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Large-scale Atomistic Simulations of Lithium Diffusion in
a Graphite Anode with a Machine Learning Force Field†
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and Karl Leswinga

Graphite is the anode material in the vast majority of current commercial lithium-ion batteries (LIBs)
due to its excellent electrochemical performance and abundant reserves. However, the development of
high-performance LIBs still faces technical bottlenecks including limited rate capability, partly because
of the slow Li diffusion in the graphite anode. Experimental measurements of Li diffusivity versus
Li contents in graphite show both monotonic and non-monotonic trends with reported Li diffusivity
spanning orders of magnitude. Comprehensive insights of the Li diffusion process and its bottleneck
in graphite are essential to develop the next-generation LIBs. In this work, we developed a machine
learning force field (MLFF) to investigate the Li diffusion in the LixC6 system. We benchmark density
functional theory (DFT) functionals and dispersion corrections versus experiment, finding nonlocal
van der Waals functional rVV10 shows a good agreement with experimental results in terms of the
structural, energetic, and electrochemical properties of the LixC6 system. We then train a MLFF
based on our recently developed charge recursive neural network (QRNN) architecture to simulate
Li diffusion in graphite at different Li contents, stage structures and temperatures. Our Li diffusion
analysis demonstrates a phase-transition dependent Li diffusion in the LixC6 system, which supports
the experimental measurements of a non-monotonic relation between Li diffusivity and Li content.
This work demonstrates the capability of our QRNN model in carrying out large scale molecular
dynamics simulations to identify the Li diffusion bottleneck in a graphite anode.

1 INTRODUCTION

Since the commercialization of rechargeable lithium-ion batteries
(LIBs) in 1991, they have become the ubiquitous power sources
for portable electronic devices, electric vehicles, and grid elec-
tricity storage. Over the past three decades, extensive research
efforts have been invested to develop new generations of cath-
ode and anode materials with enhanced cycling performance.
Nonetheless, graphite is still the dominant anode for commercial
LIBs because of its superior reversibility of Li de-/intercalation
and low cost.1,2 Graphite is a layered material consisting of
graphene sheets, which have strong covalently bonded carbon
atoms forming a network of honeycombs in each layer. The bind-
ing forces between each layer arise from weak dispersion or van
der Waals (vdW) interactions, enabling the intercalation of ionic
and molecular species. Upon Li intercalation, the vdW interac-
tions are screened, and the graphene layers glide with respect to
each other, resulting in a symmetry change from an AB stacking
(see Figure 1b) in graphite (C6) to an AA stacking (see Figure
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1d) in the fully lithiated state (LiC6).3 In addition, the Li de-
/intercalation within graphite follows a concentration-dependent
staging mechanism, where stage n contains n graphene layers be-
tween two intercalated Li layers. For example, LiC12 is a stage 2
compound with two graphene layers between two Li layers. The
first model to explain the staging mechanism was proposed by
Rudorff and Hofmann.4 However, their model fails to explain the
phase transition between stage 2 and stage 3 LixC6 structures. An
improved model by Daumas and Herold5 was then introduced
to explain the phase transitions between the stages, where the
graphene layers could be elastically bent and deformed around
domains of the intercalated species.2 Despite various computa-
tional simulations3,6 and experimental characterizations7,8, the
staging mechanism is not yet fully understood. In addition, the
phase transitions during Li de-/intercalation within graphite im-
pacts Li diffusion.9 It has been reported that the transitions to-
wards the densely lithiated stages 1 and 2 contribute to the rate
limitations for charge and discharge due to the sluggish Li diffu-
sion.10 On the other hand, the experimentally measured Li diffu-
sion coefficients in graphite have been reported with a very wide
range of values, from 10−6 to 10−16 cm2,11–14 depending on the
electrical potentials, the experimental methodology, and the elec-
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trochemical systems.

