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Abstract

Machine learning (ML) has become a powerful tool in polymer science, with its

success strongly relying on effective structural representations of polymers. While the

Simplified Molecular Input Line Entry System (SMILES) is widely used due to its

simplicity, it was originally designed for small molecules and struggles to capture the

stochastic nature of polymers. Recently, BigSMILES has been introduced as a more

compact and versatile representation of polymer structures. However, the relative per-

formance of SMILES and BigSMILES in polymer ML tasks remains unexplored. In

this study, we systematically evaluate SMILES and BigSMILES across 12 polymer-

related tasks, including property prediction and inverse design, utilizing convolutional

neural networks (CNNs) and large language models (LLMs). Our results show that

BigSMILES enables faster training times due to its reduced token complexity, and
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achieves comparable or superior performance to SMILES in certain predictive tasks.

Moreover, BigSMILES more accurately encodes chemical information and monomer

connectivity for copolymers within LLM frameworks. This work serves as a starting

point for a comprehensive evaluation of SMILES and BigSMILES in polymer ML appli-

cations, highlighting the potential of BigSMILES to streamline and accelerate polymer

informatics workflows, particularly for complex systems like copolymers and polymer

composites. Looking ahead, advancing polymer representations to integrate polymer

chain structure, phase morphology, and processing parameters will be crucial for cap-

turing the multifaceted relationships between polymer structure and properties, driving

more accurate and efficient modeling.

Introduction

The sustainable development of polymers has long been a key objective in polymer science.

Numerous polymers have been developed across various fields, including aerospace,1 envi-

ronmental science,2 energy device,3 healthcare,4,5 and others,6,7 playing a central role in

advancing modern technologies. However, achieving sustainability requires not only sus-

tainable materials but also efficient and environmentally friendly development processes.

Traditional trial-and-error approaches, often involving complex orthogonal experiments, are

time-consuming and resource-intensive, highlighting the urgent need for streamlined polymer

design and development workflows.

Machine learning (ML) methods have proven their efficiency and effectiveness in accel-

erating molecular and materials discovery.8 A key determinant of ML is believed as how

effectively the structural information of polymers is represented.9–15 Early ML applications

in polymer science primarily relies on numerical descriptors derived from cheminformat-

ics tools such as RDKit16 and Mordred.17 While these numerical descriptors are effective

in conventional ML models like Random Forest and Gaussian Process,18,19 they are often

atom/bond-wise, and struggle to capture both short-range and long-range interactions within
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polymers, limiting their performance in complex tasks. Graph neural networks (GNNs) have

since gained increasing attention, offering the ability to capture molecular structural infor-

mation at the atomic, bond, and functional group levels.20–24 As the volume of molecular and

polymer data continues to grow, GNNs and descriptor-based methods often face scalability

challenges, since representing a single molecule often requires hundreds or even thousands of

descriptors.25–27

String-based molecular representations, such as the Simplified Molecular Input Line Entry

System (SMILES), provide an alternative approach to addressing these challenges. SMILES

was introduced in 1988 by Weininger28 and has become a cornerstone of molecular informatics

due to its simplicity and compactness. Other string-based notations include the SYBYL Line

Notation (SLN),29 the Modular Chemical Descriptor Language (MCDL),30 and the Interna-

tional Chemical Identifier (InChI).31 Benefiting from recent advances in natural language pro-

cessing (NLP) and Transformer-based models,32–35 string-based (especially SMILES-based)

ML workflows have achieved remarkable success in extracting high-dimensional chemical

information. SMILES was originally designed for small molecules and faces inherent limita-

tions when applied to polymers, particularly in representing stochasticity and polymerization

sites.

To address these limitations, various extensions of SMILES have been developed for

polymers. For instance, Polymer-SMILES (P-SMILES)36 incorporates special symbols "*"

to denote polymerization points, enhancing its utility in polymer-specific tasks, but still fail-

ing to represent more complex polymer structures and the inherent randomness of polymers.

