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Abstract 
Deep learning has revolutionized chemical research by accelerating the discovery of new substances 
and enhancing the understanding of complex chemical systems. However, polymer chemistry, one 
of the most active branches of chemistry, has yet to establish a unified deep learning framework due 
to the complexity of polymer structures. Existing self-supervised learning methods for polymers 
simplify them into repeating units and neglect their inherent periodicity, thereby limiting the models’ 
ability to generalize across various tasks. To address this challenge, we herein propose a periodicity-
aware deep learning framework for polymers (named PerioGT). In pre-training, a chemical 
knowledge-driven periodicity prior is constructed and incorporated into the model through 
contrastive learning. Then, periodicity prompts are learned in fine-tuning based on the periodicity 
prior to better leveraging the knowledge acquired in pre-training. Additionally, a novel graph 
augmentation strategy is employed for polymers, which integrates additional conditions via virtual 
nodes to effectively model complex chemical interactions. PerioGT achieves state-of-the-art 
performance on 12 downstream tasks. Moreover, wet-lab experiments in antimicrobial polymer 
discovery highlight PerioGT’s potential in the real world, identifying two polymers with potent 
antimicrobial properties. All the results demonstrate that introducing the periodicity prior of 
polymers effectively improves the model performance. 
 
Introduction 
Deep learning (DL) has already had a transformative impact on chemical research due to its 
powerful ability to model complex relationships within chemical data. Significant breakthroughs 
have been recently achieved in biochemistry driven by DL, such as protein structure prediction1-3, 
de novo protein design4,5, and RNA sequence design6,7. In the field of organic chemistry, remarkable 
advancements have been made in molecular property prediction8-10 and reaction condition 
optimization11 enabled by DL. In inorganic chemistry, researchers have made notable progress in 
predicting crystal structures12,13. These advancements have profoundly enhanced our understanding 
of complex chemical systems and accelerated the discovery of new substances. Within this 
revolution, self-supervised learning (SSL) stands out14-17. SSL methods can extract meaningful 
representations by mining massive unlabeled data. The pre-training and fine-tuning paradigm of 
SSL has the potential to alleviate the scarcity of labeled data in chemistry. 

Despite being one of the most active branches of chemistry, polymer chemistry still lacks a 
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universally applicable deep learning approach attributed to the inherent complexity. Polymers are 
macromolecules consisting of several to thousands of repeating units (RUs) linked by covalent 
bonds. This structural characteristic endows them with unique physicochemical properties that are 
significantly different from small molecules. Consequently, polymers became the most widely used 
materials. In addition to the chemical structure of RUs, many other variables, including the degree 
of polymerization, polydispersity index, crosslinking degree, copolymerization, can regulate the 
properties of polymers. The complexity of polymers provides a wide space for chemists to design 
polymers with various properties, yet it poses considerable challenges to their modeling. 

Although there have been some pioneering studies that have successfully applied machine 
learning to polymer design18-22, the severe scarcity of labeled data remains one of the major 
difficulties due to the complexity of the structure. Therefore, developing polymer SSL models is an 
effective approach. In the existing SSL models, polymers are simplified into RUs derived from 
monomers and represented as SMILES, akin to small molecules23,24. Language models are then 
trained through Masked Language Modeling (MLM) with the processed unlabeled datasets, 
followed by fine-tuning for downstream tasks. However, these methods treat polymers as small 
molecules and do not consider their periodic characteristics, which is the most significant difference 
between polymers and small molecules. The simplification makes it difficult for the model to 
capture the periodic structure of polymers. Therefore, incorporating periodicity as a prior is essential 
for mitigating issues such as data scarcity and limited robustness.  

Attempts have been made in some supervised methods by adding an edge between the head 
and tail of the RU graph, thereby simulating the periodic structure25,26. Nevertheless, these methods 
still fail to adequately model the periodicity, leading to changes in polymer topology that introduce 
ambiguity and negatively impact model generalization (refer to Supplementary Fig. 4 for details). 

Moreover, chemical structure alone cannot fully represent polymers in some cases, as their 
properties are regulated by multiple factors mentioned above. An ideal framework needs to possess 
a mechanism for integrating supplementary conditions. In some studies, supplementary conditions 
such as molecular weight or external factors are treated as a special token and concatenated with the 
SMILES24. This approach implicitly encodes the relationships between conditions and polymer 
structures, relying on the model to deduce these from sequence patterns. Such indirect representation 
may constrain the model’s understanding of complex chemical principles. Therefore, it is crucial to 
develop a unified deep learning framework that explicitly models the behavior of polymers under 
various conditions, thereby accurately capturing complex chemical interactions. 

Motivated by the challenges above, we propose a periodicity-aware deep learning model for 
polymers (PerioGT). Our contributions are as follows: (1) We introduce a chemical knowledge-
driven sampling module, named Periodicity Augmentation (PA), serving as a periodic prior. (2) We 
propose a PA-based contrastive learning pre-training, which integrates periodic information as a 
prior for polymers, enhancing the model’s ability to recognize and encode periodic patterns. (3) 
Periodicity prompt guided fine-tuning (PGFT) strategy is employed, introducing periodic prompts 
based on PA in fine-tuning to better leverage the knowledge learned in pre-training. (4) To establish 
a unified deep learning framework for polymers, we propose a modular graph augmentation strategy 
(named PolyGraph), explicitly modeling the relationships between additional information and 
polymers. (5) As a case study, the proposed model is further applied to the screening of antimicrobial 
polymers, and we successfully screened 25 novel polymers with antimicrobial activity, two of which 
show excellent antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). 
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Results and discussion 
An overview of PerioGT 
In this work, we propose a unified, periodicity-aware deep learning framework for polymers, 
PerioGT. The framework consists of three components: (1) PolyGraph construction, (2) Periodicity-
aware SSL, and (3) Periodicity prompt guided fine-tuning (PGFT). The overview of PerioGT is 
shown as Fig. 1. 
 
PolyGraph construction. Polymers have a complex multilevel structure, and the chemical structure 
of RUs alone is not sufficient to represent its structure. As a result, standard descriptors for small 
molecules are insufficient to accurately represent polymers.  