Contradicting conclusions have been reported regarding the
change of Li diffusivity as a function of Li concentration. For
example, using the galvanostatic intermittent titration Technique
(GITT) Park et al.15 found a phase transition dependent Li dif-
fusivity versus Li content and an overall increasing Li diffusiv-
ity with a higher Li content in LixC6 while Piao et al.16 showed
a monotonic relation between Li diffusivity versus Li content
and a decreasing Li diffusivity with a higher Li content using
AC impedance measurements. Computational simulations have
also been implemented to calculate Li diffusion coefficients in
graphite. Using first-principles calculations combined with Monte
Carlo simulations, Persson et al. reported a high Li diffusivity
of 10−7 to 10−6 cm2/s in the direction parallel to the graphene
layers.3,17 In their calculations, the interlayer spacing between
empty graphene layers was fixed during simulations while exper-
imentally, the layer spacing increases with a higher Li content.11

In addition, only stage 1 and 2 structures are considered and Li
diffusivity was calculated for x > 0.2 in LixC6.3,17

In this study, we investigate the phase transitions and Li diffu-
sion in the LixC6 system as a function of stage structure, Li con-
tent, and temperature. Given the high computational cost of ab
initio molecular dynamics due to the large size and time scales
required to obtain sufficient diffusion statistics, especially at low
temperatures, we train a machine learning force field (MLFF)
based on our recently reported charge recursive neural network
architecture (QRNN)18 for simulating the Li diffusion in the LixC6

system with 0 ≤ x ≤ 1 and stage 1, 2, 3, 4, and 1L. Our QRNN
model was trained with a dataset labeled by density functional
theory (DFT) calculations with the nonlocal van der Waals func-
tional rVV10. We demonstrate that comparing with the PBE func-
tionals and previously reported ab initio results, the rVV10 func-
tional accurately reproduces the experimental lattice parameters,
phase stability, and voltage profile of the LixC6 system. Previously,
we developed a QRNN model trained to non-periodic DFT data
for liquid electrolyte simulations and our predicted bulk thermo-
dynamic and transport properties of pure carbonate solvents and
electrolyte mixtures agree well with experimental results.19 In
this work, we demonstrate that our QRNN architecture also works
well for periodic systems. Our QRNN model is accurate and sta-
ble, allowing us to perform large scale molecule dynamics sim-
ulations to explore Li intercalation and diffusion in the graphite
anode.

2 Computational Details and Structural Modeling

2.1 DFT calculations

All the density functional theory (DFT) electronic structure cal-
culations were performed using the Quantum Espresso (QE)
software package20 with the Ultrasoft (US) pseudopotentials
(PPs).21 The wavefunction and charge density cutoffs were set
to 40 Ry and 200 Ry, respectively. Cell parameters and atomic
positions were relaxed with a threshold of 10−3 Ry/Bohr for
the atomic forces and 10−5 Ry/Bohr for the energies. The
Monkhorst–Pack method was used to sample the k-points in
the Brillouin zone with a k-mesh sampling density greater than
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Fig. 1 The schematic figures to show the structures of LixC6 compounds
at different stages. The Li-graphite structures in d-g were used to sample
different Li-vacancy arrangements.

15,625 points per Å3. As the standard DFT lacks the description
of the vdW interactions22, we benchmarked three approaches to
include vdW interactions: PBE-D3, PBE D3-BJ, and rVV10, and
we selected the functional by comparing the DFT calculated lat-
tice parameters, thermodynamic stability, and voltage profile of
the LixC6 compounds with the experimental results. The thermo-
dynamic stability of LixC6 compounds at different Li concentra-
tions (x) and stages was evaluated by calculating the formation
energies (Ef) with respect to C6 and LiC6:

Ef = E(LixC6)− xE(LiC6)− (1− x)E(C6) (1)

where E is the calculated total energy of the LixC6 compound
at different Li concentrations. With the calculated E values, the
voltage profile at 0 K for the LixC6 system as a function of Li
content can be calculated as:

Vx =
E(Lix2 C6)−E(Lix1 C6)+(x1 − x2)E(Li)

(x1 − x2)e
(2)

