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Abstract 

 This work introduces LEGOLAS, a fully open source TorchANI-based neural network 

model designed to predict NMR chemical shifts for protein backbone atoms. LEGOLAS has been 

designed to be fast, and without loss of accuracy, as our model is able to predict backbone chemical 

shifts with root-mean-square errors of 2.69 ppm for N, 0.95 ppm for Ca, 1.40 ppm for Cb, 1.06 

ppm for C’, 0.52 ppm for amide protons, and 0.29 ppm for Ha. The program predicts chemical 

shifts at least one order of magnitude faster than the widely utilized SHIFTX2 model. This 

breakthrough allows us to predict NMR chemical shifts for a very large number of input structures, 

such as frames from a molecular dynamics trajectory. In our simulation of the protein BBL from 

E. coli, we observe that averaging the chemical shift predictions for a set of frames of an MD 

trajectory substantially improves the agreement with experiment with respect of using a single 

frame of the dynamics. We also show that LEGOLAS can be successfully applied to the problem 

of recognizing the native states of a protein among a set of decoys. 

 

Introduction 

 NMR has become a routine method to study proteins in experimental settings, as it is highly 

sensitive to subtle environmental changes, and requires less preparation and is less dependent on 
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sample conditions than X-ray and cryo-EM methods.1 Namely, NMR chemical shifts (d) provide 

a direct and accurate method of determining a variety of protein structural features, such as regions 

of secondary and post-secondary structure and conformational changes as a result of folding or 

ligand binding.2 Although useful, computation of NMR chemical shifts and their trends in proteins 

has presented challenges. Quantum Mechanical (QM) methods are capable of computing chemical 

shifts; however, their application to large systems is limited by the rapid increase in computational 

cost with system size.3 Fragmentation approaches have been developed to compute chemical shifts 

of biomolecules, though such quantum mechanics/molecular mechanics techniques are still 

computationally expensive.4 Molecular dynamics (MD) methods are commonly used to study 

large biomolecules such as proteins, and these methods are computationally inexpensive enough 

to study a dynamic system over time. This efficiency stems from approximating atoms as single 

points in space, but this same simplification limits their ability to compute detailed atomic 

properties like chemical shifts. 

Machine learning methods can close the gap between computational speed and the 

accuracy of atomic property predictions. There are several models available currently that can do 

this by evading the need for expensive QM calculations; instead, they rely on training to 

experimental data.3 Models such as SHIFTX25, SPARTA+6, UCBShift7, NMR GNN8, and 

PROSHIFT9 are often used to support experimental chemical shift research for proteins. 

Specifically, SHIFTX2 integrates a sequence-based prediction model, SHIFTY+ with a structure-

based neural network model, SHIFTX+, resulting in considerable accuracy for native protein 

states. By construction, it can falter when applied to non-native protein states due to the inability 

of the SHIFTY+ module to differentiate between folded and non-native states. The success of 

SHIFTY+ is also limited to whether the query protein has an aligned sequence match in its 
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database. Consequently, for analyzing non-native structures or for sequences with no matched 

data, SHIFTX2's accuracy is contingent on its SHIFTX+ component. This has been recognized by 

work that has utilized SHIFTX2, where they note that although they use the SHIFTX2 program, 

the reported accuracy of SHIFTX+ is more reliable when considering their applications10,11. 

Additionally, the lack of numerical differentiability in both SHIFTX2 and SHIFTX+ prevents their 

use in applications requiring gradient-based optimization, such as refining molecular 

structures.5 SHIFTX2, SHIFTX+, and SPARTA+ are much slower than our implementations5, 

limiting many potential practical applications. This can become considerably detrimental when 

needing to compute chemical shifts for a large dataset of protein structures or frames of an MD 

run. 

