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Abstract 

De novo generation of compounds is an attractive strategy allowing to explore much broader chemical space than 

virtual screening. Fragment-based approaches suffer from low synthetic accessibility of generated compounds. In 

this study we combined the previously developed fragment-based generator CReM and molecular docking to guide 

the exploration of chemical space. The developed approach allows to indirectly control synthetic accessibility of 

generated compounds and their diversity, augmentation of an objective function to generate compounds with 

more preferable physicochemical properties, control over preserving important protein-ligand interactions and 

ligand poses. The generated compounds demonstrated high novelty and were competitive to compounds 

generated by the state-of-the-art approaches. We demonstrated in different case studies flexibility of the 

developed approach and its applicability to de novo generation as well as fragment expansion tasks. The developed 

tool is open-source and available at https://github.com/ci-lab-cz/crem-dock. 

Scientific contribution 

The developed tool, CReM-dock, solves tasks related to de novo design of promising molecules and expansion of 

co-crystallized ligands within a binding site guided by molecular docking. The key feature is integration of CReM 

structure generator and EasyDock. The former allows to generate chemically reasonable structures and indirectly 

control their synthetic feasibility. The latter supports different docking programs. Both provide great flexibility in 

exploration of chemical space. 
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Introduction 

Since the size of drug-like chemical space is enormous, ~1036 compounds[1], it is unfeasible to fully enumerate 

it or enumerate a representative subset to perform virtual screening. De novo design is a promising strategy to 

discover new chemical entities in the vast chemical space while enumerating only a small portion of it. This is 

achieved by the combination of a structure generation tool and an objective function which is optimized in course 

of the exploration of chemical space and which focuses the generator to the most promising regions [2, 3]. 

Nowadays, there are multiple approaches to generate molecule structures from scratch [4, 5]. The main limitation 

of the majority of structure generative approaches is the limited synthetic accessibility of generated molecules[6]. 

Another restriction can come from an objective function used for searching of promising molecular structures. 

Application of machine learning models to guide the exploration of chemical space brings constraints related to a 

limited applicability domain of models. These models cannot reliably predict molecules which are too dissimilar to 
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training set compounds [7] and therefore restricts the relevant search space for de novo design [8]. Molecular 

docking has broader applicability and is less biased to particular chemotypes or structural patterns [9-11]. 

Therefore, docking score can be a good objective function in searching of new promising compounds. 

There are many approaches where a structure generation tool was integrated with molecular docking to 

facilitate searching of new compounds. One group of approaches enumerates structures based on reaction rules. 

AutoCouple [12] was used to generate 70000 potential CBP bromodomain ligands using three selected reactions. 

Compounds were docked into multiple protein conformations. 53 top scored compounds were synthesized and 

several active compounds were identified. Hybridization of structural motifs of those actives resulted in design of 

a highly active (IC50 = 35 nM) and selective (selectivity to BDR4 >10000) compound. Chevillard et al [13] used a 

reaction-based linking strategy to expand five previously identified fragment-sized ligands of β2-adrenergic 

receptor. The goal was to target other binding pockets which were not occupied by the core fragments and, if the 

binding pose was suitable, link those building blocks to the core molecules by reductive amination reaction. Finally, 

eight compounds were synthesized and one demonstrated almost 40-fold improvement (Ki = 0.53 µM) relatively to 

the parent core fragment. Other examples of reaction-based tools coupled with docking are NAOMInext [14] and 

AutoGrow4 [15]. NAOMInext uses iterative growing of starting fragments by covalent coupling with suitable 

building blocks and evaluated the generated ligands using tethered docking. It was demonstrated that it was 

possible to reproduce some of previously identified ligands elaborated from smaller molecules co-crystallized with 

corresponding proteins. AutoGrow4 uses the genetic algorithm to design new compounds. It is based on growing 

of molecules obtained on a previous iteration using reaction rules and building block libraries and on merging of 

ligands having a common substructure moiety during the crossover operation. It was demonstrated that 

AutoGrow4 could generate compounds with docking score outperforming known ligands by a large margin. 

Although, reaction-based approaches should increase probability of synthetic accessibility of designed molecules, 

they do not guarantee that. For example, top scored molecules designed by AutoGrow4 are not synthetically 

feasible [15]. Other limitation is coverage of chemical space which depends on chosen reaction rules and libraries 

of building blocks. 

Fragment-based approaches should result in better coverage of chemical space than reaction-based 

approaches due to larger fragment libraries and more freedom in fragment linking. However, they may suffer from 

lower synthetic accessibility of designed molecules. There are two the most common solution of this issue: i) 

compound filtration based on post-hoc evaluation of synthetic feasibility and ii) incorporation of a synthetic bias 

into the optimized objective function. LigBuilder [16] uses the former strategy. It implements growing or linking 

fragments using a limited set of pre-compiled small fragments and ring systems. There is no explicit or implicit 

synthetic bias and generated compounds are filtered post-hoc using the own retrosynthetic evaluation module. 