2.2 Structure and training dataset construction
For each stage of LixC6 compound, we sampled different Li-
vacancy arrangements in LixC6 with a total of 1254 structures,
and then we calculated the energy and force for each relaxed
structure using the rVV10 functional. Figure 1 illustrates the
structures of the stage 1, 2, 3, and 4 LixC6 compounds for sam-
pling different Li-vacancy arrangements. In addition, we added
26 structures from four Li diffusion pathways (see Figure 4) to
construct an initial dataset of 1280 structures. These four diffu-
sion pathways include Li diffusion with two neighboring Li (Path-
way 1), with one neighboring Li (Pathway 2), without neighbor-
ing Li (Pathway 3), and through a perfect carbon honeycomb
(Pathway 4). The two end points of each diffusion pathway were
fully relaxed, and the structures used to generate the diffusion
pathways were stage 2 LixC6 compounds. The transition-state
search and energy barrier calculation for the Li diffusion pro-
cesses were conducted with the climbing-image nudged elastic
band (cNEB)23 method as implemented in QE. The QRNN pre-
dicted transition-states and energy barriers were calculated by
the NEBOptimizer in ASE with the QRNN model as the calculator.
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Next, the atomic charges of each structure in the dataset were
labeled with GFN1-xTB.24 Using this dataset, we trained an ini-
tial QRNN model for carrying out active learning loops to sample
additional LixC6 structures. Each active learning round consists
of model exploration, data labeling, QRNN model training, and
model stability testing. In the exploration step, we carried out
molecular dynamics (MD) simulations of the LixC6 compounds
with the Atomic Simulation Environment package (ASE)25 using
an intermediate trained QRNN model as the calculator. Please
note that the ASE MD was only used for the sampling purpose,
and the MD for diffusion calculations was carried out by Desmond
(2024-3).26 We performed ASE NPT MD at 300 and 6000 K for
10 ps using LixC6 structures with the number of atoms less than
200. We sampled the structures from the MD trajectories of dif-
ferent stages of LixC6 compounds to improve the model’s general-
izability on all LixC6 compounds. In the labeling step, we carried
out DFT calculations on the sampled structures to obtain energies
and forces, which were added to the existing training dataset. A
new QRNN model was then trained with the updated dateset and
tested for model stability by running Desmond MD. We found that
the model instability is mainly due to spurious graphite structural
change from layered to disordered. Therefore, we ran ASE MD at
6000 K to sample the snapshots of the trajectory leading up to the
structural change, labeled them with DFT, and added the data the
training dataset. After three rounds of active learning, we were
able to obtain a QRNN model that is stable for the LixC6 system at
different Li contents, stage structures and temperatures. In total,
we have 3065 entries in the dataset.

2.3 Model training

We implemented our previously developed QRNN architecture18

to train the LixC6 model. Modified Behler and Parrinello sym-
metry functions27 were used to compute an atomic environment
vector (AEV) for each atom. The AEV describes both local geo-
metric and charge environment, and is composed of radial and
angular symmetry functions for atom i (GAEV

i ), charge-weighted
radial AEV (GqR

i ), and atomic charge (qi). The AEV is then used
as an input into an atomic neural network that transforms the
atomic AEV into an output Ei. The total energy ET of the system
is the sum over all i "atomic contribution", and is defined as:

ET =
Natoms

∑
i

Ei(qi,G
qR
i ,GAEV

i )+Edisp +Ecoul(q) (3)

where Edisp is the empirical D2 dispersion correction28 and Ecoul

is a truncated Coulomb energy, which decays smoothly at short-
range18. The forces can be expressed as the first derivative of
ET with respect to the atomic positions. To train a QRNN model,
we used a training:validation split of 99:1 and a learning rate
of 2 × 10−3, and the optimized QRNN model was obtained by
minimizing the loss functions of the predicted energies and forces
with respect to the DFT training data.