To this end, we provide a flexible mechanism that can adapt to more complex cases. Additional 
structural information of polymers, such as the degree of polymerization, polydispersity index, 
crosslinking degree, and end groups, if available, can be incorporated as a virtual node addv̂ into the 
graph27,28, thereby constructing a PolyGraph as shown in Fig. 1c. For the case of more complicated 
copolymers, a global virtual node globv̂ is introduced, connecting to the nodes of all components. 
Additionally, local virtual nodes localˆ{ }iv  are introduced, each connecting to the nodes of their 
respective components. Global features, such as molecular weight and test conditions, can be 
incorporated into the global virtual node globv̂ . Similarly, local features, such as the content of each 
component, can be added to the local virtual node localˆ{ }iv . Moreover, we consider that representing 
polymers only with RUs may pose certain risks. Even if the two RUs are similar, these differences 
may accumulate during polymerization, eventually leading to large differences in properties 
(Supplementary Fig. 5). Therefore, another virtual node exptv̂ with physicochemical properties of 
polymers is introduced to guide the model in better-extracting polymer representations. More details 
on PolyGraph construction can be found in the Methods section. We suppose that modular and 
explicit modeling of PolyGraph, aligned with chemical intuition, can facilitate the model’s ability 
to capture complex chemical interactions. 
 
Periodicity-aware SSL. Existing SSL methods simplify polymers to minimal repeating units 
(MRUs) derived from their monomer and add a special token [*] to the SMILES of these MRUs to 
indicate the repeating sites, followed by MLM23,24. These models ignore that polymers are 
periodically arranged by RUs, which is one of the most remarkable characteristics of polymers. For 
instance, the SMILES “*NCCCCCC(=O)*” and “*C(=O)NCCCCC*” both denote nylon-6. 
However, the representations generated by these SSL models may not converge in the latent space. 
The inconsistency indicates that the conventional representation learning strategies applicable to 
small molecules are inadequate for enabling the model to learn the periodic patterns of polymers.  

To explicitly model the periodicity and take advantage of the large amount of unlabeled data, 
we propose a contrastive learning strategy based on Periodicity Augmentation (PA). As shown in 
Fig. 1a, for a polymer chain, we construct a sampling box sized at N times the number of backbone 
atoms in an MRU. By arbitrarily sliding this sampling box along the polymer backbone, various 
augmented fragments can be obtained, all of which can be deemed as RU of the polymer. PA, as a 
prior of periodicity, provides different views of the same polymer, including different orders of 
arrangement and different degrees of polymerization. Thus, augmented fragments via PA are taken 
as positive pairs, and fragments sampled from different polymers are taken as negative pairs. Our 
approach, which enforces the model to align fragments sampled from the same polymer, aims to 
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Fig. 1 | Overview of PerioGT. a, PerioGT pre-training. A sampling box is constructed with a size N 
times the number of main chain atoms in the minimal repeating unit. Sampling is performed by sliding 
the sampling box along the polymer backbone. Based on the sampled fragments, PolyGraphs are 
constructed, and two random masking operators are applied to each PolyGraph. A graph transformer 
encoder is used to extract node-level representations, and graph-level representations are obtained with 
the addition of a readout operator. Graph-level and node-level representations are then used for PA-based 
contrastive learning and masked node modelling, respectively. b, Illustration of PA-based contrastive 
learning. Given the reference fragment, the positive fragment is randomly sampled from the same 
polymer through PA while negative fragments are sampled from other polymers. c, PolyGraph 
construction. Any additional information available of polymers is fused through virtual nodes. These 
virtual nodes are directly connected to all real nodes by special edges. For copolymers, a global virtual 
node is added and connected to all real nodes. Additionally, n local virtual nodes are added, each 
connected to nodes corresponding to specific components, where n represents the number of copolymer 
components. Global and local information are introduced as features of the respective virtual nodes. d, 
Periodicity prompt guided fine-tuning. Given a polymer, PA is employed to obtain a set of augmentations 
containing M RUs. A feature extractor is employed to extract representations of the corresponding 
structures in the PA. Then these representations are integrated through an attention mechanism and added 
as a prompt to the initial node features. 
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enhance the model’s ability to recognize the periodicity of polymers and guide it to capture the long-
range interactions within polymer chains. Besides, previous SSL models for polymers are based on 
MLM. However, unlike long-distance dependencies common in natural language, the chemical 
properties of an atom are primarily determined by its adjacent atoms and bonds. This distinction 
suggests that MLM can only capture local features of polymers. We believe that PA-based 
contrastive learning not only introduces a periodicity prior, but also compensates for the limitations 
of MLM in capturing global features. 

Specifically, as illustrated in Fig. 1b, given a batch containing N polymers, random 
augmentations are performed on each polymer via PA, resulting in 2N RUs. These RUs are then 
transformed into two sets of PolyGraphs 1

ˆ{ }N
i iG = , 1

ˆ{ }N
i iG =′ . To prevent the model from over-relying on 

obvious differences between oligomers and to promote the learning of essential features, each 
PolyGraph undergoes random masking. Next, PolyGraphs derived from the same polymer are 
treated as positive pairs, whereas the remaining 2(N-1) graphs are considered negative pairs. We use 
a graph encoder ( )f ⋅  with a readout operator to extract graph features followed by a non-linear 
projector PACL ( )g ⋅  to map graph representations into a space for contrastive learning, generating 
latent vectors 1{ }N

i i=z and 1{ }N
i i=′z . Contrastive Loss is applied to these latent vectors to maximize the 

agreement between positive pairs while minimizing the agreement between negative pairs. Another 
non-linear projector MNM ( )g ⋅ maps the perturbed nodes into a space, where Cross Entropy Loss 
is applied to minimize the prediction error of the masked nodes. Meanwhile, previous studies on 
small molecules have shown that the reconstruction of physicochemical properties from molecular 
graphs has a positive effect29,30, so the reconstruction of partially masked virtual nodes is also 
conducted as one of the training objectives. More information on SSL is provided in the Methods 
section. 
 
