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ABSTRACT Accurate benchmarks are key to assessing the accuracy and robustness of 

computational methods, yet most available benchmark sets focus on equilibrium geometries, 

limiting their utility for applications involving non-equilibrium structures such as ab initio 

molecular dynamics and automated reaction-path exploration. To address this gap, we introduce 

Wiggle150, a benchmark comprising 150 highly strained conformations of adenosine, 

benzylpenicillin, and efavirenz. These geometries—generated via metadynamics and scored using 

DLPNO-CCSD(T)/CBS reference energies—exhibit substantially larger deviations in bond 

lengths, angles, dihedrals, and relative energies than other conformer benchmarks. We evaluate a 

diverse array of computational methods, including density-functional theory, composite quantum 

chemical methods, semiempirical models, neural network potentials, and force fields, on 

predicting relative energies for this challenging benchmark set. The results highlight multiple 
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methods along the speed–accuracy Pareto frontier and identify AIMNet2 as particularly robust 

among the NNPs surveyed. We anticipate that Wiggle150 will be used to validate computational 

protocols involving non-equilibrium systems and guide the development of new density 

functionals and neural network potentials. 

Introduction 

The development of standardized, high-quality benchmarks is crucial to the continual advance of 

scientific methods. In atomistic simulation, benchmarking drives the development of new density 

functionals, basis sets, & corrections and allows researchers to assess the accuracy of new 

machine-learning-based approaches. Following the oft-cited adage that “you get what you screen 

for,” 1 ensuring that good benchmarks exist for all desired applications of atomistic simulation is 

key to driving rigorous and systematic progress in computational chemistry. 

Most quantum-chemical benchmarks focus exclusively on equilibrium structures, i.e. structures 

for which the net force on every atom is zero. For instance, the popular GMTKN552 collection of 

main-group thermochemistry benchmarks is entirely composed of ground- and transition-state 

structures, and even Korth and Grimme’s exotic “mindless” benchmark sets only include 

completely optimized structures.3 Exceptions are generally limited to structures with a single non-

equilibrium degree of freedom, like the S66x84,5 benchmark set of non-covalent dimer dissociation 

curves. Since many emerging applications of quantum chemistry involve structures where multiple 

internal coordinates are far from equilibrium, like ab initio molecular dynamics & metadynamics6,7 

and automated reaction-path exploration, the lack of non-equilibrium benchmarks makes it 

challenging to assess the effect of different theoretical methods on these important workflows. 
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Good benchmarks for non-equilibrium structures are also important for assessing the robustness 

of neural network potentials (NNPs). Today, the majority of NNPs are trained on equilibrium or 

near-equilibrium structures,8 which leads them to perform poorly on high-energy structures that 

are underrepresented or omitted in their training data.9,10 Many pretrained models also display 

catastrophic failure to generalize to unseen configurations, causing instability in molecular-

dynamics simulations even when overall force-based errors are low.11 Unfortunately, detecting 

this instability currently requires running long molecular-dynamics simulations and watching for 

unexpected behavior, which is time-consuming and difficult to reproduce. We reasoned that 

intentionally creating a benchmark set of high-energy conformations might enable informed 

comparisons of the robustness of different NNP models and architectures without the stochasticity 

inherent to molecular dynamics-based benchmarks. 

Here, we report the Wiggle150 benchmark set, which comprises geometries and DLPNO-

CCSD(T)/CBS energies for three different molecules with 50 strained conformations each. When 

compared to existing conformational benchmarks, Wiggle150 displays markedly higher variation 

in bond lengths, angles, dihedrals, and relative energies. We use Wiggle150 to study the robustness 

of different computational methods, including density-functional theory, “composite” quantum 

chemical methods, semiempirical methods, and neural network potentials, and make 

recommendations for methods at many different points along the speed–accuracy Pareto frontier. 

Methods 

Benchmark Set. We selected three organic molecules for detailed investigation in this study: 

adenosine, benzylpenicillin, and efavirenz. These structures were chosen because of their 

biological relevance and because they represented a relatively wide variety of functional groups: 
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arenes, amides, alcohols, carboxylic acids, thioethers, aryl halides, trifluoromethyl groups, 

alkynes, basic N-heterocycles, and 3-, 4-, 5- & 6-membered rings. 

 

We generated initial structures for each molecule using Rowan12 and ran 10 ps of metadynamics13 

using GFN2-xTB14 with a 1 fs timestep. (The mass of the hydrogen atoms was kept as 1 amu, and 

the default SHAKE constraints were disabled.) From each output trajectory, 50 dissimilar 

conformations were selected by agglomerative clustering on heavy-atom RMSD. The ground-state 

conformer was identified by running a conformational search in Rowan (“rapid” mode, which 

employs the ETKDG15,16 algorithm) and optimizing the lowest-energy conformer at the B3LYP-

D3BJ/def2-TZVP level of theory.  