This work presents LEGOLAS (neuraL nEtwork enGine fOr caLculating chemicAl 

Shifts), a neural network model that predicts protein backbone NMR chemical shifts. LEGOLAS 

is implemented in TorchANI12, a Pytorch-based13 environment that is designed to be used in the 

training and inference of ANAKIN-ME (ANI) deep learning models.14-17 This interface was used 

because it is light weight, user-friendly, cross platform, and easy to read and modify.12 TorchANI 

contains a core library including the atomic environment vector (AEV) computer, amongst other 

utilities.12 The AEV computer allows us to encode molecular structure as vectors using highly-

transferable modified Behler and Parrinello18 symmetry functions.12 These symmetry functions are 

continuous and differentiable14, and are well-supported by PyTorch.12 This feature allows our 

program to be end-to-end differentiable, making it adaptable to gradient methods.12 This is 

essential for applications like refining molecular structure using biased molecular dynamics.19-21 

TorchANI also allows us to complete fast training and inference on modern NVIDIA GPUs, along 
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with computing CUDA-accelerated AEVs (CUAEVs) for efficient calculation and storage of 

AEVs.12 

Our model was trained on the SHIFTX25 dataset of protein structural information paired 

with experimental 1H, 13C, and 15N chemical shifts. Several chemical shift predictors have been 

trained and tested using this dataset, which allows us to easily benchmark the performance of our 

model.22 We evaluate our model performance and compare with the above models using accuracy 

and timing metrics on the SHIFTX2 test set.22 Our assessment reveals that LEGOLAS not only 

demonstrates significantly faster prediction speeds than other models, but also maintains 

exceptional accuracy. This makes LEGOLAS highly practical for applications requiring the 

analysis of an exceptionally large number of structures. 

We further assessed LEGOLAS by evaluating its capability to discern a native structure 

from a set of decoys.23,24 LEGOLAS can reliably identify the native structure from diverse protein 

datasets, further affirming its reliability in structural prediction and underscoring its promising 

utility for precise structure identification from a pool of potential candidates. 

Other neural network models such as SHIFTX+ have been further put to the test beyond 

their traditional role in predicting chemical shifts for individual structures. Several studies suggest 

that dynamically averaged NMR chemical shifts obtained through molecular dynamics (MD) 

simulations show substantial improvements when compared to individual structures10,25,26, even 

highlighting a noteworthy alignment with experimental chemical shifts.10 Yet, it is crucial to 

highlight that not every method designed for predicting chemical shifts is suitable for MD datasets. 

For effective application in MD, a chemical shift predictor must be sensitive to structural changes 

and fast enough to efficiently compute chemical shifts for thousands to tens of thousands of frames. 

LEGOLAS’s rapid calculation capabilities position it as an ideal candidate for the application of a 
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chemical shift predictor within this context. The integration of a chemical shift predictor and MD 

opens a new avenue of possibilities, enabling a deeper understanding of the intricate behaviors and 

interactions within biomolecules.  

 

Methods 

Model 

LEGOLAS is implemented using PyTorch13, which allows us to encode our data and 

employ our model using custom functions. PyTorch is compatible with CUDA27, which allows us 

to utilize NVIDIA GPUs throughout training and inference. Input data for our model consists of 

Protein Data Bank (PDB)28 files that are then encoded as local descriptors (AEVs) in TorchANI, 

with one AEV computed per backbone atom. We augmented our model by including amino acid 

type information as a vector embedding. This embedding was appended to the input AEV, 

providing the model with valuable information about the specific characteristics of each amino 

acid. The encoding involves utilizing continuous and differentiable symmetry functions to 

encapsulate information from spatially nearby atoms, which is further detailed in our previous 

work with ANI.14 This process consists of two components: a radial part containing interatomic 

distance information within a cutoff of 5.1 Å, as shown in Figure 1a, and an angular part containing 

interatomic angular information within a cutoff of 3.5 Å. The AEVs incorporate details about all 

atoms within these cutoffs, irrespective of their binding to the selected atom. In this case, the AEV 

does not contain any details about atoms beyond these cutoffs, meaning that atoms outside these 

limits won't impact the predicted chemical shift of this atom. 

Three layers were used for each network (two hidden, one output), and all applied linear 

transformation and ELU29 activation functions. The size of the input layer was 570, where AEV 
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size was 560 and embedding size was 10. The size of the first hidden layer was 256, the second 

was 64, and the output layer was 1. The output provides chemical shifts in ppm. The final Chemical 

shifts are an average of the outputs from 5 independent models for enhanced accuracy. The 

structure of LEGOLAS is summarized using Figure 1b. 

 

  

Figure 1. a) Example of distance information included in a Ca’s AEV within a radial cutoff of 5.1 

A. b) LEGOLAS architecture. The structure files (PDB or trajectory) are input to 6 networks 

corresponding to backbone atom type. Molecular structure is encoded as AEVs, which contains 

interatomic distance information, interatomic angular information, and amino acid type (AAi). 