Periodicity prompt generation. Most existing pre-trained models follow the "pre-training, fine-
tuning" strategy, which utilizes the weights of the pre-trained model as initialization and finetunes 
the weights for a specific downstream task31. However, the misalignment between the objectives of 
the pre-training task and the downstream task leads to sub-optimal performance32. Recently, prompt 
tuning has shown great promise in natural language processing and computer vision33,34. This 
method modifies the input data to prompt the model to utilize the knowledge learned in pre-training. 
Due to the complexity of graph data structures, systematic studies on prompt generation approaches 
for graphs are still lacking. Pioneering works have explored adding a learnable vector or external 
information to node features to improve alignment with pre-training objectives35-37. 
 Inspired by this, we provide an option that aggregates the equivalent motifs in different RUs 
as a prompt in fine-tuning. Periodicity prompt emphasizes the periodic structure of the polymer, 
guiding the model to capture the environmental diversity of atoms at specific locations of the 
polymer. Given a polymer fragment Ĝ , PA is employed to obtain a set aug[1, ]

ˆ{ }i i NG ∈ containing augN
RUs. As shown in Fig. 1d, for any triplet (atom ,bond ,atom )i j k  in Ĝ  , features of corresponding 
structures from aug[1, ]

ˆ{ }i i NG ∈ are integrated through an attention mechanism and added as a prompt to 
the initial node features. More details can be found in the Methods section. 
 
PerioGT enhances the performance of polymer property prediction 
Polymer property prediction tasks lack benchmark datasets. To effectively evaluate and compare 
model performance, we utilized datasets recommended by previous studies. For more detailed  
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Table 1 | Test performance of different models on eight downstream tasks 

Dataset Tg Mt Egc Density Egb Eps Eea Nc 

Number of 
polymers 

7170 3651 3380 1693 561 382 368 382 

RF 40.712±0.108 57.386±0.438 0.539±0.004 0.0906±0.0003 0.579±0.011 0.563±0.010 0.409±0.005 0.1103±0.0153 

MPNN38 36.213±0.153 58.722±1.095 0.509±0.025 0.0957±0.0083 0.535±0.027 0.474±0.001 0.332±0.016 0.0932±0.0023 

GAT39 39.810±1.211 57.930±1.106 0.488±0.018 0.0948±0.0081 0.553±0.026 0.630±0.082 0.382±0.074 0.1067±0.0006 

Graphormer40 37.201±0.532 55.297±2.054 0.500±0.024 0.1176±0.0046 0.546±0.004 0.583±0.049 0.434±0.105 0.1257±0.0125 

LiGhT41 35.534±0.529 57.457±0.562 0.469±0.020 0.0934±0.0067 0.486±0.018 0.586±0.045 0.378±0.016 0.1223±0.0236 

GraphGPS42 34.176±0.169 50.620±0.823 0.464±0.018 0.1003±0.0116 0.493±0.062 0.606±0.086 0.323±0.017 0.1120±0.0121 

Arora et al.22 42.256±0.360 59.109±0.242 0.575±0.000 0.1099±0.0005 0.565±0.009 0.597±0.006 0.516±0.004 0.1098±0.0023 

Antoniku et al.25 35.393±0.313 59.898±0.662 0.487±0.013 0.0915±0.0038 0.508±0.005 0.474±0.011 0.316±0.017 0.0993±0.0035 

Aldeghi et al.26 35.470±0.455 55.637±0.415 0.456±0.006 0.0901±0.0033 0.442±0.009 0.510±0.019 0.274±0.006 0.0869±0.0049 

polyBERT23 35.110±1.059 57.024±0.630 0.474±0.026 0.1020±0.0034 0.538±0.021 0.491±0.035 0.327±0.041 0.0970±0.0026 

TransPolymer24 32.765±1.051 51.267±1.399 0.437±0.005 0.0881±0.0007 0.570±0.035 0.573±0.029 0.320±0.005 0.1301±0.0175 

PerioGT 30.840±0.221 45.439±0.397 0.399±0.003 0.0794±0.0018 0.402±0.011 0.465±0.008 0.256±0.009 0.0755±0.0016 

The first six models are general-purpose models, and the last six are specifically designed for polymers. 
polyBERT, TransPolymer, and PerioGT are self-supervised learning models. The mean and standard 
deviation of the test root mean square error on three independent runs are reported. The best performance 
for each task is shown in bold. 
 

Table 2 | Test the performance of different models on four downstream tasks, each supplemented 
with additional information 

Dataset Opv Mar1 Mar2 Pe2 

Number of 
polymers 1203 520 520 271 

RF43 1.820±0.023 0.209±0.002 0.242±0.001 – 

polyBERT – 0.220±0.010 0.239±0.006 – 

TransPolymer 2.056±0.018 0.277±0.024 0.276±0.012 0.638±0.021 

PerioGT 1.800±0.013 0.209±0.003 0.229±0.001 0.533±0.024 

Note that polyBERT does not support downstream tasks known as Opv and Pe2, which require additional 
information. The mean and standard deviation of the test root mean square error on three independent 
runs are reported. The best performance for each task is shown in bold. 

 
information on the datasets, please refer to Supplementary Table 1-4. 

Table 1 and Supplementary Table 12 summarize the test performance of PerioGT and baseline 
models on the eight regression datasets. Observations from Table 1 are as follows: (1) PerioGT 
outperforms the baseline supervised and self-supervised models on all datasets. (2) Standard 
descriptors and graph neural networks applicable to small molecules generally perform worse than 
methods specifically designed for polymers. For example, although MPNN and Antoniku’s method 
(adding an edge between the head and tail of RU graph) share the same backbone (MPNN), 
Antoniku’s method performs better on most tasks, indicating the heterogeneity of polymers and the 
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need to design methods specifically for polymers. 
Table 2 demonstrates the test performance of PerioGT and baselines on more complex tasks. 

In these tasks, each sample either includes additional information along with a chemical structure 
or consists of a copolymer. Observations from Table 2 indicate that PerioGT outperforms baselines 
across all four datasets. The results suggest that PolyGraph endows PerioGT with a flexible 
mechanism to effectively integrate additional information into the pre-trained model, enhancing its 
adaptability to complex tasks involving additional information. 

Overall, the results suggest that PA-based contrastive learning and PGFT enhance the model’s 
generalization performance across diverse downstream tasks of polymers. Therefore, the notable 
generalization capability of PerioGT shows its potential for application in high-throughput 
screening of polymers. 
 