Recently, BigSMILES37 was introduced as a more comprehensive representation capable

of encoding a wide range of polymer structures, including random copolymers and block

copolymers. BigSMILES has since gained significant attention within the polymer commu-

nity38–41 and is now becoming as the default representation in polymer databases such as

the Community Resource for Innovation in Polymer Technology (CRIPT).42 Despite its the-

oretical advantages, the practical performance of BigSMILES in ML tasks remains largely
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unexplored, leaving a critical gap in our understanding of its application relative to SMILES.

In this work, we present a systematic comparison of SMILES (or P-SMILES) and BigSMILES

in polymer ML workflows, evaluating their performance across 12 diverse tasks, focusing on

polymer property prediction and molecular generation tasks. Using convolutional neural net-

works (CNNs), deep neural networks (DNNs), and large language models (LLMs), we assess

both representations in terms of prediction accuracy, training efficiency, and their ability

to encode polymer inherent structures. Our results illustrate that while SMILES achieves

competitive performance in certain tasks, BigSMILES enables shorter training times due to

more concise encoding of chemical information, particularly for copolymer systems.

By bridging the gap in our understanding of SMILES and BigSMILES in polymer ML

applications, this work provides a foundation for estimating polymer representations in

data-driven workflows. As polymer datasets continue to expand, the efficiency gained by

BigSMILES will have more potential to significantly advance sustainable polymer design

and modeling practices. Future efforts should focus on developing next-generation poly-

mer representations that integrate chain structures, aggregation behaviors, and processing

conditions to further enhance the predictive power of ML models.

Results and discussion

Challenges of SMILES in representing complex polymers

Compared to descriptor-based and graph-based polymer representations, (P-)SMILES pro-

vides a notably concise way of encoding polymer chemistry, largely relying on the identifica-

tion of a minimal repeating unit. However, this advantage diminishes when the repeating unit

cannot be clearly determined, a limitation often encountered in complex polymer systems.

Polymers are typically classified as homopolymers or copolymers based on their monomer

combinations and can be further categorized into various structural forms, such as linear,

comb, branched, dendrimeric, star-shaped, and cyclic architectures.43 These diverse struc-
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tural configurations introduce inherent randomness in many polymers, posing significant

challenges for (P-)SMILES. Unlike small molecules with well-defined chemical structures,

polymers often exhibit stochastic variations in their connectivity or composition, making it

difficult for SMILES to concisely represent these structural complexities.

For effective polymer representation, an ideal method should encode the polymer chain

using only the essential information about the repeating units and their connection pat-

terns. However, for polymers without a well-defined minimal repeating unit, such as random

copolymers, (P-)SMILES representations become excessively long and complex, as they must

fully enumerate all repeating units and their connections to preserve structural accuracy. In

constrast, BigSMILES addresses this challenge by introducing specific operators (e.g., “[O]”)

to indicate randomness at the end of repeating unit notations. This feature greatly sim-

plifies the representation of complex systems like block copolymers, enabling concise yet

informative descriptions.

To evaluate the ability of (P-)SMILES and BigSMILES to represent diverse polymer

structures concisely, we compared the corresponding representation of six common poly-

mer classes: linear, comb, branched, dendrimeric, star-shaped, and cyclic structures. Rep-

resentation conciseness was categorized into three grades: methods capable of achieving

concise representations for all polymer types were assigned a grade of S+; those that suc-

ceeded partially, such as adequately representing homopolymers but struggling with complex

copolymers, were rated as S; and methods unable to provide concise representations of both

homopolymers and copolymers were rated as A. The results of this assessment are presented

in Figure 1(a).
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Polymer Type Example

Notation
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and isotactic 

polymers.

[*]CC[*] {CC}

Random 

Copolymer
N/A {CC, CC[O]}

Polymer with end-

group
N/A

O{[>]<CCP>[<]}C(=

O)C(=C)C

linear comb branch dendrimer star cyclic

A
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C
ap
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y

Polymer Class

 (P-)SMILES

 BigSMILES

(a)

(b)

Figure 1: (a) Representation grades of (P-)SMILES/BigSMILES on six classes43 of polymers.
For simplicity, only binary copolymerization is illustrated (red and blue beads, respectively).
(b) Examples of (P-)SMILES/BigSMILES on three typical polymers.