To ensure the suitability of the single-reference formalism for each of these geometries, the T1 

diagnostic was computed17 and verified to be ≤ 0.02 in all cases. We computed the energy of each 

strained conformer relative to the minimized ground-state conformer for each level of theory 

studied and compared the mean absolute error (MAE) and root-mean-squared error (RMSE) of 

these predictions for each method. 

Benchmarking Methods. We surveyed a wide variety of computational methods: 2 post-Hartree–

Fock methods, 17 DFT functionals, 4 composite methods, 4 semiempirical methods, 5 NNPs, and 

2 force fields. All calculations were run through ORCA 5.0.318 except for: r2SCAN-3c and 

ωB97X-3c which were run in ORCA 6.0.0; the NNPs, which were run through the Atomic 

Simulation Environment;19 and the Sage20 forcefield, which was run through OpenMM.21 Unless 

otherwise specified, DFT calculations were run using the def2-QZVP22 basis set and 

wavefunction-based methods were run using the cc-pVQZ23 basis set. Double hybrid methods 
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were run with automatically generated auxiliary basis sets using the AutoAux keyword.24  

DLPNO25 calculations were run with corresponding cc-pVnZ/C auxiliary basis sets and the 

TightPNO setting applied. CBS extrapolation was performed using the two-point CBS 

extrapolation method outlined in the ORCA 6 manual (extrapolate_ep1_mdci) using energies from 

cc-pVTZ and cc-pVQZ calculations.26,27,28,29 

Timing. First, a few general remarks about timing. Unlike energy-based comparisons, timing 

comparisons are inherently hardware- and implementation-dependent, and thus are virtually 

impossible to reproduce with perfect accuracy. As such, the timing benchmarks reported here 

should be taken as general estimates of the relative speed of different methods, and not as concrete 

predictions of the amount of time that these calculations will take. Despite this uncertainty, 

understanding the relative speed of different methods is crucial for designing efficient and scalable 

computational workflows, and so we here report timing results for all methods under study. 

All ORCA calculations were run on 4 CPU cores at the Institute for Cyber-Enabled Research’s 

high-performance-computing cluster at Michigan State University. For DFT and DLPNO-MP2 

calculations, 8 GB memory were employed; for DLPNO-CCSD(T) calculations, 96–192 GB of 

memory were employed. Owing to the complexities of scheduling and compute availability, 

several different types of nodes were employed: the vast majority of calculations were run with 

Intel Xeon E5-2680 CPUs (2733 calculations), but a small number of calculations were run with 

Intel Xeon E7-8867 CPUs (40 calculations), Intel Xeon Gold 6148 CPUs (8 calculations), or AMD 

EPYC 7763 CPUs (3 calculations). This is anticipated to have a minimal impact on the reported 

results, since each observed timing datapoint is the average of 153 individual calculations. For all 

calculations run through ORCA, runtimes correspond to the total elapsed times reported by ORCA. 
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To test whether running some newer functionals in ORCA (6.0.0) would lead to substantially faster 

results and prevent fair comparisons of timing, we ran all r2SCAN-3c calculations in both ORCA 

6.0.0 and ORCA 5.0.3. We found the calculations run in ORCA 6.0.0 were indeed slightly faster, 

but that the effect was inconsistent and small relative to the timing differences discussed in this 

study: calculations run in ORCA 6.0.0 completed in 91±40% of the time that analogous 

calculations run in ORCA 5.0.3 took to complete. Given that the methods discussed in this study 

span approximately 17 orders of magnitude in speed, we do not anticipate that the difference 

between ORCA 5.0.3 and ORCA 6.0.0 will impact our conclusions. 