Graph-GA approach [17] uses the genetic algorithm on molecular graphs to generate new structures. Since this 

commonly results in poor synthetic accessibility of generated compounds the authors incorporated synthetic 

accessibility score [18] as a part of the objective function. This substantially improved the fraction of top scored 

molecules which were predicted synthetically accessible by the retrosynthetic analysis, from 2-29% to 76-91%. 

Other fragment-based approaches, like OpenGrowth [19] and FragExplorer [20], incorporated an implicit synthetic 

bias by applying restrictions on bonds which can be formed during fragment growing. OpenGrowth [19] uses 

Markov chain model which selects the next attaching fragment using probabilities of fragment linking in existing 

molecules. Pre-compiled SMARTS rules are applied during fragment growing to make creating connections more 

chemically reasonable. To further increase synthetic accessibility generated compounds are filtered by the pre-

compiled set of 420 000 enumerated anti-patterns which were created by combination of 25 basic fragments and 

26 rings from the fragment library and which do not occur in known drug molecules. However, synthetic 

accessibility of compounds generated by OpenGrowth estimated by Sylvia scores were worse than estimates 

obtained for drugs and compounds from ChEMBL [19]. FragExplorer [20] applies fragment growing and 

replacement guided by molecular interaction fields. It uses a precompiled fragment set of 63000 fragments with 0-
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1 rotatable bonds, molecular mass within 40-175 Da and clogP < 4. A number of simple filters prevent the formation 

of undesirable bonds: heteroatom attachment points in fragments are not allowed to be joined to heteroatoms in 

the query molecule, positively charged nitrogen centers are not allowed to join to sp2 carbons, aldehyde−aldehyde 

bonds are forbidden as well as thiol to amide bonds. However, the authors did not explore synthetic accessibility 

of generated molecules, therefore it is unclear whether those attempts improved synthetic accessibility or not. 

Post-hoc compound filtration by synthetic accessibility, like in LigBuilder, is not an optimal strategy because it may 

result in the small or even zero number of suitable compounds remained. Explicit biasing requires the selection of 

a fast and reliable synthetic accessibility scoring. Implicit biasing implemented in OpenGrowth and FragExplorer is 

quite simplistic. Checking just a pattern of a created bond ignoring further chemical context may be not enough to 

substantially increase the number of synthetically feasible compounds. 

The third group of approaches uses machine learning generative models. OptiMol [21] includes a variational 

autoencoder trained on SELFIES to generate new molecules. Compounds generated on each iteration is docked and 

these results are used to fine-tune the model and thus to guide generation to more promising regions of chemical 

space. It was demonstrated that OptiMol can improve docking score over iterations, however, the number of novel 

molecules sharply decreased after 14 iterations. The generated molecules outperformed by docking scores 

molecules randomly selected from ZINC which were chosen as a baseline. The generated molecules had 

quantitative estimate of drug-likeness (QED) [22] and synthetic accessibility scores (SA) [18] not too far from ZINC 

molecules, indicating high quality of generated structures. DockStream is based on the REINVENT generative model, 

which is a recurrent neural network trained on SMILES [23]. It uses reinforcement learning to generate compounds 

with favorable docking scores and supports several docking programs. The special diversity filters were added to 

avoid stuck in local minima and repetitive generation of similar compounds. The objective function was augmented 

with QED to force generation of more drug-like structures. On several example DockStream could generate 

compounds with docking scores comparable or better than docking scores of known active molecules, however, 

synthetic accessibility of generated molecules was not discussed. SBMolGen [24] also uses a recurrent neural 

network trained on SMILES, but it implements Monte Carlo tree search for exploration of chemical space. To 

improve synthetic accessibility of final compounds the molecules obtained on each iteration which have SA score 

greater than 3.5 were assigned the reward score -1, thus, introducing a post-hoc bias in generation workflow. 

Synthetic accessibility could be also improved due to applied in-house structural filters based on frequency of 

occurrences of particular patterns in PubChem database, however, they were not disclosed in the paper. If a 

compound did not pass these filters, it was assigned the reward score -1. In four examples SBMolGen could 

generate molecules with docking scores better than those for known active molecules [24]. SampleDock [25] utilizes 

a variational autoencoder model pre-trained on SMILES. It iteratively samples molecules from the latent space using 

the greedy search by selection as a reference point in the latent space a compound from the previous iteration with 

the best docking score. SampleDock demonstrated that starting from benzene it could generate molecules with 

better scoring to CDK2 and SAR-CoV2 Mpro proteins than known actives. At the same time generated molecules 

shared substructures common with known actives and may have reduced novelty. 