AEVs are computed for each atom and are of length 570. Using ELUs, AEVs are passed through 

two hidden layers, the first having 256 neurons and the second having 64 neurons, and finally to 

the output layer containing predicted chemical shift (dPRED). This is completed for 5 models trained 

independently. 
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Training 

Our model was trained and tested using a dataset of protein structural information paired 

with experimental 1H, 13C, and 15N chemical shifts provided by SHIFTX25. The SHIFTX2 dataset 

consists of a training set of 197 proteins and a test set of 61 proteins. 6 different networks were 

trained, one for each backbone atom type: C’, Ca, Cb, Ha, HN, N. For each backbone atom type, 

we applied z-score normalization by first shifting the values using the experimental average 

specific to its residue type and then dividing by the standard deviation for that residue type. After 

prediction, the resulting chemical shifts were denormalized and shifted back to their original scale 

in ppm. To ensure robustness and reliability, we adopted a model ensembling approach, generating 

variations in training/validation splits without replacement. Specifically, the SHIFTX2 training set 

was partitioned into five segments, with four used for training and one reserved for validation in 

each iteration. This 80:20 split was systematically repeated, guaranteeing that every molecule 

appeared in the validation set at least once.  

We employed the mean squared error as our loss function as the following: 

 

 The AdamW optimizer, with a learning rate of 0.001, was chosen to prevent overfitting 

and improve the generalization performance of the model. Additionally, we employed an early 

stopping mechanism during training. The “ReduceLRonPlateau” strategy was configured with a 

factor of 0.5, a patience parameter of 100 epochs, and a threshold of 0.001. The best-performing 

model, determined by the lowest Root Mean Squared Deviation (RMSD) on the validation set, 

was saved for subsequent analyses. 
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Decoy Test 

We studied 631 structures of monomer A of the ribosomal protein L7/L12 from E.coli 

(PDB:1CTF) from the 4-state-reduced decoy data set30 provided by the Decoy ‘R’ Us database.31 

This dataset can be found under the “multiple” decoy sets, which include proteins where a range 

of conformations with different RMSDs to the experimental structure are present. Included in this 

set are the 631 PDBs and their corresponding Ca RMSDs ranging from 0 to 10 Å from the native 

structure. Hydrogens were added to all structure files using the Reduce32 program in 

AmberTools23.33  

The decoy test follows the procedure presented in UCBShift.7 Experimental 1H and 15N 

chemical shift assignments for the 1CTF protein were obtained from BMRB.34 Correlation 

coefficients between experimental chemical shifts and chemical shifts predicted by LEGOLAS 

were computed for each structure. These were averaged over HN, Ha, and N, then compared to 

Ca RMSD to the native structure. 

 

Molecular Dynamics 

 The structural information for NaF-BBL (2CYU) was obtained from the PDB database.35 

The AMBER ff19SB force field was used for the protein.36 Simulations were conducted utilizing 

the AMBER20 suite.37 The protein was solvated in a cubic box with a buffer of 10 Å using TIP3P 

water molecules and neutralized by adding counter ions. The SHAKE38 algorithm was employed 

to enforce constraints on bonds involving hydrogen atoms during the simulations. Additionally, 

hydrogen mass repartitioning was implemented, allowing the utilization of a time step of 4 fs with 

SHAKE.39 For the treatment of long-range interactions, Particle Mesh Ewald was utilized, and 

non-bonded interactions were calculated with an 8 Å cutoff.40 
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The system underwent an initial minimization of 500 steps of steepest descent and 500 

steps of conjugate gradient, while subject to restraints of 500 kcal mol-1 Å-2 applied from residue 

2 to 40. Subsequently, an additional minimization phase comprising 1000 steps of steepest descent 

and 9000 steps of conjugate gradient, during which the restraints were removed. The minimized 

structure was then gradually heated at a constant volume to 303.8 K with backbone restraints of 

10 kcal mol-1 Å-2 over a period of 4 ns.  Then, it underwent additional relaxation at constant volume 

for 400 ps without restraints. Constant pressure and temperature simulations were performed using 

Langevin thermostat with a friction coefficient of 2 ps-1 and Monte Carlo barostat for 4 μs.41,42 

Subsequently, constant volume and temperature simulations for 19 μs. For analysis, a trajectory 

comprising 23,469 frames was generated by extracting every 50th frame excluding the first 

microsecond of the production run. A water shell was created by selecting the closest 180 water 

molecules around the protein, and the remaining water molecules for the selected 23,469 frames 

were deleted using CPPTRAJ.43 

LEGOLAS is employed to derive chemical shifts for individual frames and to directly 

calculate the average chemical shifts for each atom throughout an entire MD simulation. The input 

for LEGOLAS consists of MD simulation result files: the parameter/topology file, and the 

trajectory file. The output file generated by LEGOLAS provides the average and standard 

deviation of chemical shifts across the 5 models for each atom across every frame of the 

simulation. 

