

10
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in a cubic box (Figure la), as detailed in the Methods section, and seek to characterize
F(py ) for the wave-vector, k = (0,0, 27/L,). The free energetics obtained from an unbiased
simulation (Figure 1b, blue line), highlight that F(pxx) displays a minimum at peg = 0
and it is symmetric around its minimum. Because an ideal gas must, on average, have a
uniform particle density field, particle density waves with a positive amplitude, px », should
indeed occur with the same likelihood as the corresponding waves with a negative amplitude
(for all wavevectors). We also find that the distribution of py s near its mean is Gaussian
(Figure 1b, black dashed line) with a variance, (g z) = N/2; as shown in the SI, these

findings are also in line with our expectations for an ideal gas.

(c) -
40 — analytic —0.101 _pr_,8f225
=== gaussian lE —-10
® umbrella = —_ _5
20N equilibrium E 0.05-
X
2 L — |
0 ' 0.00 .
=20 0 20 0 5 10
PR z(nm)

Figure 1: Illustration of our approach using an ideal gas system. (a) A biased simulation snapshot
of a system comprised of N = 20 ideal particles in a cubic box. (b) The free energetics, F(px »),
of the ideal system for the wave vector k = (0,0,27/L,) are shown. The data obtained from an
unbiased simulation (solid blue line) suggests that F'(px %) is parabolic (black dashed line) near
Pk = 0, highlighting that pi » obeys Gaussian statistics near its mean, (px») = 0. Estimates of
F(px ), obtained over the entire range of py » using umbrella sampling (blue circles), agree with
the unbiased estimates near px % = 0, but display significant deviation from parabolic behavior as
Pk, approaches =N. Such deviation is consistent with the analytical form of F'(px ») expected for
an ideal gas (solid red line). (¢) The average particle density profiles, (p(z)) k,pp 5o Obtained from
three biased simulations with different values of the bias set-point, py , are shown, highlighting
that negative ﬁl’i,%—values lead to enhanced particle densities at the center of the box.

We now seek to sample py p-values far from its mean, (px %) = 0, by employing a harmonic
biasing potential, %m(ﬁk,m — ,61*(7%)2, with spring constant, x, and set-point, py 5, as discussed
in the Methods section. To shed light on how the biasing potential influences the real-space

particle density, we plot the average particle density, (p(z)) in biased ensembles with

H,ﬁf(7%7

select values of py » (Figure 1c). In the presence of biasing potential with negative values of

11
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the set-point, py , we observe an accumulation of particles at the center of the simulation
box. To understand this observation, we use the inverse Fourier transform (Equation 3) to

relate the average real-space density, (p(2))x.s; ., to the corresponding averages, (i) r.s; -

of the Fourier amplitudes: (p(z)) =8+2 > 20Ok %) w7, €O8(K'-r). If we assume that

H7ﬁf(,8?

the average Fourier amplitudes, (i %) x.p; ., for wavevectors that were not biased (k” # k) are

27rz).

unaffected by the bias, i.e., (P 2k ») ~ 0, then: (p(2))r,pp ,, = %+%<,@k7%>,§,ﬁ;% cos (7

’inéik(,%
Additionally, given that the unbiased average, (pxx) = 0, we expect negative Pl s-values to

27z
L

result in (ﬁk7%>,§7ﬁ;m < 0. Thus, regions with negative cos (%), i.e., near the center of the
box, should have particle densities that are greater N/V. Conversely, positive values of Ples
should drive particles towards the edges of the box.

As described in the Methods section, by performing biased simulations that enable us
to sample a wide range of py p-values, we then compute the free energy profiles, F(pxx),
over the entire range of pyxx, from —N to N. The free energy profile, shown in Figure 1b
(filled circles) is parabolic near the mean, as expected from our unbiased simulation, but
sharpens towards the tails such that at SF(pxp = £N) = 2N. By leveraging the simplicity
of the ideal gas system, we derive an analytical expression for F'(px ) (details included in

SI), and as shown in Figure 1b (red line), our simulated estimates of F'(px ) are in excellent

agreement with analytical free energy expression.