2.4 Diffusivity calculations

In this study, we simulated Li intralayer diffusion in bulk graphite
without any defects. To calculate the Li diffusivity, classical MD
simulations for the LixC6 compounds at different stages, Li con-
tents and temperatures were performed using the trained QRNN
model in the MD package Desmond (2024-3).26 In this study, we
considered four different stages of LixC6 compounds with n = 1,
2, 4, and 1L. The Li diffusion in stage 3 structures were approx-
imated by that of stage 4 structures, as Li-Li interactions in the
LixC6 system are well-represented by repulsive short-range pair
interactions3 and the interlayer Li-Li interactions are screened by
layers of graphene, therefore we expect stage 3 structures exhibit
similar Li diffusion with stage 4 structures. Stage 1L represents
a dilute stage 1 at very low Li concentrations.9 Large supercells
with lattice parameters between 25 to 65 Å and number of atoms
between 10890 and 12800 were used, depending on the LixC6

compound. In total, we generated 23 LixC6 structures, which are
illustrated in Figure S2-5 for stage 1, 2, 4, and 1L LixC6 com-
pounds, respectively. Stage 1 Li0.987C6, stage 2 Li0.493C6, and
stage 4 Li0.247C6 were generated by randomly placing 1.33%,
0.67%, and 0.33% of Li vacancies in LiC6, LiC12, and LiC24, re-
spectively. Except for stage 1L and the previous three structures,
we only placed Li vacancies in one Li layer for the other 18 struc-
tures to approximate the presence of two-phase co-existence be-
tween different stages. For example, Li0.82C6 exhibits both stage
1 and 2 region in its structure. For each MD run, we set the time
step to 2 fs, and dumped the trajectory every 1 ps. To equilibrate
the structure at each temperature, we ran 1 ns MD simulation in
the NPT ensemble, and then we averaged the density over the
last 0.5 ns trajectory and selected the structure whose density
was closest to the average as the equilibrated structure. We also
checked the density convergence by running a 20 ns NPT MD sim-
ulation, and we found that the density was well converged after
0.5 ns (see Figure S6). To perform diffusion analysis, we ran MD
simulations in NVT ensemble for 3 ns at high temperature con-
ditions (500 < T ≤ 900 K) and up to 70 ns at low temperature
conditions (300 ≤ T ≤500 K). From the obtained MD trajectories,
the self-diffusion coefficients (D) were estimated by a linear fit-
ting of the mean squared displacement (MSD) of all Li ions over
time using the Einstein relation:29

D =
1

2d
d⟨∆r2⟩/dt (4)

where t is the time, r is the ion position, ⟨∆r2⟩ is the MSD and d =

2, which indicates two-dimensional Li diffusion in the Li layers.

3 RESULTS AND DISCUSSION

3.1 DFT benchmarking

In Table 1, we list the calculated lattice parameters for C6, LiC12,
and LiC6 from PBE D3, PBE D3-BJ, and rVV10. For each com-
pound, the calculated a lattice parameters with different DFT
methods are similar with a difference less than 0.02 and they
agree well with experimentally reported values.30 The c lattice
parameters, on the other hand, vary significantly, which indi-
cates the importance of correcting the vdW forces between the
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Table 1 Comparison of calculated and experimentally determined lattice parameters (a and c in Å).

Composition aPBE D3 aPBE D3-BJ arVV10 aQRNN aexp cPBE D3 cPBE D3-BJ crVV10 cQRNN cexp

C6 2.465 2.464 2.470 2.470 2.45630 6.969 6.750 6.679 6.701 6.70030

LiC12 4.291 4.287 4.305 4.299 4.26930 7.134 6.988 6.962 6.925 7.02330

LiC6 4.317 4.312 4.333 4.444 4.30130 3.636 3.592 3.623 3.686 3.68730
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Fig. 2 Comparison of first-principles calculated formation energy per
formula unit from (a) PBE D3, (b) PBE D3-BJ, and (c) rVV10. The
solid lines in (c) indicate the convex hull.