PerioGT achieves a better understanding of the periodicity of polymers 
After verifying PerioGT’s excellent performance on multiple downstream tasks, we evaluated the 
model performance in capturing periodic features, coping with complex structural changes, and 
maintaining robust representation. In the following section, we will conduct our analysis from two 
perspectives: PA-level similarity analysis and instance-level similarity analysis. 
PA-level similarity analysis. During the training process, a PA-based contrastive loss was applied 
to introduce the periodicity prior. To test the model’s generalization capability for polymers that 
were not encountered in pre-training, we performed PA for all samples in the Tg dataset five times, 
and the average similarity between original RUs and augmentations was calculated to obtain the 
similarity matrix. As shown in Fig. 2a, the similarity matrix is visualized using block aggregation. 
Additionally, we analyzed the similarity distribution between the original RUs and their 
augmentations across the entire dataset, as illustrated in Fig. 2b. It is evident that PerioGT accurately 
identifies different augmentations of the same polymer, with an average similarity of 0.84, 
significantly better than the baseline methods. Further, we subsequently calculated the Davies-
Bouldin index (DB index) of the representations above. From the observations in Fig. 2c, PerioGT 
demonstrates superior clustering performance, whereas baseline methods are more sensitive to PA. 
On this basis, we designed a new task in which RUs sampled from the same polymer were treated 
as a single class, while RUs from different polymers were treated as distinct classes. The goal of 
this task was to train a model for multiclass classification using the generated representations. To 
better highlight the effectiveness of representations, we employed a simple K-nearest neighbors 
(KNN) classifier. As shown in Fig. 2d, PerioGT achieved an accuracy exceeding 80%, while the 
accuracy of the other two SSL methods remained below 40%. Additionally, we investigated the 
generalization ability of PerioGT with varying numbers of MRUs. As shown in Fig. 2e, the 
similarity of all types of representations decreases to varying degrees as the number of MRUs 
increases. However, PerioGT consistently maintains a relatively high similarity, even when the 
maximum MRUs used in pre-training is limited to 3. 

The above results suggest that PA-based contrastive learning can effectively handle varying 
arrangements and lengths of polymers. This property ensures that the model can still accurately 
recognize and predict polymers even when slight variations occur in their form. 
 
Instance-level similarity analysis. Subsequently, we presented four pairs of instances in the Tg 
dataset to visually show the effect of PA-based contrastive learning. We used t-SNE algorithm to  

https://doi.org/10.26434/chemrxiv-2025-g2mbp ORCID: https://orcid.org/0009-0004-8060-0395 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-g2mbp
https://orcid.org/0009-0004-8060-0395
https://creativecommons.org/licenses/by-nc-nd/4.0/


 
Fig. 2 | Similarity analysis. a, Similarity matrix of representations generated by different models. Each 
polymer in Tg dataset undergoes five random augmentations via PA, and their representations are 
extracted using the pretrained models. The similarity matrix is visualized by block aggregation. b, 
Similarity distribution of the generated representations. c, Alignment analysis. T-SNE algorithm is used 
to reduce the dimensionality of representations, and DB index is used to quantify their clustering 
performance. A lower DB index indicates better separation performance. d, KNN classification accuracy. 
One sample from each class is selected as the test set. e, The variation of similarity with the number of 
MRUs. f, Four groups of structurally similar polymers. Each sample is labeled with a unique color or 
symbol, and the corresponding glass transition temperature is noted to the right of the symbol. g, t-SNE 
visualization of polymer representations obtained from different methods. The marked points represent 
the corresponding samples in f. h, Similarity distribution of different replacement rate. 
 

map the polymer representations learned by the pre-trained model into a two-dimensional space in 
Fig. 2d-e. 

The polymers in each pair have similar structures. In the first pair, the structures of the two 
polyanhydrides are extremely similar: the former contains two ether bonds within the alkyl chain 
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between the two benzene rings, while the latter has only an alkyl chain between the rings, with all 
other structural features being identical. They have similar polarity and rigidity, similar mobility of 
chain segments, and thus closely matched glass transition temperatures (45°C and 46°C 
respectively). Despite their variability of MRU due to differences in the order of structure 
arrangement, PerioGT still successfully captures similar representations of these polymers. In 
contrast, baseline methods encode them into distant positions in the latent space. In the later pairs, 
the two polymers exhibit a high similarity in backbone and thus a high similarity in glass transition 
temperatures, so PerioGT extracts similar representations. However, due to the difference of MRU 
size, the representations generated by baseline methods are quite different. The results above 
indicate that, in addition to identifying variants of the same polymer, PA-based contrastive learning 
forces the model to effectively learn the decisive features of polymers from their structure, without 
being disturbed by minor changes such as the size of MRUs or minor atomic substitutions. In 
summary, PerioGT has a better understanding of the periodicity of polymers. 
 To show this statistically, we applied PA to all samples in the dataset followed by random 
replacement of some atoms. Although these modified polymers do not necessarily correspond to 
samples in the Tg dataset, we consider these augmentations analogous to the four instance groups 
discussed earlier. The similarity distribution between the original and augmented RUs was then 
calculated as shown in Fig. 2h. The results indicate that, as expected, similarity decreases with an 
increasing replacement rate. However, PerioGT consistently maintains the highest similarity values, 
even after minor perturbations, compared to the baseline models. 
 
A well-organized representation space of PerioGT improves predictions 
After the validation of model’s understanding of polymer periodicity, we further analyzed its 
representation space. Recent research in representation learning has demonstrated that a fair 
representation space should filter out unnecessary details while retaining as much information as 
possible, which involves two aspects: alignment and uniformity44. Alignment implies that the model 
encodes similar samples into similar representations. Here we categorize it into attribute alignment 
and structural alignment to distinguish between the relationship of representation and polymer 
properties and the relationship of representation and polymer structure. Uniformity indicates that 
features are evenly distributed across the representation space, thereby maximizing information 
retention. 
Attribute alignment. Attribute alignment tends to encode polymers with similar properties into 
similar representations, which verifies whether the pre-training task can effectively guide the model 
to capture highly expressive features. Thus, we calculated the Mutual Information (MI) between 
representations and several fundamental physicochemical properties of polymers, as illustrated in 
Fig. 3a. The results indicate that PerioGT exhibits the highest correlation between principal 
component and properties compared to existing SSL models (TransPolymer and polyBERT) and 
standard descriptors.  