While fragment-based and machine learning-based approaches should provide better coverage of chemical 

space than reaction-based approaches, they lack synthetic feasibility of generated compounds. Biasing of the de 

novo generation toward more synthetically accessible compounds can be explicit or implicit. Explicit biasing is 

incorporation of synthetic accessibility score to an objective function. This requires choosing of an appropriate 

synthetic accessibility scoring, transformation/scaling of individual components of a multi-component objective 

function and its functional type, e.g., arithmetic or geometric mean. Implicit biasing may be simpler to implement, 

however, currently implemented approaches use too simplistic implicit biasing, which do not improve synthetic 

accessibility of generated compounds substantially and do not provide a fine-tuning control over it. 
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In this work we developed and implemented a de novo generation pipeline based on fragment-based 

generative approach CReM [26] and molecular docking. CReM provides indirect control over synthetic accessibility 

of generated molecules [27]. We integrated EasyDock module [28] in the pipeline to support different docking tools 

and enable customization with further docking programs if necessary. The pipeline implements the growing 

protocol which starts from a known X-ray structure of a protein-ligand complex or from a set of diverse starting 

fragments docked to a binding site which are further expanded by attaching new fragments in a chemically 

reasonable way. A user may specify whether it is necessary to keep the pose of a starting structure and/or keep 

specific protein-ligand contacts which are considered important for ligand binding. The developed pipeline is 

suitable for fragment expansion, scaffold decoration and de novo design. 

 

Methods 

Similar to other conventional methodologies, our approach employs an iterative strategy for the exploration 

of chemical space by fragment growing consisting of several steps: i) docking of starting fragments/molecules, ii) 

selection of compound with the promising scores and satisfying a user-defined protein-ligand interaction 

fingerprint (the latter is optional), iii) growing of the selected molecules and iv) filtering molecules by 

physicochemical properties. All steps are repeated until physicochemical properties of compounds do not reach 

one of the user-defined thresholds. 

There are two modes of structure generation: de novo design and fragment/molecule expansion. The first 

mode requires a set of starting fragments submitted as SMILES or 2D structures. The second mode takes 3D 

structures as input which correspond to actually observed or predicted binding poses. The difference between 

these modes is that 3D input molecules are passed directly to the growing step omitting docking and sections steps. 

Docking 

Docking of molecules is performed using EasyDock [28] which currently supports Autodock Vina and Gnina 

(Smina scoring functions is supported through Gnina). EasyDock provides a simple interface to dock molecules and 

to integrate docking in external tools. It takes as input a protein structure and a configuration file where all required 

settings are specified (e.g. grid box coordinates and its size, search exhaustiveness, etc). We utilized the same 

database structure as in EasyDock to store all outputs of design and docking steps and all properties of generated 

compounds. 

Molecule selection strategies 

We implemented three strategies to select molecules on each iteration: greedy, Pareto and clustering-based 

selection. Within the first strategy top N molecules with the highest docking scores are selected. While this may 

lead to highly scoring compounds their diversity may be lowered, therefore, we implemented two other protocols. 

In one protocol, Pareto ranking is applied to select molecules on the Pareto front with low molecular mass and high 

docking scores, promoting the growth of promising low molecular mass molecules. In the alternative strategy, 

molecules are clustered by K-means approach to the user-defined number of clusters and a specified number of 

top scored molecules are selected from each cluster. If some of top scored molecules in a cluster cannot be grown 

due to any reason (no hydrogens to replace, physicochemical properties reached the given thresholds, etc), a next 

molecule is selected until the specified number of molecules will be chosen from a cluster. Clustering protocol gives 

a more predictable number of selected compounds and runtime, while Pareto may result in a variable number of 

generated molecules and higher diversity of final solutions. 
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Optionally a user may specify additional criteria applying before actual selection. An RMSD threshold can be 

specified to keep the pose of a parent compound in successor compounds. If docking poses of generated 

compounds differ greater than the given threshold from their parent molecule, these compounds will not be 

considered for the selection. RMSD value is calculated between a parent and a successor molecule for heavy atoms 

of a maximum common substructure. This can be particularly useful in fragment expansion studies where the pose 

of the starting fragment is experimentally defined and it is expected that successor molecules should keep it. 

Another option is to specify a list of important protein-ligand contacts and a minimum similarity according to ligand-

protein interaction fingerprints (PLIF). The fingerprints are calculated by ProLIF [29] and define H-bond 

donor/acceptors, hydrophobic, aromatic, positively or negatively charged contacts, metal centers. If a molecule 

does not meet the threshold, it will not be considered for selection. For example, if three contacts are specified and 

a threshold was set to 0.5, it means that at least two of these contacts should be observed in molecules (similarity 

0.66), otherwise they will not be eligible to participate in the selection step. This is useful if important contacts are 

known a priori and the designed molecules should preserve them. 

Molecule growing 

Chosen molecules undergo growing which is performed using CReM [26]. To replace hydrogens with larger 

fragments CReM uses a database of interchangeable fragments (CReM databases). These are fragments obtained 

from existing molecules by exhaustive fragmentation cutting up to four single bonds. For each fragment an 

environment is determined, which is a substructure comprising atoms with the distance of up to a given number of 

bonds (context radius) from attachment points of a fragment. Thus, fragments occurred in the same chemical 

context should be interchangeable and their replacement should result in synthetically feasible molecules. It was 

demonstrated previously that synthetic feasibility can be controlled indirectly and is improved by choosing a larger 

context radius and CReM databases composed from fragments of more synthetically accessible molecules [27]. 