Cleaving a liquid slab

The coalescence and/or cleavage of liquid droplets or vapor bubbles plays an important role

06 emulsions for

in a variety of fields, ranging from the construction of microfluidic devices,®
drug delivery,'%” and in drop-wise condensation heat transfer.'%® Here we seck to reversibly
cleave a Lennard-Jones liquid slab along the xy-plane to create two liquid slabs separated
in the z-direction (Fig. 2a). We leverage the fact that these configurations differ in their

periodicities and should therefore also differ in the wavevectors that dominate the Fourier

transform of their average density profiles (Fig. 2b). Indeed, as shown in Fig. 2¢, the Fourier

12
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amplitudes, (pxx), in the one-slab and two-slab states are dominated by the n, = 1 and
n, = 2 wavevectors, respectively. To quantify the contribution of the higher n, wavevectors
to the overall density profile, we systematically increase the number of wave-vectors, N,

included in the Fourier expansion (Equation 4):

N 2 R 2mn,
pn,(2) = —+ = > puscos ( 7 z) , k=(0,0,2mn./L.), (13)

z

and compare the resulting truncated density profiles against the full density profiles using
a root mean squared deviation (RMSD) metric (Equation 10). Figure 2d shows that as
N,, increases, the resulting RMSD decreases exponentially for both configurations, and that

N,, = 12 wavevectors are sufficient to results in RMSD-values below 0.02.

a b c d
(@) ® © ] @ ——
5 - — e
£ = Z107!
= ) =
x 2 ] ~
é 0
Il 2 slabs w
. . : . 102 . . .
1 3 5 7 0 4 8 12 16
n. Ny

Figure 2: (a) Simulation snapshots in the one-slab (top) and two-slab (bottom) states. The sim-
ulation box is shown using blue lines and the Lennard-Jones particles are shown as cyan spheres.
(b) Average density profiles are shown along the z-direction for the one- and two-slab states. (c)
For both the one- and two-slab states, the average Fourier amplitudes, (px %), are shown for the
first 7 wavevectors, k = (0,0,27n,/L,), where n, = 1,2...7. (d) The root mean square deviation
(RMSD) between the truncated and actual density profiles is shown as a function of the number of
wavevectors, N,,, for the one- and two-slab states.

To cleave the slab, we thus choose to bias the Fourier amplitudes, pxx, of the first 12
wavevectors. In particular, we carry out a set of biased simulations wherein the py g-values
for each of the 12 wavevectors are varied in a concerted manner along a linear pathway
connecting the two basins, as described in the Methods section. Initializing our system in
the one-slab configuration, we perform a total of 25 biased simulations, varying the linear
biasing parameter, A*, from -0.10 to 1.10, where A*-values of 0 and 1 seek to localize the

system in the one- and two-slab states, respectively. We denote this set of simulations as

13
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the “forward” sampling path and analyze them to obtain the free energy profile, F'(\), for
transitioning the system from the one-slab to the two-slab configuration (Figure 3a, solid
red line). The profile, F'()\), displays two basins at A = 0 (stable) and A = 1 (metastable),
which are separated by a relatively large free energy barrier, and the free energy difference
between the two basins is roughly 175 kgT'. To interrogate our ability to reversibly sample
F()\) by biasing the Fourier amplitudes, px », we repeat the entire set of umbrella sampling
calculations using the two-slab configuration as our initial configuration, and denote this
set as “backward” sampling simulations. The free energy profile, F'()\), obtained from the
backward simulations are shown in Figure 3a (blue dashed line) and agree well with the
forward path results (solid, red line), suggesting that the sampling of the cleavage transition
was not impeded by unanticipated orthogonal barriers.