 

 

 

 

https://doi.org/10.26434/chemrxiv-2025-w2qn8 ORCID: https://orcid.org/0000-0003-3963-8784 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2025-w2qn8
https://orcid.org/0000-0003-3963-8784
https://creativecommons.org/licenses/by-nc/4.0/


 

 10 

Results and Discussion 

Performance on SHIFTX2 test set 

The correlation of LEGOLAS predictions with the true reference values are mapped in 

Figure 2, where the predicted chemical shift (ppm) versus experimental chemical shift (ppm) were 

plotted for the test set of 61 proteins, separated by backbone atom type. The root-mean-squared 

error (RMSE) of each backbone atom type was computed to be 2.69 ppm for N, 0.95 ppm for Ca, 

1.40 ppm for Cb, 1.06 ppm for C’, 0.52 ppm for amide protons, and 0.29 ppm for Ha. 

 

 

Figure 2. 2D Histograms of the prediction of chemical shift in ppm per backbone atom type over 

a test set of 61 proteins. Correlation coefficients are indicated for each backbone atom type. 

 

Model performance is shown in Figure 3. A complete breakdown of RMSE values 

computed for LEGOLAS are given in SI Table S1, including RMSEs for each atom type during 

R = 0.883 R = 0.981 R = 0.994 

R = 0.869 R = 0.736 R = 0.846 

https://doi.org/10.26434/chemrxiv-2025-w2qn8 ORCID: https://orcid.org/0000-0003-3963-8784 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2025-w2qn8
https://orcid.org/0000-0003-3963-8784
https://creativecommons.org/licenses/by-nc/4.0/


 

 11 

validation. As shown in Figure 3, we benchmark model performance by computing correlation 

coefficients (R) and RMSE per backbone atom type using SHIFTX2 and SHIFTX+, as these 

models have been trained using the same dataset as LEGOLAS. This allows us to make proper 

conclusions about our model’s performance by eliminating differences in performance due to 

variations in data.  

  

Figure 3. Comparison of prediction accuracy of LEGOLAS to SHIFTX2 and SHIFTX+ on the 

SHIFTX2 test set. Metrics used include correlation coefficient (R) (left) and RMSE (right). 

  

With the version of SHIFTX2 presently accessible for download, we encountered 

challenges replicating the performance achieved by SHIFTX2 and SHIFTX+, as reported in the 

original SHIFTX2 manuscript. This is detailed in SI Table S2, which shows comparisons of RMSE 

and R values per atom type, encompassing both our computations those reported by reference 5, 

the original manuscript presenting SHIFTX2. Additional sources report similar inconsistencies 

when running SHIFTX2.7,8  

The addition of the SHIFTY+ module leads to a significant improvement in correlation and 

error on the SHIFTX2 test set, mostly because ~75% of the molecules in the test set have sequence 

homologues in the RefDB database.44 As for molecules beyond this test set, there are certain 
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instances in which relying solely on SHIFTX+ is generally more dependable than SHIFTX2, such 

as if the query protein does not have a matching sequence in the SHIFTX2 database and for 

proteins that are in a non-native state. Since our applications require studies of these instances, we 

mainly compare our model’s performance alongside other structure-based predictors. Here, we 

show the comparison of LEGOLAS to SHIFTX+, as it has shown high correlation and low error 

in comparison to several other models.22 We find that LEGOLAS and SHIFTX+ perform similarly 

on this test set, and slight differences vary depending on the atom type. An analysis of RMSE vs 

residue type for each backbone atom type in the test set shows the presence of high RMSEs for 

cysteine CB and HN along with proline N as displayed in SI Figure S1. This is likely due to 

insufficient training and testing data for these residue-specific atom types. We are actively working 

to improve accuracy, ensuring a more reliable simulation of NMR chemical shifts for our 

applications. 