graphene layers. Overall, we found that the best match with ex-
perimental lattice parameters30 is obtained with the rVV10 func-
tional. Next, we investigated the effect of DFT methods on ther-
modynamic stability of the LixC6 compounds at different Li con-
centrations and stages. Here we considered four stages of LixC6

with n=1, 2, 3, and 4. Figure 2 illustrates the calculated forma-
tion energies of 18 LixC6 compounds from PBE D3, PBE D3-BJ,
and rVV10. It can be seen that the formation energies of all inter-
mediate LixC6 compounds are above zero with PBE D3 and PBE
D3-BJ, which indicates that the PBE functional tends to underes-
timate the thermodynamic stability of the LixC6 compounds. On
the other hand, the non-local rVV10 functional (see Figure 2c)
predicts several stable intermediate LixC6 compounds which lie
on the convex hull, such as stage 2 LiC12 and stage 3 LiC24. An
earlier study reported that the stability underestimation from PBE
D3 and PBE D3-BJ is mainly because the PBE functional overbinds
the carbon atoms in C6.31 Using the PBE functional, Persson el
al. had to add an empirical vdW binding energy for every empty
graphite layer in stage 2 to properly study the thermodynamic and
kinetic properties of the LixC6 system.3 Based on lattice param-
eters and thermodynamic stability results we selected the rVV10
functional for all following DFT calculations and constructing the
training dataset.

3.2 QRNN validation
In Table 1, we list the QRNN calculated lattice parameters for C6,
LiC12, and LiC6. The lattice parameters from QRNN match well
with both the results from the rVV10 functional and experiments,
except the a lattice parameter of LiC6, which exhibits an error of
0.143 . However, as Li intralayer diffusion barrier is more depen-
dent on the c lattice parameter,3 we do not expect the error on the
a lattice parameter prediction greatly impacts intralayer Li diffu-
sivity. As mentioned in Section 2, we sampled different Li-vacancy
arrangements in stage 1, 2, 3, and 4 LixC6 compounds to look for

ground state structures and construct the training dataset. Figure
S1 shows the comparisons of the energies and forces calculated
by QRNN and DFT on the training and validation datasets. The
root mean squared error (RMSE) in energies are 1.689 meV/atom
and 3.430 meV/atom for the training and validation datasets, re-
spectively. The RMSE in forces are 0.94 eV/Å and 0.81 eV/Å for
the training and validation datasets, respectively. Our energy and
force RMSEs are comparable with recent MLFF models to study
ionic diffusions.32,33 Using the rVV10 functional, we calculated
the formation energies of the sampled LixC6 compounds and con-
struct the convex hull in Figure 3a. We found that at x=0, C6 with
AB stacking is more stable than AA and ABC stacking; at x=0.5,
stage-2 LiC12 with AA stacking is more stable than AB stacking; at
x=1, stage-1 LiC6 with AA stacking is more stable than AB stack-
ing. The results are in agreement with previous theoretical and
experimental results.31,34 In addition, we found two ground state
structures between 0 < x < 0.5: LiC29 and LiC36. Figure 3a also il-
lustrates the formation energies and convex hull predicted by the
QRNN model, which shows negative formation energies of some
LixC6 compounds and one intermediate ground state structure of
a stage 2 LiC16.

From the identified ground state structures on the convex hull,
we calculated the voltage profile for the LixC6 system as a func-
tion of Li content using Eqn. 2. Figure 3b shows the comparison
between the experimental voltage profile of LixC6

35 and the ones
calculated by DFT and QRNN as well as a previously reported DFT
result3. The tile lines in the convex hull plot represent the two-
phase regions, which are illustrated by the plateaus of the voltage
curves. It can be seen that our DFT calculated voltage profile
has an excellent agreement with the experimental result and is
more accurate than the previous DFT result, both in terms of the
calculated voltage values and the phase transitions. While our
QRNN-predicted voltage curve provides accurate voltage values,
it only captures one phase transition, as QRNN predicts a single
intermediate ground-state structure on the formation energy con-
vex hull. It should be pointed out that a stage 2 LiC12 is only 3.98
meV per formula unit (fu) higher than the convex hull, which is
within the formation energy RMSE at 5.69 meV/fu calculated by
our QRNN model.