To better understand how the transition proceeds along our prescribed path, we plot
the average density profiles, (p(2)) .+, obtained from our biased simulations in Figure 3b.
As \* is increased from 0 to 1, the average densities decrease at the center of the box and
increase near its edges. Interestingly, for intermediate values of A\*, the density profiles are
not smooth, but instead display small “wiggles”, i.e., high wavevector features. We posit that
the density gradients underpinning these wiggles contribute to the large free energy barrier
separating the basins, which in turn, necessitates the use of numerous biased windows to
sample the transition pathway. To interrogate whether it might be possible to reversibly
sample the cleavage transition along a path that presents smaller barriers to the transition
(and is thereby more efficient to sample), we seek to exercise less control over the transition
path by biasing fewer wavevectors. To this end, we now employ only the two characteristic
wavevectors that dominate the one-slab (n, = 1) and two-slab (n, = 2) configurations,
biasing along the linear pathway connecting the two basins in the (pk, », Pk, %) space. The
corresponding free energy profiles, obtained from the forward and reverse simulations, are in
excellent agreement with one another (Figure 3a), highlighting that the cleavage transition

can be reversibly sampled by biasing only two wavevectors. Moreover, while the free energy
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Figure 3: (a) The free energetics, F'(\), of cleaving a liquid slab. The results obtained from
biasing the Fourier amplitudes, pyxx, of 12 wave vectors are shown in red for rupturing the slab
and in blue for coalescing the slabs; the corresponding results for biasing 2 Fourier amplitudes are
shown in green and yellow, respectively. (b) Average density profiles obtained from simulations in
which the Fourier amplitudes of 12 wave vectors are biased; density profiles corresponding to biased
simulations with A*-values of 0, 0.3, 0.7 and 1 are shown. (c) Average density profiles obtained from
simulations in which the Fourier amplitudes of 2 wave vectors are biased. (d) The two-dimensional
free energy landscape, F'(pk, %, fk,,%), obtained by biasing the wavevectors, ki = (0,0,27/L;) and
ko = (0,0,47/L,). The linear pathway connecting the one- and two-slab configurations (black line)
as well as the minimum free energy path (red line) are shown. (e) Average density profiles and the
corresponding (f) simulation snapshots are shown at select points along the minimum free energy
path (denoted by circles in panel d): the saddle point (top) and the local minimum in the two-slab
basin (bottom).

difference between the two-slab and one-slab basins that is obtained using simulations that
bias 12 and 2 wavevectors is identical (as expected), the barrier separating the two basins
is much smaller in the latter case, enabling more efficient sampling of the transition. As
hypothesized, the average density profiles, (p(2))..1+, obtained by biasing only 2 wavevectors
(Figure 3c), are relatively smooth and do not show any high wavevector features.

To gain a deeper understanding into the cleavage transition pathway, we also compute

the two-dimensional free energy landscape, F'(pk, », fx,x) (Figure 3d). The global minimum

in free energy, corresponding to the one liquid slab configuration, is observed at small py,
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and large px, » (top-left of Figure 3d), and a local minimum is observed at large pi, » and
small py, » near the two-slab configuration (bottom-right of Figure 3d). The minimum free
energy path in the (P, %, Px,») space is also shown in Figure 3d (magenta), highlighting the
curved path that offers the least resistance (i.e., barrier) to the cleavage transition, and its
deviation from the linear path connecting the one- and two-slab configurations (solid, black
line). The average particle density profiles at select states along the minimum free energy
path are also shown (Figure 3e). In particular, at the saddle point, we observe two slabs
connected with a small, liquid cylinder (Figure 3f). We note that the metastable basin in
F(px, #, Pxom) does not coincide with the two-slab configuration (even though both states
feature two distinct slabs, Figures 3e,f) because the proximity of the two slabs and the
resulting dispersion attractions between them makes the former slightly more favorable than

the latter.