Several examples illustrating the differences in representation between (P-)SMILES and

BigSMILES are shown in Figure 1(b). For instance, while (P-)SMILES can provide clear

repersentations for linear homopolymers, the resulting string lengths are still longer than

those generated by BigSMILES, as seen in the first row of Figure 1(b). For polymers con-

taining multiple repeating units or featuring complex topologies, such as block copolymers

or branched polymers, SMILES struggles to concisely encode structure details. In contrast,

BigSMILES extends the functionality of string-based representations by introducing stochas-

tic operators, allowing for a simplified yet coarse-grained encoding of such structures. This

makes BigSMILES a more versatile and efficient tool for representing complex polymers, as

demonstrated by Olsen et al.37
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Property prediction of homopolymers using ML

To evaluate the applicability of (P-)SMILES and BigSMILES in practical polymer infor-

matics workflows, we benchmarked their performance in property prediction tasks specific

to homopolymers. ML models, including both conventional algorithms and deep learning

architectures, are typically optimized for numerical data. For string-based data such as

SMILES and BigSMILES, two primary approaches are used for encoding polymer chemical

information directly from these strings (as illustrated in Figure 2).

SMILES or BigSMILES

Input

1 0 … 0 0 0

0 1 … 0 0 0

0 0 … 0 0 0

0 0 1 0 0 0
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M
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 l
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0 0 … 0 0 0

0 0 … 0 0 0

0 0 … 1 0 0

0 0 … 0 1 0

0 0 … 0 0 1

Convolution

Polymer 

Discovery

T
o
k
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e

Transformer Block

Multi-Head Attention

Add & Norm, Feed Forward

(a)

(b)

Figure 2: Two approaches that string-based polymer representation can be used as ML
inputs. (a) Textual polymer representation is first transformed to images and then learned
by CNNs. (b) Textual polymer representation is directly served as input of ML models, such
as the LLMs.

The first approach converts the string-based data into binary image representations, en-

abling CNNs to extract chemical features.44,45 The second approach takes inspiration from

NLP and employs sequence-learning models, such as recurrent neural networks (RNNs),

long short-term memory networks (LSTMs),46,47 and advanced architectures like Transform-

ers and LLMs.32,33,35 Given that SMILES is predominantly utilized for homopolymer infor-

matics and BigSMILES demonstrates substantial advantages in describing complex polymer

architectures,37,39,41 our evaluation focuses on comparing their effectiveness specifically in

homopolymer property prediction tasks to ensure a fair and consistent analysis.
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Performance in CNN-Based Models

We first used binary image representations derived from SMILES and BigSMILES as inputs

to a CNN model to predict the glass transition temperature (Tg) of various homopolymers.

The dataset and model parameters were adopted from prior study.46 To minimize variability,

each configuration was trained for 100 epochs and repeated five times. Results were assessed

using the relative absolute error (RAE), defined as the absolute percentage error of the

predicted value relative to the true value.

Under identical training configurations, the SMILES-CNN achieved a test-set RAE of

16.46±0.12%, while the BigSMILES-CNN showed a comparable performance with an RAE

of 16.57±0.28%. Both models achieved prediction errors within the experimentally accepted

range for Tg, regarding experimental measurement uncertainties.22 We further illustrate

some random examples in Figure 3(c), highlighting the predictive accuracy of both methods,

with predictions closer to true values emphasized in bold. These results suggest that both

SMILES and BigSMILES have their own merits for homopolymer property prediction when

using CNN-based models.
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SMILES-CNN BigSMILES-CNN

Polymer Referred Tg/K
Predicted Tg/K

SMILES-CNN BigSMILES-CNN

277 345.38 278.03

233 309.34 274.46

339 315.38 278.03

(b)(a)

(c)

Figure 3: Performance comparison of SMILES (a) and BigSMILES (b) in the CNNs. (c)
shows the prediction results for three example polymers, illustrating that BigSMILES-CNN
and SMILES-CNN exhibit comparable inference performance on the test set. Detailed pre-
diction lists are provided in the Section 1 of the Supporting Information (S1).