Figure 4a-c illustrate three Li diffusion pathways which repre-
sent the Li diffusion in different Li concentrations. Our DFT calcu-
lated Li diffusion barriers are 0.52 eV, 0.42 eV, and 0.43 eV for dif-
fusion pathways with two neighboring Li (Pathway 1), one neigh-
boring Li (Pathway 2) and no neighboring Li (Pathway 3), respec-
tively (see Figure 4e-g). Figure 4d shows interlayer Li diffusion
though a carbon hexagon (Pathway 4) with a diffusion barrier of
8.0 eV, which is more than one order of magnitude higher than
the values of intralayer Li diffusion pathways. This indicates that
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Fig. 3 (a) The formation energies of LixC6 compounds at stage 1, 2, 3,
and 4 calculated by DFT with rVV10 functional and QRNN model. The
convex hull indicates the ground states which are connected by the solid
lines. (b) The voltage profile for the LixC6 system calculated by DFT and
QRNN model. An experimental and a previously reported DFT voltage
curves are plotted for comparison. 3,35

Li diffusion in pristine graphite is restricted to two-dimensional
intralayer diffusion. Our calculated diffusion barriers are in good
agreement with previously reported values calculated by PBE D3-
BJ.36 The higher diffusion barrier in Pathway 1 is due to the re-
pulsive short-range Li-Li interactions, which reduces Li mobility
at a higher Li content.3 The QRNN calculated diffusion barriers
for Pathway 1 to 4 are 0.50 eV, 0.41 eV, 0.39 eV and 7.74 eV,
which are in excellent agreement with our DFT calculated values.

3.3 QRNN Diffusivity

As described in section 2, we carried out large scale MD simula-
tions to explore Li diffusion at different stages, Li contents and
temperatures. Figure S7 shows the Li diffusivity (D) versus tem-
perature (T ) for all the 23 LixC6 structures considered in this
work. We find that D versus T of each structure can be repre-
sented by a single linear Arrhenius relation, therefore the 300 K
D can be extrapolated from the D values at high temperatures.
To verify this, we directly calculated the 300 K D values from 70
ns MD trajectories. In Figure 5a, we plot the extrapolated 300 K
D values at different Li contents x and stages. The directly calcu-
lated 300 K D are shown by open markers. It should be pointed
out that most directly calculated 300 K D exhibit large statistical
uncertainty as the slop of MSD-dt is close to zero, such as the
MSD-dt curve of Li0.4C6 in Figure S8b, therefore we only present
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Fig. 4 The schematic figures illustrate the intralayer Li diffusion pathways
from one site to a vacancy site, where there are two neighboring Li sites
(a), one neighboring Li site (b) and no neighboring Li site (c). (d) shows
interlayer pathways, where Li diffuses through a carbon hexagon. (e-
h) depict the corresponding diffusion barriers calculated by rVV10 and
QRNN.