To perform growing we replace only those hydrogen atoms which are at least at the distance of 2Å apart of 

any protein heavy atom. This will avoid growing in directions which do not have enough space to accommodate 

larger fragments. To control the number of generated compounds and make runtime more predictable one may 

specify the maximum number of randomly chosen replacements. If not specify, all possible replacements will be 

applied which can be very numerous for smaller context radiuses. We found that using 2000 random replacements 

works well and we used this number in all reported studies. Additionally, the size of steps in chemical space can be 

specified. By default, we attach fragments having up to 10 heavy atoms. Since CReM cannot create new cycle 

systems, it is required to choose this size large enough to enable rings addition to molecules. 

By default, fragment selection in CReM employs a uniform distribution. However, to apply selective pressure 

and prioritize fragments with more desirable properties, the tool provides an option to customize the selection 

process. In one of the studies presented herein, fragment selection was weighted proportional to the squared 

fraction of Csp³ atoms within the fragments. This should preferentially select fragments containing a higher 

proportion of saturated carbon atoms, thereby enriching the generated molecules with sp³ carbon atoms in their 

scaffolds. 

We implemented control over important physicochemical properties determining drug-likeness (molecular 

weight (MW), topological surface area (TPSA), lipophilicity (logP) and the number of rotatable bonds (RTB)) to 

restrict generation to mainly drug-like molecules. All of these parameters, except lipophilicity, increases or stay the 

same with an increasing number of atoms in a molecule and are mainly additive. If one of these parameters 

becomes equal or greater than a pre-defined threshold a molecule is discarded from further consideration. Due to 

the mainly additive nature of these properties, we were able to pre-filter CReM fragments on-the-fly and choose 

those ones for growing which unlikely will result in molecules exceeding pre-defined thresholds of physicochemical 

properties. This allows avoiding enumeration and docking of compounds with undesirable properties. 
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In all studies in the current work the following restrictions were applied to physicochemical properties of 

generated compounds: molecular mass ≤ 450 Da, the number of rotatable bonds ≤ 5, lipophilicity ≤ 4, topological 

polar surface area ≤ 120Å2. These criteria satisfy Lipinski rule and keep some capacity for compound improvement. 

After the generation step a stable tautomer may be generated by Chemaxon. This is an optional step, because 

sometimes the predicted stable tautomer may differ from the starting one, which can be known from an 

experiment, and this may break the whole generation pipeline resulting in wrong docking poses and scores and 

affect molecule selection on each step. 

Implemented objective functions 

By default, molecules are ranked by docking score. However, the docking score can be augmented with further 

important properties to make generated molecules more balanced and closer to a desired property space. In 

particular, we augmented docking scores with quantitative estimate of drug-likeness (QED) [22]. First, we map 

docking scores to the range from 0 to 1 using formula s = (x – xmin) / (xmax – xmin), where x is a docking score of a 

molecule, xmin and xmax are minimum and maximum docking scores among compounds generated on a particular 

iteration and eligible for selection. Afterwards we multiply scaled docking scores and QED values for corresponding 

molecules to get a final score. 

Another augmentation implemented was the calculation of the fraction of sp3 carbon atoms in Bemis-Murcko 

scaffolds (Csp3BM). The Csp3BM values ranging from 0 to 0.3 were linearly scaled to fit a range of 0 to 1, while 

values exceeding 0.3 were set to 1. The scaled Csp3BM values were subsequently squared to enhance selection 

pressure on this parameter and then multiplied by the docking score, which had been normalized to the range of 0 

to 1 as described previously. The threshold of 0.3 was selected based on recommendations from the authors of the 

first CACHE challenge [30] in which we participated and possessed one of the top places [31]. 

There were also implemented other objective functions, for example based on docking efficiency (docking 

score divided on the number of heavy atoms), but we did not apply them in studies herein. 

Protein preparation protocol 

To perform de novo generation, we prepared receptor structures using the Dock Prep protocol implemented 

in Chimera [32]. The preparation involved remodeling missed side chains and sequences utilizing the Dunbrack 

rotamer library [33] and MODELLER [34], respectively. Hydrogen atoms were added, considering pH of 7.4, and 

solvent molecules were removed. The structures were then converted to the PDBQT format using the 

prepare_receptor4.py utility from AutoDock Tools. Grid boxes for docking were determined based on coordinates 

of native ligands. Specifically, the center of each grid box was calculated as the geometric center of a ligand, and 

the box size was set by adding 7 Å to the minimum and maximum coordinates of the ligand's heavy atoms. All 

prepared structures and grid box parameters were deposited to the repository - https://github.com/ci-lab-

cz/docking-files. 