Estimating Surface Tension

Surface tension, v, plays a crucial role in driving a wide variety of self-assembly pro-
cesses, 199712 prompting the development of a number of simulation techniques for estimating
this important quantity. '3 18 Because cleaving a liquid slab creates two new vapor-liquid in-
terfaces, our ability to reversibly cleave the slab and quantify the corresponding free energetic
cost, AF, can be leveraged to estimate v using: AF = 2L, L,~. To accurately estimate the
free energy, AF, of transitioning the system from unconstrained one-slab to two-slab states,

19 shown in Figure 4a. We first turn on a biasing potential

we use the thermodynamic cycle
(using two wavevectors) that localizes the system in the one-slab state with associated free
energy being denoted AF;. Then, we cleave the liquid slab, transitioning to the two-slab
state; the corresponding free energy, estimated in the previous section, is denoted as AFs.
Finally, we turn off the biasing potential to obtain the unconstrained two-slab state with the

resulting free energy being AF3, so that: AF = AF} + AF, + AF5.

We determine AF; and AF5 at T' = 148 K using thermodynamic integration, as described
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Figure 4: (a) Snapshots illustrating the thermodynamic circle for estimating surface tension. The
biasing potential is first turned on, the Fourier space densities are biased to cleave the slab, and the
bias is then turned off to obtained the final, cleaved configuration; lighter particle colors represent
systems without the bias. (b) The thermodynamic force, OF} x+/0k, for systematically turning on
the biasing potential in the one- and two-slab configurations; the area under the curve is the free
energy for turning on the biasing potential. (c¢) Surface tension values obtained from this approach
(red) agree well with the results obtained from the local pressure tensor (LPT, blue) method.

in the Methods section (Equations 11 and 12). The areas under the curves shown in Figure 4b
provide us with estimates of AF; = 0.7 kg1 and AF3 = —2.67 kgT. Because AF; and AF3
are opposite in sign and similar in magnitude, and more importantly, because AF5 is much
larger in magnitude than both AF; and AF3, the total cleavage free energy, AF, is largely
determined by AF,. Using our estimate of AF', we obtain the surface tension at T'= 148 K
to be 5.14 mN/m. We repeat these calculations at 7' = 125.8 K and 162.8 K and find that
v decreases with increasing 7', as expected (Figure 4c). We also estimate ~ using the local
pressure tensor (LPT) method proposed by Irving and Kirkwood, 13129 as described in the
Supporting Information, and find that the two sets of y-estimates are in excellent agreement

with one another (Figure 4c).

Transition between Spherical and Cylindrical Droplets

Amphiphilic molecules can self-assemble into micelles of different shapes, such as spheres,
cylinders or disks, with the preferred morphology being a function of surfactant chemistry
and concentration as well as solvent composition and temperature, among other variables.

By modulating one or more of these variables, transitions between supramolecular assemblies
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with different shapes can also be triggered. Indeed, increasing the surfactant concentration
has been shown to result in a spherical to worm-like micelle transition.'?! However, such
transitions can be rare events on molecular timescales making it challenging to study them
using equilibrium simulations. To address this challenge, here we explore biasing Fourier
components of the molecular density field, pyx g, to reversibly sample transitions between
shapes with different symmetries. In particular, we illustrate our approach by studying the

transition between spherical and cylindrical liquid droplets (Figure 5a).
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Figure 5: (a) Simulation snapshots of the system with spherical and cylindrical liquid droplets; LJ
particles are shown as cyan spheres. (b) The average density profiles for the spherical and cylindrical
droplets are shown as a function of the pertinent radial coordinate. For both the (c) spherical and
(d) cylindrical droplets, the Fourier amplitudes, px s, of their averages density profiles, are shown
for the first 9 wavevectors.

The average density profiles for the spherical and cylindrical droplets, obtained using
equilibrium simulations, are shown in Figure 5b as a function of the radial coordinate in the
pertinent coordinate system. The radius of the spherical droplet is 4.84 nm, and that of the
cylindrical droplet is 3.17 nm; the axis of the cylindrical droplet is along the z-direction and
its length is L, = 15 nm. In contrast with planar slabs, all three wavevector-components
must be considered to capture the particle density fields of the spherical and cylindrical
droplets. A comparison of the Fourier amplitudes, pyx», of these density fields is shown
in Figures 5c¢ and 5d for the first few wavevectors. For the spherical droplet, the (1,0,0),
(0,1,0) and (0,0, 1) wavevectors display the largest signal with the px g-values for the three
wavevectors being the same due to spherical symmetry; similarly, the py p-values for (1, 1,0),
(1,-1,0), (1,0,1), (1,0,—1), (0,1,1) and (0,1, —1) wavevectors are the same, but with a