the 300 K D values with low statistical uncertainty, such as the
MSD-dt curve of Li0.64C6 in Figure S8a. We found that the di-
rectly calculated 300 K D values are close to the ones that are
extrapolated from the diffusivities at high temperatures. Overall,
we found a non-monotonic trend between D and x, with three
pronounced minima at x=0.138, 0.247, and 0.493, where the
LixC6 structures undergo the phase transitions between different
stages. In Figure 5b, we plot the Li occupation percentage in the
unfilled Li layer with Li vacancies. It should be noted that when Li
ions are removed from fully occupied Li layer, more Li ions diffuse
with Pathway 2 and 3 which leads to a higher D because Li diffu-
sion barriers of Pathway 2 and 3 are smaller than that of Pathway
1 (see Figure 4). However, a further Li ion removal from the
unfilled Li layer leads to a smaller number of Li ions that diffuse
with Pathway 2 and 3, and Li diffusion is dominated by Pathway 1
from the Li ions in the fully occupied Li layers, leading to a lower
D. Both the minimum and maximum Li occupations in Figure 5
indicate the dominant Li diffusion with Pathway 1. This explains
the initial increase and then decrease of D at 0.138 ≤ x ≤ 0.247
and 0.4 ≤ x ≤ 0.493. The local minima of D at x=0.4, 0.644, and
0.911 coincide with the regions where the two-phase regions are
formed. The decrease of D can also be attributed to the domi-
nant Li diffusion with Pathway 1. Using first-principles calcula-
tions and Monte Carlo simulations, Persson et al. also reported
a non-monotonic relation between D and x in LixC6 system with
a sharp decrease in D at x=0.5, where stage 1 phase transits to
stage 2 phase.3 Here, we demonstrate that similar sharp decrease
in D happens at other phase transition regions. The interaction
between D and phase transition in LixC6 system has also been
demonstrated experimentally. Using the GITT technique, Park et
al. reported a decrease in D at x=0.17, 0.25, and 0.5, with the for-
mation of stage 4 LiC36, stage 3 LiC24, and stage 2 LiC12, respec-
tively.15 Using the potentiostatic intermittent titration technique
(PITT) and electrochemical impedance spectroscopy (EIS), Levi
et al. also found a non-monotonic relation between D and x, with
three pronounced minima that are related to phase transition be-
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Fig. 5 (a) Calculated Li diffusivity (D) at 300 K as a function of Li content
in LixC6 system. Each D value at 300 K was extrapolated from the D
values at higher temperatures using an Arrhenius relation. The error
bars illustrate the uncertainty of this extrapolation. The open markers
represent the D values that are directly calculated from the 70 ns MD
trajectories at 300 K. (b) Li occupation percentage in the unfilled Li layer
of the LixC6 structures.

tween different stages.37 On the other hand, using AC impedance
method, the D versus x curve reported in Piao et al’s work does
not exhibit the phase transition induced diffusivity drop charac-
ter.16 Instead, the D value decreases significantly at 0 < x < 0.5
from 10−9 to 10−11 cm2/s. Interestingly, in Park et al’s work,
an opposite trend was observed, with D increasing from 10−11 to
10−10 cm2/s at 0 < x< 0.5.15 Moreover, experimental data of D in
graphite is also inconsistent and spans 10−6 to 10−16 cm2/s11–14.
Apart from different measuring methods, particle size and shape
of the graphite electrode38 as well as its surface area in contact
with the electrolyte solution could all contribute to the inconsis-
tent D values11,14. Though our calculated D values are within
this range, it is difficult to compare the absolute values of each.

4 Conclusions
Using first-principles calculations, we studied the structural, ener-
getic, and electrochemical properties of LixC6 system. Comparing
to the PBE functionals and previously reported ab initio results,
the rVV10 functional accurately reproduces the experimental lat-
tice parameters, phase stability, and voltage curve of the LixC6

system. By implementing an active learning approach to sam-

ple additional LixC6 structures and label them with the rVV10
functional, we developed an accurate and stable QRNN model for
molecular dynamics simulations of the LixC6 system. By carry-
ing out large scale MD simulations, we investigated Li diffusion
in LixC6 structures as a function of stage, Li content and temper-
ature. We found a non-monotonic trend between D and x, with
three pronounced minima, where the LixC6 structures undergo
the phase transitions between different stages. The decrease of
D near phase transition can be attributed to a decrease of fast
diffusion Li ions. The phase transition dependent Li diffusion
agrees well with previous experimental and theoretical results,
demonstrating the capability of our QRNN model in unraveling
the complex relation between Li diffusion and phase transition
in a graphite anode. In addition, one rational approach to miti-
gate the phase transition induced Li diffusion bottleneck could be
introducing porous structures in graphite which provides multi-
channel Li diffusion.39 Recently, Inamoto et al. reported that
the Li diffusivity in the graphite structures with pores formed in
the graphene is orders of magnitude higher than that of pristine
graphite structures.14
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