Novelty assessment 

To assess the novelty of generated compounds calculated Tanimoto similarity to the closest compound from 

the set of known ones taken from ChEMBL (version 33). To calculate similarity, we used chemfp tool [35] and 2048-

bit Morgan fingerprints of radius 2. The smaller the similarity, the greater the novelty of generated compounds. We 

estimated baseline similarity level using randomly selected pairs of compounds from ChEMBL to be used as 

reference. We randomly chose 10 000 compounds with MW ≤ 500 and calculated pairwise Tanimoto similarity. The 

mean similarity was 0.105, 95%-percentile – 0.178 and 99%-percentile – 0.230. 
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UMAP and reference space 

To analyze distribution of generated compounds relatively to reference ones we chose 100 000 random 

compounds with MW ≤ 500 from ChEMBL33 as a baseline reference set and separately we collected sets of actives 

for every individual target. Actives were selected from compounds tested in a single protein assay format and 

demonstrated pIC50, pKi or pKd equal or greater than 6. For visualization of chemical space we used UMAP [36] 

(umap-learn Python package) and 2048-bit Morgan fingerprints of radius 2. All parameters were set to default with 

the exception of the number of neighbors = 10 and metrics = “jaccard”. 

 

Results 

Preparation of CReM fragment databases 

For preparation of CReM fragment databases we used structures from ChEMBL22 [37]. Structures were 

curated according to the protocol based on Chemaxon Standardizer [38]: i) salts were removed and molecules were 

neutralized, ii) chemotypes were standardized, iii) duplicates were removed. We kept only compounds containing 

the following atoms: C, N, O, S and halogens. The collected initial dataset consisted of 1 554 260 structures. Further 

a subset of molecules was reduced by removing molecules matching at least one of structural alert from the set of 

BMS, Dundee, Glaxo, Inpharmatica and PAINS filters as implemented by Pat Walters - 

https://github.com/PatWalters/rd_filters. As we demonstrated previously, removal of such molecules before 

fragment database creation guarantees generation of molecules having no such patterns if the size of patterns does 

not exceed the chosen context radius [26]. This reduced the data set size to 818 174 molecules. Further we defined 

subsets of molecules with restricted synthetic accessibility (SA) values as predicted by the approach of Ertl and 

Schuffenhauer [18]. We chose values 2 and 2.5 as reasonable thresholds while the average SA score for all 

ChEMBL22 compound was 3.0 and the median score was 2.73. This gave subsets with 67 970 and 338 422 

molecules, respectively. These sets of molecules were exhaustively fragmented and converted to CReM fragment 

databases (Table 1). 

Table 1. The number of fragmented molecules, fragments with maximum number of 10 heavy atoms and 
corresponding fragment-context pairs in created CReM databases. 

CReM DB n (fragmented 
molecules) 

n (distinct 
fragments) 

number of distinct fragment/context pairs for each radius 

radius 1 radius 2 radius 3 radius 4 radius 5 

ChEMBL 818 174 988 585 2 263 436 4 051 790 7 133 534 11 007 247 15 271 543 

ChEMBL SA2.5 
(SA ≤ 2.5) 

338 422 272 988 671 140 1 263 268 2 319 377 3 752 375 5 419 544 

ChEMBL SA2  
(SA ≤ 2) 

67 970 55 498 143 434 267 156 472 126 754 905 1 087 492 

 

Preparation of a starting fragment library 

To prepare starting fragments we exhaustively fragmented 67 970 ChEMBL molecules having SA score less 

than 2. All attachment points were capped with hydrogens, resulted molecules were converted to canonical SMILES 

and duplicates were removed. The resulting 200 000 molecules we filtered according to their physicochemical 

properties: 

• the number of heavy atoms is within the range 8-15 
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• the number of distinct H-bond donors and acceptors should be within the range 1-5. If an atom is labeled 

as an H-bond donor and an acceptor it was counted only once. This gives an estimate on the number of 

specific contacts. 

• the number of rings is 1-3 

• the number of fused ring systems 0-2 

• the number of rotatable bonds is 0-2 

• lipophilicity is less than 2 

• topological polar surface area (TPSA) is greater than 25A2 

• the total number of halogen atoms (Cl, Br and I) is 0-1 

• the maximum size of rings is 7 

This was resulted in 20 164 molecules. For them we enumerated all stereoisomers with an RDKit script from 

the repository https://github.com/DrrDom/rdkit-scripts and tautomers using cxcalc Chemaxon utility [39]. 

Duplicates were checked and removed. Finally, we got 23 840 molecules which were used as starting fragments in 

de novo generation. 

 

Theoretical size of covered chemical space 

To estimate the number of molecules that can be generated using the CReM methodology from a given set of 

fragments, we considered a scenario in which four substituents are attached to each selected starting fragment 

simultaneously. Substituents replaced hydrogens were chosen from a CReM database, taking into account their 

chemical context of a specified radius, while ensuring that the total number of heavy atoms in resulting molecules 

did not exceed 36. This limit corresponds to a molecular weight of approximately 500, as demonstrated in our 

previous study [1]. 

The chemical environment for each non-equivalent hydrogen atom in an initial molecular fragment was 

identified using CReM. All possible combinations of four hydrogen atoms were analyzed. Restricting the analysis to 

non-equivalent hydrogens introduces an underestimation of the number of possible derivatives, as it excludes cases 

where substituents are attached to the same methyl group, for instance. This simplification arises from constraints 

within the current CReM implementation. 