somewhat smaller magnitude. We note that by definition, px 2 = p_x» (Equation 5), so that
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P must be the same for the (1,0,0) and (—1,0,0) wavevectors; however, this is not true
for the (1,1,0) and (1,—1,0) wavevectors, i.e., pxx can, in general, be different for these
wavevectors. With the axis of the cylindrical droplet pointing along the z-direction, the py »-
values of the (1,0,0) and (0, 1,0) wavevectors are identical (and display the largest signal),
whereas the (0,0, 1) wavevector (along z) does not contribute to the density field; similarly,
the (1,1,0) and the (1, —1,0) wavevectors contribute to the density field, but the (1,0, 1),
(1,0,—1), (0,1,1) and (0,1, —1) wavevectors do not. Thus, for the spherical and cylindrical
droplets, the largest contrast in their py g-values is observed for the (0,0,1) wavevector,
with significant contrast additionally being observed for the (1,0,1), (1,0,—1), (0,1,1) and
(0,1, —1) wavevectors. We thus bias these five wavevectors to sample the transition between
the spherical and cylindrical droplets.

To obtain the free energetics of the transition, we perform a series of biased simula-
tions that follow a linear path between the spherical and cylindrical droplet basins in the
five-dimensional {px % }-space, as described in the Methods section. The simulations are
performed with the system initialized as either a spherical droplet (“forward”) or a cylin-
drical droplet (“backward”). We find that the free energetics of the transition, F'(\), are
independent of the initial state of the system (Figure 6a), suggesting that the transition
can be sampled reversibly, and that any barriers in unbiased (orthogonal) degrees of free-
dom are comparable to the thermal energy (or smaller). Two minima are observed in F'()\)
near A = 0 and 1, corresponding to the spherical and cylindrical droplets, respectively, with
former being favored by 2.50 + 0.81 kgT. We note that this estimate does not include the
free energetic cost of turning the bias on at A* = 0 and turning it off at at A* = 1, but as
with the cleaving of the planar liquid slab, we expect these contributions to be relatively
small. Using our density profiles and geometric expressions for the surface area of a sphere
and a cylinder (excluding the cylindrical end-caps due to periodic boundaries), we estimate
the surface areas of the spherical and cylindrical droplets to be 294.4 nm? and 298.8 nm?,

respectively. Upon multiplying the difference in interfacial area by the interfacial tension, we
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obtain a free energy difference of 2.88 kgT’, which is in good agreement with our simulated

estimate of 2.50 + 0.81 kgT.
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Figure 6: (a) By biasing the Fourier amplitudes, pi » of only 5 wavevectors, we are able to reversibly
sample the transition from a spherical to a cylindrical droplet, and estimate the corresponding
free energy, F'(A). (b) Representative biased simulation snapshots for select \*-values. The z—
and r—axes of the cylindrical coordinate system, used to average particle densities, are shown in
the top-left snapshot. (c) Averaged particle densities, (p(r,2))s =, obtained from select biased
simulations. From left to right, the spherical droplet (A* = 0) stretches along the z-axis (\* = 0.3)
until it contacts its periodic image (A* = 0.35), eventually forming a cylindrical droplet (A* = 1).