NNP calculations and the Sage forcefield were run on a 2023 Macbook Pro with 11 Apple M3 Pro 

CPU cores. For NNPs, runtimes were quantified by recording the time to call 

get_potential_energy() in the Atomic Simulation Environment from an already initialized 

ase.Calculator object. For Sage, runtime was quantified by recording the time to (1) generate an 

openmm.State object from an already initialized openmm.Context object and (2) call 

getPotentialEnergy() from this object. We recognize that this benchmark likely underestimates the 

speed of Sage in the context of molecular dynamics; however, since Sage is already the fastest 

method studied here, we did not investigate further speedups. We did not investigate GPU- or 

TPU-based hardware acceleration in this paper, but further speedups are certainly possible for 

Sage, all ML-based methods, xTB,30 and many DFT methods.31,32 

Results 

Geometries and Energies in the Wiggle150 Set. We first investigated the geometries produced by 

our metadynamics-based workflow. We compared the variation in internal coordinates in our 

conformer set (“Wiggle150”) to that in the large Folmsbee–Hutchison conformer set 
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(“Folmsbee”), in each case comparing the internal coordinate in a given molecule to its 

corresponding value in the lowest-energy conformer (Figure 1B). While the vast majority of bonds, 

angles, and dihedrals in the Folmsbee set were almost identical to those in the lowest-energy 

conformer, the Wiggle150 set showed huge variance: bond lengths varied by up to 0.1 Å from 

equilibrium, angles varied up to 20º from equilibrium, and many dihedrals covered the entire range 

of possible values. This structural diversity leads to dramatically more strained structures: while 

94% of the Folmsbee set is within 5 kcal/mol of the ground state, the average Wiggle150 

conformer is 103 kcal/mol above the ground state. Overall, the metadynamics-based approach used 

here led to much greater structural diversity than is typically observed in conformer datasets, 

making this a particularly challenging benchmark. 

 

Figure 1. (A) The molecules contained in Wiggle150 and a visualization of the conformers 

studied. The ground-state conformer is opaque, while the 50 high-energy conformers are 

translucent. (B) Histograms comparing the bond lengths, angles, dihedral angles, and energies of 

Wiggle150 as compared to those in the Folmsbee set. 
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Evaluating Different Methods on Wiggle150. Despite the difficulty of this benchmark set, many 

high-quality computational methods performed well (Figure 2, Table 1). Numerous methods 

achieved a MAE under 1 kcal/mol (“chemical accuracy”), including DLPNO-MP2, DSD-PBEP86, 

and several range-separated-hybrid density functionals. 

Excluding double-hybrid functionals, the best-performing functionals all come from Mardirossian 

and Head-Gordon’s work on combinatorial optimization of density functionals. The most accurate 

functional is the range-separated-hybrid meta-GGA functional ωB97M-V, which uses the 

Vydrov–van Voorhis non-local dispersion correction.33,34 Matching results obtained by Martin and 

co-workers,35 replacing the VV10 correction with the simpler D3BJ correction leads to a slight 

decrease in accuracy, although the resulting functional still has the third-lowest MAE of all non-

double-hybrid functionals studied. Older global hybrid functionals like wB97X-D3, M06-2X, 

PBE0, and B3LYP all perform somewhat worse, with PBE0 giving the most consistent 

performance. 

The results of this study support the commonly held idea that ascending the “Jacob’s Ladder” of 

increasing DFT complexity will lead to improved performance: in general, hybrid DFT functionals 

performed better than non-hybrid/“pure” DFT functionals, and meta-GGA functionals performed 

better than GGA functionals among both pure and hybrid functionals. Nevertheless, the best-

performing pure meta-GGA functionals—r2SCAN, M06-L, and B97M-D4—all performed about 

as well as common hybrid functionals like M06-2X, B3LYP, and PBE0, demonstrating that pure 

functionals can give good performance where hybrid DFT is impossible or impractically slow. 
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Figure 2. A comparison of the RMSE (top) and MAE (bottom) for all computational methods 

across all 150 conformers.  Methods color coded based on position along “Jacob’s Ladder.” 

Methods using smaller basis sets fared substantially worse on this benchmark set. While full 

evaluation of basis-set effects on Wiggle150 is outside the scope of this work, we scored two 

popular double-ζ DFT methods, B3LYP-D3BJ/6-31G(d) and wB97X/6-31G(d), and found that 

these methods gave markedly worse performance than their quadrupole-ζ congeners. Similarly, 

the r2SCAN-3c and ωB97X-3c composite methods were markedly worse than their non-composite 

counterparts. This contrasts with results on GMTKN55, where r2SCAN-3c outperforms r2SCAN-

D4/def2-QZVP on relative conformer energies.36 We attribute this to the high variation in bond 

length, which likely introduces a small amount of bond breaking into the benchmark; double-ζ 
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benchmark sets are known to be inaccurate for thermochemistry,37 so their poor performance here 

is unsurprising.  