To further analyze attribute alignment, the k-Nearest Neighbors (KNN) algorithm was 
employed. Specifically, 10% of the samples from each dataset were randomly selected as test data, 
while the remaining 90% were used to train a KNN regressor. The trained KNN model was then 
evaluated on the reserved test samples to assess its performance. As shown in Fig. 3b, KNN 
regressor trained on representations generated by PerioGT outperforms baseline models on most 
attributes, indicating that close representations have similar properties.  
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Fig. 3 | Attribute alignment, structural alignment and uniformity analysis. a, Mutual information 
between principal components and attributes. Points are colored with the value of the attribute. b, 
Performance of KNN regression using the generated representations. The mean values at different k 
values on three independent runs are shown. c, t-SNE visualization of eight major molecular scaffolds 
across different tasks. Points are colored based on scaffold type. A lower DB index indicates better 
separation performance. d, Uniformity analysis. We plot polymer representations with Gaussian kernel 
density estimation (KDE) in 2 and a histogram of radians (i.e., arctan2(y, x) for each data (x, y)∈S1). 
 

The above results demonstrate that PerioGT effectively extracts rich physicochemical 
knowledge of polymers after applying the proposed pre-training strategy. Moreover, the well 
attribute alignment in multiple tasks implies that the model possesses strong generalization 
capabilities, enabling it to quickly adapt to unseen downstream tasks through simple fine-tuning. 
 
Structural alignment. Structural alignment favors models that encode samples with similar 
chemical structures into adjacent positions in the latent space. To characterize the structural 
alignment of PerioGT, we followed the method employed by ref 37. We extracted the Murcko 
Scaffold of each sample from downstream tasks, which retains only the core structure (ring systems 
and linkers), disregarding substituent groups. Polymers sharing the same chemical scaffold are 
likely to exhibit similar properties. We then visualized eight major scaffolds using t-SNE and 
calculated the DB index to quantify the structural alignment. As illustrated in Fig. 3c, PerioGT 
consistently exhibits a lower DB index, indicating superior clustering performance. This observation 
suggests that the representations generated by PerioGT are invariant to unnecessary details. 
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Uniformity. Recent studies in representation learning have revealed that representations should 
retain as much information as possible. In other words, the pre-trained encoder should encode 
polymers uniformly into the latent space. To this end, we qualitatively explored the uniformity of 
PerioGT using methods proposed in previous studies37,44. First, representations were generated by 
the pre-trained model for specific downstream tasks. Next, we reduced the dimensionality of these 
generated representations with t-SNE and performed L2 normalization. We visualized the 
normalized representation through Gaussian Kernel Density Estimation (KDE) and the probability 
density of radians on the unit circle. As shown in Fig. 3d, the features generated by PerioGT are 
more uniformly distributed on the unit circle, indicating its superior uniformity. 
 
Ablation study 
In the aforementioned experiments, PerioGT demonstrates state-of-the-art performance, primarily 
due to the incorporation of several advanced techniques, including PA-based contrastive learning, 
PolyGraph (introduction of virtual nodes), masked modeling, and periodicity prompt. To investigate 
the individual contributions of these techniques to the framework, we conducted ablation studies. 
Consequently, we constructed six models: PerioGT-w/o VN, PerioGT-w/o MNM, PerioGT-w/o CL, 
PerioGT-w/o PA, PerioGT-linear probe and PerioGT-prompt tuning. We evaluated the performance 
of these six models in eight downstream tasks. To maintain consistency with previous representation 
learning studies and ensure fair comparisons, we froze the weights of the backbone and trained a 
projection head only. 

The results (Supplementary Table 13) indicate that each component of PerioGT contributes to 
performance in most tasks. Notably, PerioGT consistently outperforms PerioGT-w/o CL and 
PerioGT-w/o PA in test performance, highlighting the importance of incorporating periodicity priors 
into the model. 
 
Case study: the potential of PerioGT is exploited in antimicrobial polymer discovery 
Finally, to validate the real-world applicability of PerioGT, we applied it to the discovery of 
antimicrobial polymers (AMPs) in web-lab experiments. The emergence of antibiotic-resistant 
bacteria, driven by antibiotic misuse, poses a significant threat to human health. Thus, the discovery 
of new compounds with antimicrobial activity is increasingly prioritized45,46. Antimicrobial peptides 
are considered to be antimicrobial compounds that do not easily induce resistance. However, they 
are limited by their high synthetic cost and low in vivo stability47,48. To this end, many researchers 
introduce cationic and hydrophobic groups into synthetic polymers to mimic the physicochemical 
characteristics of antimicrobial peptides49-54. Most importantly, AMPs are normally synthesized 
from inexpensive raw materials through a cost-effective, scalable chemical synthesis process, 
making them promising alternatives to antimicrobial peptides. 
However, unlike the abundant data accumulated for antimicrobial peptides, there is currently no 
data available at scale for AMPs. Therefore, we constructed a combinatorial polymer library using 
Michael addition55, as shown in Fig. 4a. We then tested the antimicrobial properties of the samples 
through high-throughput synthesis and characterization techniques. More details about the library 
construction and wet-lab experiments can be found in the Methods section. 

Following this, PerioGT was fine-tuned with the constructed AMPs dataset. As demonstrated 
in Table 3, PerioGT achieves the best performance, which is consistent with the above findings. To 
predict AMPs with novel structures, we selected commercially available monomers that are 
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Fig. 4 | Application of PerioGT in AMP discovery. a, Screening workflow. The library to be screened 
was constructed based on combinatorial chemistry and Michael addition polymerization. Any pair-wise 
combination between diacrylates (pink) and amines (blue) can generate a unique polymer. We randomly 
sampled 150 polymers for wet-lab synthesis and antimicrobial activity labeling. PerioGT was then fine-
tuned on the constructed dataset. We employed the fine-tuned PerioGT to predict unlabeled Michael 
addition products whose monomers were commercially available, and the top-30 candidate with the 
highest positive probability were selected for further characterization. b, Distribution of MIC in the 
training set and top-30 predictions by different self-supervised models. The contour shows the kernel 
density estimation, with a white dot for the median, a thick bar for the interquartile range, and thin lines 
for the 95% confidence intervals. A lower MIC indicates a better antimicrobial property. The part above 
the dashed line indicates no antimicrobial activity (MIC≥128 μg/mL). c, The two AMPs with the lowest 
MIC (8 μg/mL) predicted by PerioGT and evaluated by wet-lab experiments. d, MRSA colony counting 
after incubation with P1-P3 for 6 h. e, Membrane potential disturbance induced by the polymers. f, TEM 
characterization of MRSA after incubation with P1-P3 for 5 min. Scale bar: 200 nm. g, Live/Dead 
staining test results. Scale bar: 20 μm. 
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Table 3 | Test performance of different models on the constructed antimicrobial polymers dataset 