The minima in F'(\) are separated by a barrier of roughly 20 kg7 at A = 0.35. Typical
configurations from biased simulations near the barrier, shown in Figure 6b, suggest that
the transition state is an elongated ellipsoidal droplet that is about to contact itself across
periodic boundaries. To shed further light into the transition pathway, we plot the particle
density fields, observed in our biased simulations, as a function of the axial, z, and the radial,
r= \/m , coordinates (Figure 6¢). We find that the transition pathway is characterized
by the gradual elongation of the spherical droplet along the z-direction (for A\* near 0),
followed by the formation of an unduloid-like shape (near A* = 0.35) when the droplet
meets itself across periodic boundaries and eventually transitions into a cylindrical droplet
(for A* approaching 1). Importantly, these results suggest that biasing a small number of
wavevectors may be sufficient to reversibly sample transitions between morphologies with

different symmetries.
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Conclusions and Outlook

Molecular simulations promise to shed light on the intricate relationships between the molec-
ular characteristics of building blocks and the conditions under which they might self-
assemble into certain mesophases. However, free energy barriers can hinder self-assembly
and /or supramolecular transitions, making it challenging to observe them in unbiased atom-
istic or coarse-grained simulations.?®® To address this challenge, here we propose biasing
order parameters based on Fourier transforms of particle densities, py, which concisely cap-
ture the periodicity and symmetry of self-assembled structures. To illustrate our approach,
we first characterize the free energy for clustering ideal gas particles, whose simplicity lends
itself to analytical solutions that validate our results and guide our intuition.

Leveraging the ability of py to discriminate between configurations with different period-
icities, we then cleave a Lennard-Jones liquid slab into two slabs by simultaneously biasing
the py-values for select wavevectors. In particular, we first bias py-values for 12 wavevec-
tors, which contribute the most to the density profiles in the two basins, along a linear path
connecting the two basins. We find that sampling of the cleavage transition is not hindered
by the presence of orthogonal barriers, enabling robust estimation of the corresponding free
energy as well as the liquid-vapor interfacial tension. Interestingly, we further find that bias-
ing py for as few as two wavevectors enables reversible sampling of the transition. Moreover,
we find that free energy barriers that must be overcome as the system moves between the
one-slab and two-slab states are lower when py-values for fewer wavevectors are biased.

Finally, to interrogate the utility of our approach for studying supramolecular transi-
tions between mesophases with different shapes and/or symmetries, we study the transition
between spherical and cylindrical liquid droplets. By biasing py-values for a handful of judi-
ciously chosen wavevectors, we are able to reversibly sample the sphere-cylinder transition,
characterize the underlying free energy landscape, and shed light on the transition pathway.
Our findings thus highlight the utility and versatility of pyx as order parameters in concisely

discriminating between diverse configurations with different periodicities or symmetries, and
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provide heuristics for using these order parameters for accurately and efficiently sampling
morphological transitions in self-assembled systems.

Although we make use of exceedingly simple model systems to interrogate the utility
of our approach, we are hopeful that our work will serve as a crucial first step in the de-
velopment of a robust and computationally efficient framework for exploring self-assembly
and supramolecular transitions in more realistic molecular systems. For example, the self-
assembly of surfactants to form micelles could be studied by biasing py corresponding to
the density of surfactant head-groups; similarly, block copolymer self-assembly could be
facilitated by biasing px for one of the polymer blocks. To investigate more complex pro-
cesses, such as the combination of micelles or self-assembly of polymers near surfaces, 22125
it may be useful to focus our bias potentials on a portion of the simulation box. We note
that our approach should be useful for both atomistic and coarse-grained simulations (e.g.,
MARTINI models or dissipative particle dynamics), which are commonly used to investigate
self-assembly. 126:127

However, as the complexity of the systems under consideration increases, it may become
necessary to bias gy for multiple densities and/or compositions. Moreover, realistic models
may display slow relaxation along orthogonal coordinates (e.g., due to solvation barriers),
thereby necessitating biasing of additional pertinent order parameters. To efficiently char-
acterize the assembly landscape for such complex systems, our approach could be combined
with other enhanced sampling techniques, such as sparse sampling® or the string method.!?®
In addition to obtaining the free energetics of supramolecular transitions, our approach also
promises to shed light on the corresponding mechanistic pathways and could also be used
as a starting point for characterizing the kinetics of the transitions.!?>13% Such information
may prove useful for understanding high-dimensional transition pathways or for constructing

deep learning models that facilitate the inverse design of block copolymers. !3!:132
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