In contrast to the overall decent performance of DFT and wavefunction methods, semiempirical 

methods performed poorly on Wiggle150. We studied 4 semiempirical methods: Grimme and 

coworkers’ semiempirical methods, GFN1-xTB and GFN2-xTB, and the older methods AM1 and 

PM6. When ranked in terms of MAE, newer methods outcompete older methods: GFN2-xTB > 

GFN1 > PM6 > AM1. However, when ranked in terms of RMSE, the order is exactly reversed—

AM1 performs best, while GFN2-xTB performs worst. These data suggest that the additional 

complexity of newer semiempirical methods can lead to unreliable performance on strained 

structures very different from the structures these methods were optimized on. 

The 5 NNPs surveyed gave divergent performances. The models trained on materials datasets run 

with plane-wave PBE calculations, MACE-MP-038 and ORB-D3-V2,39 performed poorly. This is 

unsurprising: their training data contains few complex organic molecules like the ones shown here 

and few far-from-equilibrium structures, vividly illustrating how current NNPs struggle to 

extrapolate beyond their training data with good quantitative accuracy. More surprising is the poor 

performance of SO3LR,40 which was trained on 3.5M structures computed at the PBE0+MBD 

level of theory with numerical atom-centered orbitals in FHI-aims. SO3LR (RMSE: 10.5 kcal/mol) 

dramatically underperforms the reference PBE0-D3BJ/def2-QZVP results (RMSE: 1.50 

kcal/mol), suggesting that either more data or a different architecture is needed to accurately 

describe these strained molecules.  

The remaining two NNPs, ANI-2x41 and AIMNet2,42 gave very reasonable results: in particular, 

AIMNet2 gives a comparable RMSE to many DFT methods (e.g. wB97X-V, B97M-D4, B97-3c), 
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making it a compelling alternative to conventional quantum-chemical calculations. The accuracy 

of AIMNet2 is still noticeably lower than the accuracy of the underlying wB97M-D3BJ training 

data on this benchmark, implying that further gains in the accuracy of this NNP are possible 

without needing to further increase the level of theory employed for training. The large size of 

AIMNet2 training dataset (c. 20M) may play a role in the model’s observed robustness. 

The two forcefields studied here both gave dismal results. The failure of Sage, a conventional 

forcefield similar to the Amber forcefields, is unsurprising: 2017 study by Kanal and co-workers43 

argued that commonly used forcefields “should not be trusted” for conformer ranking, and that 

their predictions are “wholly unreliable for conformer screening.” In contrast, the poor 

performance of GFN-FF is more unexpected: in their initial publication describing GFN-FF,44 

Spicher and Grimme report that GFN-FF is “on par with some dispersion-corrected DFT methods” 

at describing relative conformer energies. Our results show that this is not true for the high-energy 

conformers studied here. 

Table 1: Overview of methods, errors, and average compute time over the Wiggle150 set. 

Method 
 

RMSE  
(kcal/mol) 

MAE  
(kcal/mol) 

Avg. Time 
(s) 

DLPNO-CCSD(T) 0.47 0.32 212000 
DLPNO-MP2 1.12 0.86 15400 
DSD-PBEP86 0.89 0.59 2580 
B2PLYP 1.42 1.09 2510 
ωB97M-V 1.17 0.77 2008 
ωB97X-V 2.69 0.88 1930 
ωB97M-D3BJ 1.58 0.94 1970 
ωB97X/6-31G(d) 5.49 1.25 180 
ωB97X-D3 2.98 1.27 1870 
M06-2X 2.40 1.16 1460 
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PBE0-D3BJ 1.50 1.18 1350 
B3LYP-D3BJ 1.83 1.29 1380 
M06 2.22 1.52 1450 
B3LYP-
D3BJ/631G(d) 3.98 1.85 105 
r2SCAN-D4 1.49 1.04 345 
M06-L 1.71 1.10 350 
B97M-D4 1.82 1.35 353 
PBE-D3BJ 5.63 2.06 245 
BP86-D3BJ 5.39 2.15 256 
BLYP-D3BJ 4.96 2.89 249 
B97-D 4.22 2.55 263 
ωB97x-3c 4.59 1.50 377 
r2SCAN-3c 2.17 1.61 57.6 
B97-3c 2.94 1.77 43.2 
HF-3c 26.1 5.15 7.27 
GFN2-xTB 15.1 2.87 3.19 
GFN1-xTB 14.9 2.90 2.63 
PM3 12.1 8.13 1.23 
AM1 14.1 10.6 1.28 
AIMNet2 3.05 2.31 0.013 
ANI-2X 5.40 3.05 0.008 
SO3LR 10.5 3.81 2.26 
Orb-V2-D3 11.0 6.17 0.0811 
MACE-MP-0 28.2 5.83 0.124 
Sage 2.2.1 34.2 15.2 0.003 
GFN-FF 57.5 41.4 2.63 
 

The Pareto Frontier of Computational Methods. Many of the applications for which good 

performance on non-equilibrium structures is required, like automated reaction-path exploration 

and various molecular dynamics–based workflows, also require large numbers of calculations to 

be run. We compared the speed and accuracy of different methods, with the goal of identifying 
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points along the Pareto frontier suitable for various use cases. The resulting plots of error vs 

runtime are shown below (Figure 3).  