Model ROC-AUC PR-AUC 

RF 0.734±0.145 0.290±0.180 

MPNN 0.395±0.075 0.214±0.027 

GAT 0.721±0.214 0.214±0.145 

Graphormer 0.659±0.150 0.143±0.076 

LiGhT 0.630±0.186 0.192±0.163 

GraphGPS 0.721±0.170 0.250±0.160 

Arora et al. 0.871±0.124 0.397±0.210 

Antoniuk et al. 0.519±0.174 0.147±0.147 

Aldeghi et al. 0.699±0.175 0.255±0.230 

TransPolymer 0.768±0.196 0.400±0.260 

polyBERT 0.708±0.240 0.240±0.198 

PerioGT 0.873±0.144 0.479±0.295 

The mean and standard deviation of the root-mean-square error on ten different splits are reported. 
 
reasonably priced and of high purity. Polymers are then virtually generated by simulating the 
anticipated Michael addition reactions between the selected amines and diacrylates, used to 
construct a library of polymers for screening. Next, the fine-tuned model was used to predict the 
antimicrobial activity of the entire polymer library. Based on the predictions, we selected the top 30 
polymers with the highest predicted positive probabilities and evaluated them through wet-lab 
experiments to verify the model’s reliability (Supplementary Table 11). We also compared the 
performance of PerioGT with two published SSL models. As shown in Fig. 4b, with a minimum 
inhibitory concentration (MIC) threshold of 64 μg/mL, PerioGT achieves a screening success rate 
of 83% (25 out of 30), much higher than TransPolymer at 57% (17 out of 30) and polyBERT at 20% 
(6 out of 30). These results demonstrate that PerioGT exhibits superior accuracy and efficiency in 
identifying AMPs. 
 Through the validation of PerioGT, two polymers were identified with MIC at 8 μg/mL (labeled 
as P1 and P2 in Fig.4c). The antibacterial activity of P1-P2 was further investigated by incubation 
with MRSA for 9 h. As shown in Fig. 4d, P1 is capable of eliminating MRSA by over 6 orders of 
magnitude, while P2 reduces the MRSA colony count by 3 orders of magnitude. In comparison, 
vancomycin hydrochloride (VM), a widely applied clinical antibiotic especially against gram-
positive bacteria such as MRSA, eradicates the MRSA colony count by 2 orders of magnitude. 
MRSA cells treated with the lead polymers were then subjected to Live/dead staining assays. 
Propidium iodide (PI) is capable of penetrating impaired bacterial membranes and binding to DNA 
to emit red fluorescence, while N01 probes stain bacteria regardless of their state. Both P1-2 and 
VM-treated samples exhibit pronounced red fluorescence, while the control group is only stained 
by N01 probes (Fig. 4g). The antibacterial mechanism of P1-P2 was further explored. Membrane 
depolarization probe DiSC3(5) concentrates in bacterial membranes and quenches due to the high 
concentration. It would emit fluorescence upon disturbance of membrane potential. Triton X-100 
(TX), a potent surfactant, along with P1-P2, induces evident membrane potential disturbances in 
MRSA cells (Fig. 4e). However, VM fails to disrupt membrane potential balance, as its antibacterial 
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mechanism is known as the inhibition of bacterial cell wall synthesis. TEM observations also reveal 
severe membrane dissociation and the release of cytoplasmic contents from MRSA cells (Fig. 4f). 
These findings underscore the strong interaction between P1-P2 and the bacterial cell membrane. 
 
Conclusion 
Deep learning modeling for polymers is of great importance, but due to their complex structures, 
developing effective strategies is still challenging. In this study, we propose a periodicity-aware 
deep learning method for polymer representation learning and property prediction. In PerioGT, a 
novel contrastive learning pre-training strategy based on Periodicity Augmentation (PA) is 
introduced as a periodicity prior. To emphasize the periodic structure of polymers, a periodicity 
prompt is incorporated into the graph in fine-tuning. Additionally, given that the properties of 
polymers are influenced by multilevel factors, a modular graph construction method named 
PolyGraph is proposed to introduce additional conditions in the form of virtual nodes. In comparison 
with baseline methods, PerioGT demonstrates superior performance in all downstream tasks. We 
further conclude that PerioGT has a better feature space quality and a better understanding of the 
periodic structure of polymers through attribute alignment, structural alignment, uniformity, and 
similarity analysis. 

Notably, the effectiveness of PerioGT has also been validated in real-world applications. We 
applied PerioGT to the screening of antimicrobial polymers (AMPs). We constructed the training 
dataset through Michael-addition reaction and high-throughput experimental techniques. PerioGT 
was then used to predict polymers with novel structures, discovering 25 novel AMPs, with a success 
rate much higher than baselines. Additionally, two polymers with potent antibacterial properties 
were identified by PerioGT, and their antibacterial performance against MRSA was evaluated. 

In summary, PerioGT provides an innovative approach to the periodic modeling of polymers 
and exhibits state-of-the-art performance in representation learning and polymer property prediction. 
 