For each combination of four hydrogens, the total number of potentially enumerated compounds was 

computed as the product of the number of substituents available at each hydrogen position, under the constraint 

of a maximum total number of heavy atoms in generated molecules. The total number of molecules was 

determined by summing the number of enumerated compounds across all combinations of four substituents. To 

enhance computational efficiency, calculations were performed on a subset of 1000 randomly selected molecules. 

The final value was extrapolated by multiplying the result by a scaling factor of 23.84 (23840 starting fragments 

were in total). This provided an estimate under the assumption that fragments would only be attached to the initial 

starting fragment. 

However, substituents can be attached not only to the starting fragment but also to previously introduced 

substituents. To account for this, the structure was considered as a tree where the five fragments (the starting 

fragment and four substituents) represent nodes. The potential number of combinations of connections between 

nodes was estimated using Cayley’s formula, nn−2, which predicts that five nodes can be connected in 125 distinct 

ways. This approach constitutes an additional simplification, leading to an overestimation of the number of 

derivatives, as not all linkage combinations are feasible due to chemical context constraints. These approximations 
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may compensate each other to obtain a rough estimate of the order of magnitude for the size of the covered 

chemical space. 

A radius of 3 was chosen as it represents a sufficiently large default value to yield synthetically feasible 

molecules. For the largest fragment database, the estimated chemical space coverage was 1017 (Table 2). This 

coverage decreased when using more restricted fragment databases: 1016 compounds for SA2.5 and 1015 for SA2. 

For the smallest fragment database (SA2), the chemical space size was also computed for radii of 2 and 4, yielding 

predictable changes. The coverage increased to 1016 compounds for radius 2 and decreased to 1013 for radius 4. 

These findings indicate that even under highly restricted conditions, the covered chemical space remains 

substantial. 

 

Table 2. The estimated size of covered chemical space by starting fragment decorated with fragments from CReM 
databases. 

CReM DB radius estimated size of covered chemical space 

ChEMBL 3 2.8×1017 

ChEMBL SA2.5 3 4.2×1016 

ChEMBL SA2 3 1.8×1015 

ChEMBL SA2 2 8.4×1016 

ChEMBL SA2 4 2.7×1013 

 

De novo design of CDK2 inhibitors 

To investigate influence of different settings on generation output we chose CDK2 kinase because it is a 

clinically relevant target, it has multiple X-ray protein-ligand complexes and it is frequently used in validation of 

modeling approaches. We chose CDK2 structure (PDB 2BTR) in complex with the inhibitor PNU-198873 (Ki = 95 nM). 

This ligand forms an H-bond donor and an H-bond acceptor bonds with Leu83 residue from the hinge region. Since 

interaction with the hinge region is important for competitive kinase inhibitors, we set these two contacts as 

obligatory for all designed molecules. The search algorithm was clustering with 25 clusters and top two molecules 

were selected from each cluster. Thus, up to 50 molecules were selected for growing on each iteration. Every 

compound was grown to get up to 2000 new molecules. If the number of possible expansions was greater than 

2000, random 2000 expansions were selected from the CReM database. We run generations for all three CReM 

databases and all five context radiuses. Every simulation was run three times to estimate robustness of the search, 

because it can be affected by stochasticity in choosing of growing fragments. For docking we set the same seed, 

therefore docking results were deterministic. 

The total number of generated compounds was highly reproducible across runs and predictably decreased 

with choosing more restricted fragment databases and greater radiuses (Figure 1). The number of compounds 

which bound to the hinge region was 13-20% from the total number of generated compounds. From 23840 starting 

fragments only 1471 (6%) bound to the hinge region. 
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Figure 1. Average number of generated compounds for different generation settings (fragment CReM databases 
and context radiuses) across three runs. Darker color denotes the total number of generated compounds, lighter 
colors – the total number of generated compounds which satisfy the required ligand-protein interactions (H-bond 
donor and acceptor with Leu83). 

 

Docking and synthetic accessibility scores of generated compounds 

For further analysis from each run we chose top 100 compounds, which satisfied the required protein-ligand 

interactions (hinge region binding). For those molecules average docking and SA scores were calculated. As 

expected, a clear trade-off between SA and docking scores was observed (Figure 2a). Generations for all three CReM 

databases and radiuses 1 and 2 achieved similar docking scores between -13 and -12.3, while SA scores varied in a 

large range from 4.15 for a full fragment database to 2.9 for ChEMBL SA2 database. Further increase of the context 

radius improved SA scores less pronounced. The minimum SA value 2.37 was achieved for ChEMBL SA2 database 

and radius 5. However, this radius increase resulted in worsening of average docking scores to almost -10.5. A clear 

dependence between chosen fragment databases and SA scores was observed (Figure 2b). The variance across runs 

was small. Thus, the choice of a fragment database and a radius predictably changes SA scores of generated 

compounds. This creates another feature of CReM approach fine-tune control over synthetic accessibility of 

generated structures. The only outlier was the run for the full CReM database and radius 4, which resulted in the 

average SA score around 4, while two other runs with the same settings gave average SA scores below 3. 
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Figure 2. Statistics of top 100 designed compounds bound to the hinge region of CDK2. (a) Average docking and SA 
scores for top 100 compounds. (b) Average SA scores and standard deviation across three runs for top 100 
compounds. 