Performance in LLM-Based Models

We then explore the application of these two text-based polymer representations in LLMs,

which can directly process text-based inputs without additional preprocessing. Using the

end-to-end polymer LLM, PolyNC, we fine-tuned the model on nine polymer property predic-

tion tasks, including atomization energy (AE), bandgap (BG) of polymer chains and crystals,

charge injection barrier (CIB), crystallization tendency (CT), electron affinity (EA), ioniza-

tion energy (IE), CO2 permeability in membranes (log-scale), and Tg of polyimides. The

input data were encoded as either SMILES or BigSMILES strings, with the corresponding

property values as outputs.
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Figure 4: Data distribution. These datasets exhibit a fairly pronounced normal distribution.

Figure 4 shows the distribution of the datasets, which exhibit normal-like distributions,

indicating balanced data suitable for ML modeling. These datasets cover very wide prop-

erty ranges, such as crystallization tendencies spanning 0–100 and Tg values ranging from

150–450°C, typical for commonly studied polymers. The performance of fine-tuned models,

evaluated using the mean absolute error (MAE), is summarized in Figure 5(a). For spe-

cific tasks, such as Tg prediction and CO2 permeability, BigSMILES-based models slightly

underperformed compared to SMILES-based models. This discrepancy may stem from the

pretraining stage of PolyNC, where SMILES served as the default polymer representation.

However, in other tasks, BigSMILES-based models demonstrated comparable performance

to SMILES-based ones, suggesting its broad utility in homopolymer informatics.
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Efficiency and Tokenization Advantages of BigSMILES

We find an interesting observation during model fine-tuning, i.e., BigSMILES consistently

required less computational time compared to SMILES for the same training configurations,

shown in Figure 5(b). This efficiency advantage stems from the ability of BigSMILES to

encode polymer structures using fewer tokens (highlighted in red in the figure) compared

to most (P-)SMILES,36,48 resulting in shorter input sequences. For instance, as illustrated

in Figure 6, a polymer encoded as SMILES required 27 tokens, whereas the equivalent

BigSMILES representation used only 24 tokens. Shorter token sequences reduce the size

of self-attention and cross-attention matrices in Transformer-based architectures, thereby

lowering computational costs and enabling faster model iterations.

Tg
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Figure 5: Performance of the two representation methods in fine-tuning PolyNC: (a) shows
the model’s MAE, and (b) displays the time taken for model fine-tuning (in seconds).
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Item SMILES BigSMILES

Representation [*]Oc1ccc(Cc2ccc([*])cc2)cc1 {<Oc1ccc(cc1)Cc2ccc(cc2)>}

Tokens

'▁[', '*', ']', 'O', 'c', '1', 'c',

'c', 'c', '(', 'C', 'c', '2', 'c', 'c',

'c', '(', '[', '*', ']', ')', 'c', 'c',

'2)', 'c', 'c', '1'

'▁', '{<', 'O', 'c', '1', 'c', 'c',

'c', '(', 'c', 'c', '1)', 'C', 'c', '2',

'c', 'c', 'c', '(', 'c', 'c', '2)', '>',

'}'

Length of Tokens 27 24

Figure 6: Encoding details of SMILES and BigSMILES using PolyNC’s encoder. BigSMILES
represents polymer structures with fewer tokens.

This tokenization efficiency is particularly important for large-scale datasets, where re-

duced sequence lengths translate to faster training times, lower energy consumption, and

improved scalability. BigSMILES demonstrated a capability for more memory-efficient stor-

age of polymer data compared to SMILES, which is increasingly important as polymer

datasets continue to grow.42 Note that SMILES and BigSMILES may achieve comparable

levels of compactness when using the most concise representations of polymers. For instance,

polyethylene can be represented as *CC* and {CC} for SMILES and BigSMILES respec-

tively. However, BigSMILES excels in representing more complex polymer structures with

inherent randomness.

Property Prediction of Copolymers Using ML

Now we focus on predicting the properties of copolymers, using polyhydroxyalkanoates glass

transition data from the literature49 as a case study. Following appropriate preprocessing

(outlined in the Methods section), we generated SMILES-based and BigSMILES-based rep-

resentations of the polymers for training LLM models. The prediction results on the same
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test set are shown in Figure 7(a). Both representations produced comparable accuracy,

though a few structures exhibited higher prediction errors, resulting in increased statistical

uncertainty (illustrated by the light blue shaded area in Figure 7(a)). These outliers suggest

that the performance of both models may be improved with the inclusion of more training

data.