Methods 
PolyGraph construction 
In this work, we propose a polymer representation method named PolyGraph. Given a polymer 
fragment, it can be represented as ( , )G V E=  , where [1, ]{ } vi i NV v ∈=  and , , [1, ]{ } vi j i j NE e ∈=  are nodes 
(atoms) and edges (bonds), respectively. G is further transformed into a line graph ˆ ˆ ˆ( , )G V E= as the 
following steps. (1) Node creation: For each ,i je E∈ , create a corresponding node , ˆî jv V∈ . (2) Edge 
creation: Two nodes inV̂ are connected by an edge in Ê if and only if the corresponding two edges 
in G share a common vertex. The features of ,î jv are initialized to ,i jvh ∈ d which is formulated as: 

 , ,concat( , ),i jv v i v j e i j= +h W x W x W x  (1) 

where is d the embedding dimension, ix and jx denote atom features of iv and jv respectively, ,i jx is 
the bond feature of ,i je  , vW ∈ 0.5 atomd d×  and eW ∈ 0.5 bondd d×  are trainable weights. Line graphs 
emphasize the importance of chemical bonds in polymers. Recently, line graph-based approaches 
have shown promising performance on various chemistry-related tasks41,56. Thus, we adopted 
line graphs in the PerioGT implementation. 

VNN virtual nodes are then added toV̂ . The features of virtual nodes exptv̂ and ˆaddv are initialized 
with expert knowledge of polymers exptx and additional information addx , respectively, to provide 
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supplementary details on polymerization degree, molecular weight distribution, crosslinking degree, 
end groups, and any available conditions. Notably, addx is only introduced in fine-tuning due to its 
weak correlation with the chemical structure of MRUs. Considering the time and space complexity 
of polymer expert knowledge computation, we here approximate the physicochemical properties of 
the multimer (n=3) calculated by Mordred as exptx 57. 
 
Self-supervised pre-training 
In this work, we employ a multi-scale SSL strategy to learn features at different levels of polymers. 
The dataset used in pre-training can be found in Supplementary Information. PA-based contrastive 
learning is proposed to incorporate a periodicity prior. PA-based contrastive learning aims to 
differentiate between augmentations of the same polymer and those of different polymers. For each 
polymer, we randomly and independently sample two fragments via PA and convert them into 
PolyGraphs ˆ ˆ,i iG G′ as a positive pair, while the fragments in the same minibatch sampled from other 
polymers are treated as negative pairs. To prevent the model from over-relying on obvious 
differences and to promote the learning of essential features, we introduce perturbations to 
PolyGraph. For physical nodes, we randomly mask 50% of the nodes in both positive and negative 
samples. The masking method follows the original BERT approach: for each node to be masked, 
there is an 80% chance of replacing it with a special node, a 10% chance of replacing it with a 
random node, and a 10% chance of leaving it unchanged58. For virtual nodes, we similarly mask 50% 
of the dimensions randomly. For numerical features, we replace values with Gaussian noise. For 
categorical features (e.g., binary values 0 or 1), we replace the feature with its opposite. 

The graph encoder ( )f ⋅  with the readout operator is used to extract graph representations 
followed by a non-linear projector PACL ( )g ⋅ to map representations into a latent space, generating 
representation vectors ,i i′z z . Info NCE loss is applied to distinguishes the positive pair ( , )i i′z z  from 
negative pairs { }{( , ),( , )}|i k i k k i′ ≠z z z z



for each PolyGraph ˆ
iG , which is formulated as follow59,60: 

 InfoNCE
exp( / )log ,

exp( / ) exp( / )
( ) i i

i k i kk i k

i γ
γ γ

≠

′
= −

′ ′+∑ ∑
z z

z z z z



   (2) 

whereγ is a temperature hyperparameter. PACL is the averaged loss for all n samples in a mini batch: 

 PACL InfoNCE InfoNCE
1 1

1 1( ) ( ),
n n

i i
i i

n n= =

′= +∑ ∑    (3) 

where InfoNCE ( )i′ denotes the symmetric loss InfoNCE ( )i for the paired positive sample ˆ
iG′ . 

 We hypothesize that PA-based contrastive learning enables the model to better understand the 
long-range structure of polymers, while Masked Node Modelling (MNM) helps the model learn the 
local features of polymers. Therefore, another non-linear projector MNM ( )g ⋅  maps the perturbed 
physical nodes into a latent space for MNM. Meanwhile, we here also reconstruct the virtual nodes 
features exptv̂ based on the perturbed ˆ

iG . The loss function for MNM is defined as58: 

 MNM PN VN_CLS VN_REG
1 ( ),
3

= + +     (4) 

where PN  represents the reconstruction loss of physical nodes (CrossEntropyLoss), VN_CLS  
represents the reconstruction loss of categorical features in virtual nodes (BCELoss), and VN_REG
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represents the reconstruction loss of numerical features in virtual nodes (MSELoss). 
The overall training objective combines the PA-based contrastive loss, the MNM loss, and the 

reconstruction loss: 

  total PACL MNM.= +    (5) 

 There are three versions of PerioGT implemented: PerioGT-base (100M), PerioGT-small 
(30M), and PerioGT-large (250M), as described in Supplementary Table 6 and 7. 
 
Graph encoder architecture 
Due to the large chemical structures of polymers, we employ Graph Transformer (GT) as the graph 
encoder. GT can effectively capture long-range dependencies in polymers through attention 
mechanism and mitigate the over-smoothing problem40. 

Unlike vanilla Transformer, GT needs to incorporate graph structure information to enhance 
the graph structure awareness of the Transformer model. We implement LiGhT41 and GraphGPS42 
as the graph encoder ( )f ⋅ here. The structural encoding of LiGhT includes Path Encoding (PE) and 
Distance Encoding (DE). PE is used to encode shortest path between nodes to represent their 
structural relationships within the graph. And DE encodes the direct pairwise distances between 
nodes. Formally, the path feature ,

p
i ja  between îv  and ˆ jv  in the path attention matrix pA ∈ ˆ ˆv vN N×  is 

defined as follow: 

 ,
1

1 p

n

N
p p p

n vi j
p n

a
N =

= ∑W W h  (6) 

where nvh represents the feature of the n-th node in the shortest path between îv and ˆ jv , pN represents 
the number of nodes in the path, p

nW ∈ pd d× and pW ∈ 1 pd× are trainable weights. Similarly, the 
distance feature ,

d
i ja  between îv  and ˆ jv  in the distance attention matrix dA ∈ ˆ ˆv vN N×  is calculated as 

follow: 