 

Scaffold diversity and reproducibility of runs 

We analyzed reproducibility of molecular structures in independent runs. The number of identical molecules 

among top 100 compounds bound to the hinge region was the lowest for radius 1 and 2 (0-14%). For larger radiuses 

the number of identical compounds was substantially increased to 27-83% (Figure 3a). Therefore, repetitive runs 

may be less reasonable for generations with radius 3 and greater. 

Analysis of diversity of top 100 generated compounds was performed based on Murcko scaffolds. The average 

number of distinct Murcko scaffolds was small (12-33) for smaller context radiuses from 1 to 3 (Figure 3b). This 

indicates that in these conditions some scaffolds may result in multiple successful successors which outperform 

others. For a larger context radius, 4 and 5, the average number of distinct scaffolds was much larger (from 29 to 

64 out of maximum possible 100). The effect of larger radiuses was more pronounce for more restricted fragment 

databases. This can be explained by the limited number of expansions of each molecule on each iteration and 

therefore the smaller number of successive compounds are generated for each scaffold decreasing probability that 

a single scaffold will be overrepresented and outperform the others. Despite higher diversity of scaffolds for context 

radiuses of 4 and 5, these scaffolds were frequently reproducible even across different fragment databases (Figure 

S2). 
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Figure 3. Statistics for top 100 compounds bound to the hinge region of CDK2. (a) Average percentage of identical 
structures among top 100 compounds between pairs of three independent runs for every set of generation settings. 
(b) The average number of distinct Murcko scaffolds among top 100 compounds across three independent runs. 

 

Novelty of designed compounds 

To assess novelty of designed compounds we calculated Tanimoto similarity using 2048-bit Morgan 

fingerprints of radius 2 to all compounds from ChEMBL33 (2.37 million, Figure 4) and to the subset of ChEMBL33 

which demonstrated activity to CDK2 (pIC50, pKi or pKd ≥ 6, 1001 compounds). The majority of top scored 

compounds has maximum similarity below 0.5 to any compound from ChEMBL and below 0.3 to any known CDK2 

inhibitors. This confirms that generated compounds are structurally different from previously explored chemical 

space. 

 

Figure 4. Tanimoto similarity (2048-bit Morgan fingerpaints with radius 2) of top 100 compounds, which bind to the 
hinge region of CDK2, generated in individual runs for particular settings to the most similar compounds from the 
whole ChEMBL33 database and to the most similar known CDK2 inhibitors (pKi/pKd/pIC50 ≥ 6). 
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Optimal de novo generation settings 

From the experiments and the analysis performed above it is obvious that there is a Pareto front of possible 

solutions with regards to docking and SA scores. It is not reasonable to use the small radius (1-2) in combination 

with the full fragment database or SA2.5 database for compound generation. The generated compounds have high 

docking scores but they are much more synthetically complex (Figure 2a). Using larger radiuses (4-5) result in 

compounds which may be better synthetically accessible, but with poorer docking scores. The nearly optimal 

settings may be combinations of a fragment database SA2 and radius 2 or a fragment database SA2.5 and radius 3, 

which result in the highest docking scores (-13 – -12.3) and a reasonably good SA scores (~2.75). The combination 

of a fragment database SA2 and radius 2 gives a greater number of distinct compounds and scaffolds within top 

100 molecules relatively to the fragment database SA2.5 and radius 3 (Figure 3, Figure 4). Therefore, we supposed 

the former settings as an optimal one and used them in all further experiments. 

 

Comparison with docking of random ZINC compounds 

To evaluate the performance of identification compounds with high docking scores we performed docking of 

a random subset of molecules from ZINC [40]. We selected compounds which satisfied the same physicochemical 

criteria as we used for de novo structure generation: molecular mass ≤ 450 Da, the number of rotatable bonds ≤ 5, 

lipophilicity ≤ 4, topological polar surface area ≤ 120Å2. The number of selected compounds (120 000) was 

approximately equal to the average number of compounds docked during the de novo generation using ChEMBL 

SA2 fragment database and radius 2 (96 549 generated molecules + 23 840 starting fragments). Only 617 ZINC 

compounds (0.51%) could establish the required contacts with the hinge region, that is much lower than among de 

novo generated compounds (13-20%). Docking scores of top scored compounds were also worse than for de novo 

generated molecules irrespective the ability of compounds to bind to the hinge region (Figure 5). 

This shows, that de novo generation can achieve better docking scores than conventional virtual screening 

using comparable computational resources. De novo generation with explicit biasing towards preferable 

interactions also outperformed conventional docking in the number of identified compounds satisfying a pre-

defined protein-ligand interaction pattern. 