220 240 260 280 300
220

240

260

280

300
 SMILES_pred

 BigSMILES_pred

P
re

d
ic

ti
o

n
/K

Ground Truth/K

MAESMILES: 6.62

RMSESMILES: 9.30

MAEBigSMILES: 7.87

RMSEBigSMILES: 11.95

C[C@@H](O[*])CC([*])=O|CC[C

@@H](O[*])CC([*])=O|70.0

{$C[C@@H](O)CC=O$,$CC[

C@@H](O)CC=O$}|70.0

SMILES:

BigSMILES:

(a) (b)

(c) (d)

Monomer A Monomer B

Figure 7: (a) Prediction performance on this copolymer task utilized SMILES and
BigSMILES, respectively. (b) An example copolymer and their SMILES-based and
BigSMILES-based input to each LLM. (c) Attention score of attention head 5 among tokens
in SMILES-based LLM. (d) Attention score of attention head 5 among tokens in BigSMILES-
based LLM.

To further assess whether the models captured relevant chemical trends from the two

representations, we analyzed their ability to interpret polymer connectivity. In SMILES, the

"*" character signifies connectivity between monomer or repeat units, while in BigSMILES,

this connectivity is represented by a comma (","). As a comparative case, we selected

a copolymer system for which both models achieved highly accurate predictions (with an

error of only 0.1 K). The chemical composition of this copolymer system and its respective
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representations are shown in Figure 7(b).

To interpret how the models processed these representations, we conducted attention

analysis, in which the relative importance of each token during inference can be revealed,

with higher attention scores indicating greater significance. We analyzed the fifth attention

head for both models, as this head mainly focuses on inter-token interactions rather than

self-attention (detailed in S2). For clarity, we visualized local attention patterns for the 15

tokens surrounding the connectivity token ("*" or ","). We find notable differences in how

each representation influenced attention. In SMILES, the "*" character localized attention

around itself, as shown in Figure 7(c). However, the comma (",") in BigSMILES facilitated

attention across a broader range of tokens (Figure 7(d)). This is arising from the chemical

specificity of the comma in BigSMILES. Unlike "*", which is often interpreted as a special

atom in SMILES, the comma "," in BigSMILES is often recognized as a token with unique

chemical significance, enabling the model to better generalize its meaning (see S2 for detailed

attention maps).

Performance on Polymer Generation Tasks

We also explored the performance of BigSMILES in polymer generation tasks, training a

BigSMILES-based model under the same framework as our previously developed SMILES-

based generation model PolyTAO27 (This new model is referred as BigSMILES-based Poly-

TAO). The training parameters were also kept identical, with the only difference being

the substitution of SMILES with BigSMILES as input. As illustrated in Figure 8, the

BigSMILES-based PolyTAO exhibited faster convergence during training and achieved lower

loss values on a test set of approximately 20K samples, indicating its potential superiority

in polymer generation tasks.

14

https://doi.org/10.26434/chemrxiv-2024-bxxhh-v5 ORCID: https://orcid.org/0000-0003-4083-5507 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-bxxhh-v5
https://orcid.org/0000-0003-4083-5507
https://creativecommons.org/licenses/by-nc/4.0/


8.0×103

8.5×103

9.0×103

T
Im

e/
m

in

L
o
ss

SMILES BigSMILES
0.04

0.05

0.06

0.07

Figure 8: Model performance of BigSMILES-based PolyTAO comparing to SMILES-based
PolyTAO.

Similar to the SMILES-based PolyTAO, the input features for BigSMILES-based Poly-

TAO consisted of 15 predefined physicochemical properties extracted from the RDKit pack-

age. These include ’MolWt’, ’HeavyAtomCount’, ’NHOHCount’, ’NOCount’, ’NumAliphat-

icCarbocycles’, ’NumAliphaticHeterocycles’, ’NumAliphaticRings’, ’NumAromaticCarbocy-

cles’, ’NumAromaticHeterocycles’, ’NumAromaticRings’, ’NumHAcceptors’, ’NumHDonors’,