Figure 3. A comparison of the RMSE (left) and MAE (right) versus the log-scaled time in seconds 

for all computational methods across the Wiggle150 set. 

In cases where maximal accuracy is needed, we recommend DSD-PBEP86 or wB97M-V. These 

methods outperform other hybrid DFT methods with a minimal increase in computational cost: in 

modern quantum chemistry software, switching to other hybrid functionals like M06-2X or 

B3LYP offers only minimal savings in time and noticeable decreases in accuracy. If better 

performance is desired, pure functionals can be used—r2SCAN and M06-L are approximately 5 

times faster than top range-separated-hybrid functionals, with slightly increased errors. (The 

systems investigated in this study are relatively small, and the speedup possible with pure 

functionals is likely to increase for larger systems). 

Among low-cost DFT methods, r2SCAN-3c stands out (as assessed by RMSE). The most 

commonly used strategy for reducing the cost of DFT simulations is to employ a double-ζ basis 
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set, often 6-31G(d). Relative to r2SCAN-3c, both B3LYP-D3BJ/6-31G(d) and ωB97X/6-31G(d) 

give worse accuracy and worse timing, and should be avoided for production use. We note that 

this study has not comprehensively surveyed many basis-set effects; we leave this substantial task 

to future work, with the observation that many commonly used basis sets may not be Pareto-

efficient.45,46 

If faster methods than r2SCAN-3c are desired, AIMNet2 is the best choice by far. AIMNet2 offers 

comparable accuracy to B97-3c while running approximately eight orders of magnitude faster—

faster than every semiempirical method, and even faster than GFN-FF. This is dramatically 

different from the results reported by Folmsbee and Hutchison in their 202147 study: in that study, 

the ANI-2x ML model was similar to GFN1-xTB and GFN2-xTB both in terms of cost and 

accuracy. In our hands, both ANI-2x and AIMNet2 are significantly faster than xTB-based 

methods, and AIMNet2 is substantially more accurate, particularly in terms of RMSE. (We note 

that the present study did not employ hardware acceleration, and that the ML methods used here 

are likely to be even faster when GPUs are used). 

Conclusions 

In this study, we generated a benchmark set of strained non-equilibrium conformers of organic 

small molecules and assessed the ability of various computational methods to predict the relative 

energies of these conformers. At a high level, the conclusions are straightforward: very good 

performance is possible on this test set, but high-quality DFT functionals and large basis sets must 

be employed. Reducing the complexity of the functional or the size of the basis set leads to 

increased errors, and different balances between speed and accuracy can be achieved with various 

combinations of method, basis set, and corrections. While some variant of this conclusion is to be 
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expected from any DFT benchmarking paper, we feel that the small size and considerable difficulty 

of Wiggle150 makes it a valuable addition to the computational chemistry canon, and we anticipate 

that this benchmark will prove useful in guiding the creation of future generations of density 

functionals and NNPs.  

Our results also show the impact of recent advances in the development of density functionals. 

Many of the Pareto-optimal DFT methods are quite new: ωB97M-V48 was released in 2016, 

B97M-V49 & r2SCAN50 in 2020, and r2SCAN-3c36 in 2021. As a result, many commonly used 

software packages do not contain these methods. While a broader discussion of the dynamics of 

the scientific software ecosystem is outside the scope of this article, our results highlight the reality 

that many research labs employ suboptimal methods, reducing the accuracy of the results they 

generate and the speed of their calculations.51  

Finally, this benchmarking illustrates the remarkable progress made by NNPs over the past several 

years. The strained molecules studied in Wiggle150 might reasonably have been expected to serve 

as a “poison” set52 for machine-learning-based methods, given how few NNPs include structures 

like this in their training set—instead, NNPs like AIMNet2 and ANI-2x performed very well, 

approaching in some cases even exceeding the performance of dispersion-corrected DFT methods 

with quadruple-ζ basis sets. Given that improvement in NNPs continues to proceed at a rapid pace, 

and that considerable improvement is possible purely from scaling existing architectures to larger 

datasets,53 the present authors find it colorable that most quantum mechanical workflows will one 

day shift to be powered by NNPs. 
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