 , 2 1 ,( )d d d
i j i ja dσ=W W  (7) 

where ,i jd represents the distance between îv and ˆ jv , 1
dW ∈ 1dd × and 2

dW ∈ 1 dd× are trainable weights. 
GT follows a similar multi-head attention in vanilla Transformer. Specifically, for a given feature 
matrix ( )lH ∈ v̂N d× , the multi-head attention mechanism MHSA( )⋅ is formulated as follow61: 

 

( ) ( ) ( )

( )
attn 1 2

, , ,

softmax( ), ,

LayerNorm(concat( , ,..., ) ),h

l Q l K l V
k k k k kk

k k p d
k k k k

k

l
N

d

= = =

= + + =

= +

Q H W K H W V H W
Q KA A A O A V

H O O O H



 (8) 

where , ,Q K V
k kkW W W ∈ kd d× are trainable weights of k-th head at layer l , /kd d h= is the dimension 

of each attention head, h  stands for the number of heads. The multi-head attention mechanism 
computes queries, keys, and values using linear transformations, calculates attention scores, and 
then combines the weighted values across all heads with a residual connection to produce the 
intermediate matrix attnX . A fully connect network (FFN) is then applied at each sub-layer: 
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 ( 1) ( ) ( )
attn attn1 2LayerNorm( ( ) ),l l lσ+ = +H H W W H  (9) 

where ( )
1

lW ∈ 4d d× , ( )
2

lW ∈ 4d d× are trainable weights of FFN, ( )σ ⋅ is the GELU activation function. 
In the GraphGPS, a local graph neural network is employed to capture local structural features. 

For a given node feature vector ( )l
vh , ( 1)l

v
+h is formulated as follow: 

 

( ) ( ) ( ) ( )

( 1) ( ) ( )

aggregate({message( , , ) : ( )}),
update( , ),

l l l l
v v u uv

l l l
v v v

u v
+

= ∈

=

m h h e
h h m



 (10) 

where message( )⋅ , aggregate( )⋅ , update( )⋅ is the message function, aggregation function and update 
function in PNA62, respectively. Then, a global self-attention mechanism is used to capture long-
range dependencies: 

 ( 1) ( 1)
localMHSA( ),l l+ +=H H  (11) 

where ( 1)
local

l+H is the node feature matrix, MHSA( )⋅ denotes the multi-head attention. 
Finally, a readout operator is applied to extract a graph-level representation: 

 phys expt add
ˆ concat(mean({ }), , ),iG =h h h h  (12) 

where phys expt add, ,ih h h denote the representations of real nodes, expert knowledge nodes, additional 
information nodes, respectively. As shown in Supplementary Table 5, we compare the performance 
of LiGhT and GraphGPS on multiple downstream tasks. LiGhT is adopted in the subsequent 
analysis due to better robustness. 
 
Prompt generation 
To comprehensively aggregate the equivalent motifs in different RUs of polymers, we introduce a 
periodic prompt based on PA in fine-tuning. For a given fragment Ĝ , PA is used to obtain a set of 
augmentations aug[1, ]

ˆ{ }i i NG ∈  . For any node v  in Ĝ  , we match it to the corresponding motifs in
aug[1, ]

ˆ{ }i i NG ∈ using RDKit package63, resulting in eq[1, ]{ }k k Nv ∈ . Then, we utilize the pre-trained GT to 
extract the corresponding node representation eq

vH ∈ eqN d×  . Multi-head self-attention layers are 
further applied to obtain the periodic prompt prompt

vh . Finally, prompt
vh is added to the initial feature of 

as a prompt: 

 

attn eq

prompt attn

initial prompt

MHSA( ),
[0],

,

v v

v v

v v vα

=

=

= +

H H
h H
h h h

 (13) 

where attn[0]vH represents the [PROMPT] token embedding which interacts with other nodes,α is a 
learnable weight. 
 
In-silico experiment settings 
Since polymer fragments are originally represented as SMILES, we used RDKit package to convert 
them into graphs, as well as to calculate atomic and bond features, as detailed in the Supplementary 
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Table 3 and 4. In SSL stage, Adam optimizer is utilized with an initial learning rate of 2×10-4 and a 
weight decay of 10-6. The PolynomialDecayLR scheduler is employed to adjust the learning rate 
dynamically. The model is pre-trained with batch size of 288 for 100000 steps. In the fine-tuning of 
PerioGT, the pre-trained graph encoder weights are loaded, while projectors for pre-training are 
removed, and a randomly initialized task-related predictor is added for predicting specific properties. 
Grid search and early stopping is conducted for hyperparameter selection, and the model with the 
lowest RMSE on the validation set is selected. The specific search ranges of hyperparameters are 
provided in the Supplementary Information. The above experiments were implemented using 
Pytorch and DGL package on a Linux server with NVIDIA RTX4090 graphics processing units. 
 
Wet-lab experiment details 
Dataset construction. 12 diacrylates and 52 amines are selected to create a comprehensive library 
comprising 624 polymers (Supplementary Fig. 2 and Supplementary Table 10). The dataset is 
randomly sampled from the candidate pool to yield 150 combinations. 
 
Polymer synthesis. The feeding ratio of diacrylates to amines is 1.2:1. Specifically, 40 μL of amine 
(3M in DMF) is pipetted into 48 μL of diacrylate (3M in DMF) in a vial. The reaction vial is heated 
to 90°C, and the reaction proceeded for the next 24 h. In the case of diacrylates with Boc-protecting 
groups, 80 μL of hydrofluoric acid is added to the solution after the completion of Michael addtion, 
and the vial is stirred overnight to remove protections. Once the reaction is completed, the raw 
product solution is purified by precipitating in diethyl ether. 
 
Antimicrobial activity labelling of polymers. Purified polymers are redissolved at 2.56 mg/mL in 
DMSO. MRSA is cultured in Tryptic Soy Broth (TSB) at 37°C overnight. The bacterial suspension 
is then diluted and adjusted to a concentration at 105 Colony Forming Unit (CFU)·mL-1. 
Subsequently, 195 μL of bacterial solution is added to 96-well plates, followed by the addition of 5 
μL of polymer solution (final concentration at 64 μg/mL). The mixtures are allowed to incubate for 
9 h at 37°C. Polymers capable of maintaining clear solutions are labeled as antibacterial 
combinations, while those resulting in turbidity are classified as non-antibacterial combinations. 
The biological characterization details can be found in supplementary information. 
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