’NumHeteroatoms’, ’NumRotatableBonds’, and ’RingCount’ (see S3 for details). By using

these predefined features as input, the model generates polymer structures that align with

the specified properties. Figure 9(a) presents a repeating unit from the test set that satis-

fies the input properties. Figures 9(b) to 9(f) display the repeating units of five polymers

generated by the model in top-5 mode. Each subplot shows the values of the 15 predefined

properties for the corresponding molecule, with ’MolWt’ in text form for clarity. The results

reveal a strong alignment between the repeating unit of the generated polymer and the input

property specifications (Figure 9(a)). In addition, the model also explores broader chemical

space, generating structures (the structures in Figures 9(b) - (f)) that differ significantly

from the one in the test set. These results also demonstrate the impressive capabilities of

BigSMILES-based PolyTAO in polymer generation tasks.
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Figure 9: Generation performance of BigSMILES-based PolyTAO. In each subplot, the
bars on the horizontal axis represent ’HeavyAtomCount’, ’NHOHCount’, ’NOCount’,
’NumAliphaticCarbocycles’, ’NumAliphaticHeterocycles’, ’NumAliphaticRings’, ’NumAro-
maticCarbocycles’, ’NumAromaticHeterocycles’, ’NumAromaticRings’, ’NumHAcceptors’,
’NumHDonors’, ’NumHeteroatoms’, ’NumRotatableBonds’, and ’RingCount’ from the RD-
Kit package, while the vertical axis represents their respective values. The polymer repeating
unit in subplot (a) is sourced from the test set. The polymer repeating units in (b) to (f)
are generated novel molecules based on the properties of the molecule in (a).

Discussion and Conclusion

In this study, we systematically evaluated the performance of SMILES and BigSMILES, two

widely used polymer representations, across various ML tasks for both homopolymers and

copolymers. The results demonstrate that BigSMILES achieves comparable performance to

SMILES in these tasks, highlighting its potential as an alternative representation for polymer

machine learning workflows. Note that our present work only utilized the stable version of

BigSMILES. Recently developed updated versions like G-BigSMILES may offer improved

accuracy in polymer property prediction tasks. Future studies could explore the utility of
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these advanced versions to further enhance polymer ML workflows.

Another key finding of this study is that ML workflows based on BigSMILES generally

require shorter training times compared to those based on SMILES, particularly in LLM

scenarios. This advantage may stem from the streamlined syntax of BigSMILES, which

reduces computational consumption without sacrificing chemical information. For instance,

in the copolymer property prediction task, BigSMILES retained essential chemical details

while facilitating faster model convergence. As the scope of polymer discovery and vir-

tual design continues to expand, the size of training datasets for polymer ML will largely

grow. Recent estimates by Li et al. suggest that the candidate space for polyimides alone

could reach nearly 2×1012 compounds.26 Given this immense chemical space, the use of

BigSMILES could significantly accelerate the development of polymer ML pipelines, partic-

ularly in forward screening (e.g., property prediction) and inverse design (e.g., on-demand

polymer generation) paradigms.

A particularly compelling advantage of BigSMILES is its ability to succinctly describe

complex polymer structures, such as copolymers, which are often poorly represented by

SMILES. This limitation restricts current polymer ML workflows, which primarily focus

on homopolymers, as SMILES struggles to efficiently encode the structural diversity and

stochasticity inherent in copolymers and other complex architectures. As polymer ML ex-

pands into these more complex domains, the limitations of SMILES cannot be ignored,

requiring for more versatile representations. BigSMILES addresses this gap, and its adop-

tion is likely to grow among polymer scientists, especially as its functionality is integrated

into cheminformatics tools like RDKit for descriptor computation.

To further promote the adoption of BigSMILES and minimize the repetitive labor and

energy consumption involved in converting SMILES to BigSMILES, we developed a refined

database of nearly one million polymer BigSMILES representations based on the PI1M

dataset. This new resource, named PI1M-BigSMILES, is freely available at https://gith

ub.com/hkqiu/SMILES-vs-BigSMILES/blob/main/PI1M-BigSMILES.zip. We also adapted
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the SMILES-based polymer generation model PolyTAO27 and created the first BigSMILES-

based polymer generation model, which is now available on Hugging Face (https://huggin

gface.co/hkqiu/PolyTAO-BigSMILES_Version).