Aside from accuracy, we optimized LEGOLAS for speed. LEGOLAS is specifically 

programmed so that the calculation of AEVs and chemical shifts can be completed using either 

CPUs or GPUs. Table 1 includes the total time it takes for LEGOLAS as a 5-model ensemble to 

predict chemical shifts for six backbone chemical shifts in the SHIFTX2 test set containing 61 

proteins (10,760 total amino acid residues) when computed on CPUs or GPUs. These inference 

times are compared to three other models on the same test set. Included are SHIFTX2 and 

SHIFTX+, along with UCBShift-X, the machine learning module of UCBShift7. None of the other 

chemical shift predictors referenced in this work have any available method to run on GPU. 

Therefore, timings for all programs were computed using two CPUs. The timings for the models 

previously mentioned are listed in Table 1 as Total Prediction Time, and without including the 

time required for loading and reading files, which we call “Raw Prediction Time”.  
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Table 1. Total and raw prediction times for four different protein chemical shift predictors on a 

test dataset of 61 proteins. Timing of LEGOLAS was computed on an NVIDIA A100 PCIE 40GB 

GPU and two Intel® Xeon® E5-2637 v4 (3.50GHz) CPUs. SHIFTX2, SHIFTX+, and UCBShift-

X on two Intel® Xeon® CPU E5-2637 v4 (3.50GHz), and the speed up of this in comparison to 

UCBShift-X was applied to these models. 

Program Total Prediction 
Time (s) Speed up Raw Prediction Time 

(s) Speed up 

UCBShift-X 1534 1x 390 1x 

SHIFTX2 89.8 17x 63.5 6x 

SHIFTX+ 77.6 20x 51.1 8x 

LEGOLAS: CPU 32.5 47x 15.2 26x 

LEGOLAS: GPU 6.51 236x 3.23 121x 

 

  On CPU, UCBShift-X takes the longest to make predictions on the SHIFTX2 test set, while 

SHIFTX2, SHIFTX+, and LEGOLAS demonstrate similar inference timings. Our model is at a 

great advantage since it can be fully run on GPUs. On GPU, LEGOLAS is ~14 times faster than 

the widely used SHIFTX2. Another unique property of our model is its ability to make atom-type 

specific calculations. In some cases, not all chemical shifts are needed, so only a reduced number 

of networks would be used, with an increased speedup. When considering raw prediction timings, 

LEGOLAS on GPU demonstrates a significant advantage over SHIFTX2, boasting a speedup of 

20 times. We can attribute this to a slower time opening and reading of files. This provides a 

notable benefit. Molecular dynamics simulations typically require only two files: a trajectory file 

containing information about atom positions over time, and a topology file describing molecular 

structure and atom connectivity. LEGOLAS would be exceptionally fast in such cases, as it would 

only need to process these two essential files, potentially making it more efficient for molecular 

dynamics applications compared to models that may require processing additional files or data. 
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Utilizing LEGOLAS for Protein Structure Determination 

 Following the procedure described in the UCBShift manuscript7, LEGOLAS is evaluated 

on its ability to select the experimental structure from a set of decoy structures, using chemical 

shift predictions. We obtained a decoy dataset that has a range of altered and misfolded structures 

as measured by the α-carbon RMSD versus the native state. We predict the chemical shifts for 

each structure and compute the correlation between the prediction and the experimental chemical 

shifts. The average correlation coefficients for each structure with experimental chemical shifts of 

H, Hα and N are plotted versus RMSDs to their native structures in Figure 4. More details and 

sources are described in Methods. We expect that a good prediction method would have a high 

correlation coefficient between the predict and measured chemical shifts for the correct 

experimental structure but exhibit much worse correlation for the decoy structures. 

LEGOLAS is evaluated in comparison to UCBShift-X, the structure-based neural network 

model within UCBShift.7 The UCBShift framework combines UCBShift-X and a sequence-based 

identifier known as UCBShift-Y. UCBShift is excluded from the comparison for two primary 

reasons. First, as LEGOLAS functions as a structure-based identifier, it is appropriately 

benchmarked against a program with a similar operational approach. Second, UCBShift includes 

BMRB 4429 (PDB:1RQU) in its RefDB dataset, utilized for UCBShift-Y predictions, resulting in 

an exact match with 1CTF. This would not be representative of a neural network models’ 

prediction ability, but rather, looking up an exact match. 