In conclusion, our findings highlight the great potential of BigSMILES in polymer ML

workflows. By enabling more concise and versatile representations, BigSMILES not only

accelerates training but also expands the horizons of polymer informatics to encompass more

complex structures. With the ongoing development of advanced BigSMILES variants and

the creation of complementary resources like PI1M-BigSMILES, the field is well-positioned

to leverage these tools for both scientific discovery and practical applications.

Methods

Batch Conversion to BigSMILES

At present, local chemical structure drawing tools do not support the direct extraction

of BigSMILES. However, recent advancements from research groups led by Prof. Olsen

and Prof. Seok have enabled the interconversion between molecular structure/SMILES

and BigSMILES.50,51 These tools were utilized to obtain the millions of BigSMILES en-

tries involved in this work. Specifically, BigSMILES\_homopolymer51 was employed for the

conversion of homopolymer SMILES to BigSMILES, and the structure-to-BigSMILES tool

developed by Olsen et al. was utilized for other polymer architectures.50

Text-Induced Image Convolutional Neural Network for Property Pre-

diction

For a CNN architecture, we employed optimal network parameters based on the configu-

ration described in prior work.44 The network consisted of two convolutional layers with

convolutional kernel sizes of (3, 3). The first layer included 256 kernels, and the second layer
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included 128 kernels (see ref.44 for details). A fully connected layer with 100 neurons was

used for feature extraction and regression. Pooling layers were used for down-sampling with

kernel sizes of (3, 3). The input to the CNN was an image representation of polymer SMILES

or BigSMILES, with the image dimensions defined as w × h, where w corresponds to the

length of string list and h corresponds to the maximum string length. Training was con-

ducted on the dataset1 of glass transition temperatures for polystyrenes and polyacrylates,

as described in previous study.44 An 80:20 train-test split was used, and the implementation

was carrid out using PyTorch (version 1.12.1+cu113).

Large Language Model-Based Property Prediction

Homopolymers

Several excellent pre-trained polymer language models, such as TransPolymer,32 polyBERT,33

and PolyNC,35 are available for polymer informatics tasks. In this study, PolyNC was se-

lected as the base model for fine-tuning due to its end-to-end architecture and compatibility

with polymer text descriptions. For each fine-tuning task, polymer text representations

(SMILES or BigSMILES) were used as input, and the target property values served as the

output. The hyperparameters used for fine-tuning are summarized in Table 1. All fine-tuning

experiments were performed on four NVIDIA RTX 3090 GPUs.

Table 1: Hyperparameters during model fine-tuning.

Hyperparameter Configuration

batch_size 80

epochs 100

learning_rate 1e-5

warmup_ratio 0.2

epsilon 1e-8
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Copolymers

The copolymer dataset was sourced from the literature,49 containing information on poly-

hydroxyalkanoate homopolymers and copolymers. This dataset included the SMILES for

monomer A, the SMILES for monomer B, and the corresponding composition ratio. BigSMILES

representations were derived according to established syntax rules.37 To represent copolymers

for the LLM, SMILES-based input was formatted as: "SMILESMonomerA|SMILESMonomerB|ratio",

and BigSMILES-based input as "BigSMILES|ratio". The dataset was split 80:20 into train-

ing and test sets.

For model training, we used pre-trained weights from https://huggingface.co/GT4

SD/multitask-text-and-chemistry-t5-base-standard, instead of PolyNC, to avoid

interference from SMILES-based pretraining in PolyNC. Training was conducted for 200

epochs with a peak learning rate of 5×10−6, using a cosine decay schedule with a 20%

warm-up period. Each batch contained five samples.

Data and code availability

The training data of the CNN task and copolymer task can be accessed in prior work.44,49

Nine properties of polymers during fine-tuning of LLMs were collected from these refer-

ences.22,24,52–55 The PI1M dataset36 uesd for training the polymer generation model is pub-

licly available at https://github.com/RUIMINMA1996/PI1M.

Our pre-trained generation model is publicly available at https://huggingface.co/hkq

iu/PolymerGenerationPretrainedModel (SMILES version) and https://huggingface.

co/hkqiu/PolyTAO-BigSMILES_Version (BigSMILES version). Any other data and code

related to reproducing the results will be provided promptly upon request.
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