 

https://doi.org/10.26434/chemrxiv-2025-w2qn8 ORCID: https://orcid.org/0000-0003-3963-8784 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://paperpile.com/c/36w0Qh/7kOo
https://doi.org/10.26434/chemrxiv-2025-w2qn8
https://orcid.org/0000-0003-3963-8784
https://creativecommons.org/licenses/by-nc/4.0/


 

 15 

 

Figure 4. Average correlation coefficients between predicted and experimental H, HA, and N 

chemical shifts versus Cα RMSD to native structure for PDB 1CTF. Here, the results of LEGOLAS 

are compared to the results of UCBShift-X, as reported by UCBShift.7 

 

 In our analysis, LEGOLAS demonstrates a remarkable ability to discern the native 

structure, yielding a correlation coefficient of 0.80. Notably, there is a discernible trend showing 

a decrease in correlation as the RMSD increases. However, a more crucial finding is a substantial 

gap in correlation coefficients between the native structure and all other structures. The difference 

in correlation between the native structure and all structures is significant, at 0.17. UCBShift-X, 

on the other hand, assigns the native structure a correlation coefficient of 0.86, slightly surpassing 

LEGOLAS's prediction. However, UCBShift-X consistently predicts higher coefficients for all 

structures, as the difference between their native structure and all others is also 0.17. For the 

purpose of clearly distinguishing the native structure from a set of decoy structures, they have 

similar performance. We conclude that LEGOLAS can perform well with this test, not only 

-X 

https://doi.org/10.26434/chemrxiv-2025-w2qn8 ORCID: https://orcid.org/0000-0003-3963-8784 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2025-w2qn8
https://orcid.org/0000-0003-3963-8784
https://creativecommons.org/licenses/by-nc/4.0/


 

 16 

affirming the validity and trustworthiness of its predictions but also demonstrating practical utility 

in real-life applications. 

 The total time required for this prediction is recorded in Table 2. UCBShift-X is not 

compatible with GPUs in its current release, so it was run using CPUs. LEGOLAS was run on a 

GPU. 

 

Table 2. Differences in timing of chemical shift prediction for UCBShift-X and LEGOLAS on a 

dataset of 631 proteins containing 68 residues each. Timing of UCBShift-X was computed on two 

Intel® Xeon® CPU E5-2637 v4 (3.50GHz). Timing of LEGOLAS was computed on an NVIDIA 

A100 PCIE 40GB GPU.  

Program Time (s) Speed up 

UCBShift-X 4860 1x 

LEGOLAS 42.0 116x 

 

From start to finish, LEGOLAS was able to make 1,290,395 chemical shift predictions 

(631 structures * 409 backbone atom chemical shift predictions per structure * 5 models) in 42 

seconds, completing its predictions for the decoy dataset 116 times faster than UCBShift-X. This 

decoy test emphasizes the crucial role of faster processing speeds when dataset sizes grow. In this 

instance, with a dataset of 631 proteins, a simulation that would take over an hour using UCBShift-

X can be completed in just 42 seconds with LEGOLAS. 

 

 

 

https://doi.org/10.26434/chemrxiv-2025-w2qn8 ORCID: https://orcid.org/0000-0003-3963-8784 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2025-w2qn8
https://orcid.org/0000-0003-3963-8784
https://creativecommons.org/licenses/by-nc/4.0/


 

 17 

Chemical shift predictions in molecular dynamics simulations 

 An advantage of our network’s high-speed inferences is that it can be applied to molecular 

dynamics simulations. Molecular dynamics simulations can contain up to tens of thousands of 

frames for one system, and fast computational speeds are necessary for collecting data of this 

volume.  

 This is an advantageous application for a chemical shift predictor because averaging the 

chemical shifts for an atom over a period of time would be more representative of molecular space 

than taking the chemical shift of that atom in a single frame. This holds especially true for atoms 

on highly dynamic residues and/or residues that interact with dynamic solvent molecules. 

 Due to the dynamic nature of protein conformations, each atomic nucleus will experience 

varying degrees of shielding in simulation. This variability reflects the importance of analyzing 

the chemical shifts of proteins over time, as a single frame could produce different chemical shifts 

than the next. 

 We applied LEGOLAS to a simulation of the 40-residue BBL (PDB: 2CYU) in explicit 

solvent over 23,469 frames. Our model can compute the chemical shifts for all 6 backbone atoms 

in each frame of this simulation on an A100 GPU in only 17.3 seconds. The total number of 

predictions was 235 chemical shifts per frame x 5 models x 23,469 frames = 27,576,075. 

From this, a histogram for each atom can be extracted to fully understand the spread of 

values. An example of this is shown in Figure 5. 
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Figure 5. Chemical shift changes for an amide proton on residue 5 of 2CYU35 over 23,469 frames. 

These chemical shifts predictions are plotted in a histogram (right), showing the variation of values 

depending on the protein conformation at each frame. 

 

 Figure 5 shows that at any frame of this simulation, the amide proton on residue 5 of 

2CYU35 could have a chemical shift as low as 7 ppm and as high as 9 ppm. This variation 

emphasizes the potentially significant fluctuations in chemical shifts across backbone atoms under 

constant volume and temperature (NVT) conditions, therefore underscoring the importance of 

considering a protein's complete structural dynamics when predicting chemical shifts. 

 Predicted versus experimental chemical shifts for each fragment as a single structure and 

as an average over MD simulation are detailed in SI Figure 2. Each graph is split based on three 

fragments of BBL: residues 5-12, residues 13-30, and residues 31-38, as labeled in Figure 6. 

Correlation appears to have a direct relationship with rigidity of structure. The first and third 

fragments have a considerably better correlation than the second fragment as they consist of atoms 

within larger, more rigid α-helices. 

 

https://doi.org/10.26434/chemrxiv-2025-w2qn8 ORCID: https://orcid.org/0000-0003-3963-8784 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2025-w2qn8
https://orcid.org/0000-0003-3963-8784
https://creativecommons.org/licenses/by-nc/4.0/


 

 19 

 

Figure 6. Native Structure of NaF-BBL from E. coli. Three fragments were individually analyzed 

based on secondary structure (residues 5-12: red, residues 13-30: cyan, residues 31-38: green). 

 

The average chemical shift over all 23,469 frames for each atom obtained from simulation 

and the chemical shifts obtained using just the last frame of this simulation are compared to the 

experimental chemical shifts. From analyzing a single frame to analyzing the average over the 

simulation, we can see an increase in correlation coefficient between predicted and experimental 

shifts for all 3 fragments, along with a fit line that exhibits a closer alignment with the parity line 

in all cases, which is showcased in Figure 7 for Ha protons in residues 5-12.  
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Figure 7. Experimental versus predicted Ha chemical shifts in residues 5-12 of BBL plotted 

against the parity line (black). Comparisons are made between predictions for a single frame 

(square, red) and the average over 23,469 frames (dot, blue). Shifts towards the identity line when 

considering MD instead of a single frame are denoted by arrows. 

 

This indicates a better agreement between the predicted and observed values, signifying a 

more accurate predictive model. As further shown in SI Figure S2, this is especially apparent in 

its more rigid segments (residues 5-12 and 31-38) for both a-hydrogen and amide protons. Amide 

protons exhibit a great improvement in all fragments when taking the average chemical shifts over 
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a simulation in comparison to a single frame, going from having little to no correlation (0.03) for 

residues 5-12 to having a correlation of 0.89. 

 

Conclusion 

This work introduces LEGOLAS, a powerful open-source TorchANI-based model 

designed for predicting NMR chemical shifts from protein coordinate data. LEGOLAS 

demonstrates significantly accelerated prediction speeds compared to other published models, 

while maintaining high accuracy. The increased efficiency is attributed to the simple footprint of 

the Neural Network and to LEGOLAS being programmed to utilize CUDA on the PyTorch 

framework, enabling parallel processing on GPUs. It is noteworthy that currently, the other models 

used for comparisons in this study cannot be executed on a GPU. This enhanced speed not only 

makes LEGOLAS a valuable tool for rapid and efficient computation of chemical shifts in MD 

simulations but also positions it for on-the-fly calculations. 

Future endeavors will concentrate on enhancing LEGOLAS's accuracy. Although the 

current accuracy is comparable to that of other structural-based predictors, incorporating additional 

features during training has the potential to elevate LEGOLAS's predictive capabilities to the next 

level. 

 

Data Availability 

LEGOLAS is freely available on GitHub (https://github.com/roitberg-group/legolas). The 

SHIFTX2 and decoy datasets are available on GitHub under data/. 
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