 

Figure 5. Distribution of docking scores of top 100 de novo generated compounds bound to the hinge region and 
top 100 compounds from a random subset of ZINC that do not take binding to the hinge region into account and 
those which take it into account. 
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Application of different selection strategies 

We evaluated implemented selection strategies (greedy, clustering and Pareto) in three independent runs 

using the settings determined above as optimal ones. Within the greedy strategy we selected top 50 compounds 

with the highest docking scores. For the clustering strategy we varied the number of clusters and the number of 

selected compounds from each cluster in that way that the total number of compounds selected on each iteration 

was 50. In the case of the Pareto strategy, it was impossible to control the number of compounds selected for 

growing on each iteration. 

As previously we analyzed top 100 compounds from each run with best docking scores and which bind to the 

hinge region (Figure 6a). The greedy selection resulted in the highest docking scores while SA scores were 

comparable to outputs of the clustering strategy. The Pareto selection resulted in docking scores comparable to 

the clustering approach, but synthetic complexity of generated compounds was somewhat greater. 

As expected, application of the greedy selection strategy gave highly reproducible molecular structures in 

independent runs which were also characterized by low scaffold diversity (Figure 6b). The clustering selection 

resulted in moderate diversity of scaffolds with low reproducibility across runs (Figure 6b). At the same time more 

than a half of scaffolds generated within greedy strategy were reproduced by the clustering approach. The Pareto 

selection resulted in the highest scaffold diversity with low reproducibility across independent runs, similarly to 

clustering (Figure 6b). 

We specifically studied the effect of clustering settings on generated molecules. The results showed that 

decreasing the number of clusters leaded to improvement of docking scores of top 100 compounds, but they were 

synthetically more complex. Increasing the number of clusters and simultaneous decreasing of the number of 

selected compounds from each cluster results in the opposite trend (Figure 6c). We hypothesize that this could be 

a result of distribution of molecules with high docking scores in individual clusters. There may be a situation that 

there are only few clusters comprising highly scoring molecules and top scoring molecules in other clusters have 

moderate docking scores. Then the greater number of clusters will lead to the greater number of compounds with 

moderate scores that may decrease performance to some extent. However, improvement of synthetic accessibility 

may compensate this drop in docking scores. It should be also noted that choosing a greater number of clusters 

resulted in increased diversity of Murcko scaffolds among top 100 compounds. The average number of distinct 

scaffolds was 8, 16 and 46 for 5, 25 and 50 cluster setups, respectively. 

The percentage of generated compounds, which bind to the hinge region, was the highest for the Pareto 

strategy (23-28%) followed by the greedy approach (20-21%) and clustering (15-22%). The number of generated 

and docked molecules was also varied a lot across different strategies. The lowest number for compounds was 

generated for the clustering strategy irrespective the chosen number of clusters (90 000-99 000). For the greedy 

strategy the number of generated molecules was 103 000-106 000. Whereas for the Pareto strategy it was much 

greater – 175 000-201 000 compounds (Table S1). 

While Pareto suggests the highest diversity of scaffolds of generated compounds its runtime is less predictable 

than for other strategies because a variable number of compounds is selected on each iteration and the number of 

iterations can be greater. The greedy search results in highly reproducible outputs with molecules having high 

docking scores. Therefore, it is not necessary to run it multiple generation. However, the diversity of generated 

molecules is relatively low. The clustering strategy suggests a balanced approach, which has a predictable runtime, 

and a user may increase diversity of generated molecules by increasing the number of clusters. 
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Figure 6. Statistics for top 100 molecules bound to the hinge region from three independent runs using different 
selection strategy (greedy, clustering and Pareto) and cluster settings (all runs used ChEMBL SA2 fragment database 
and radius 2). (a) Average docking and SA scores for top 100 molecules. (b) The number of distinct Murcko scaffolds 
among top 100 compounds for different selection strategies. (c) The number of distinct Murcko scaffolds among 
top 100 compounds for different clustering settings. 

 

Augmentation of a docking scoring function 

The objective function, which is a docking score by default, can be augmented with additional parameters 

important for particular projects. Augmentation of docking scores with drug-likeness (QED) substantially improves 

drug-likeness of generated compounds. However, docking scores of top 100 molecules were somewhat worse 

relatively to the runs based exclusively on docking scores. Synthetic complexity of generated compounds was 

comparable to those generated with docking score alone but more variable (Figure 7). 

 

 

Docking score Docking score + QED 

 
2.84; -13.5; 0.39 

 
2.93; -12.8; 0.43 

 
2.92; -13.8; 0.45 

 
3.41; -12.3; 0.61 

 
3.04; -13.3; 0.42 

 
2.67; -12.6; 0.60 

Figure 7. Statistics for top 100 molecules bound to the hinge region from three independent runs using docking 
score as an objective function and docking score augmented with drug-likeness (QED) (all runs used ChEMBL SA2 
fragment database, radius 2 and the clustering selection strategy with 25 clusters and top 2 compounds selected 
from each). (a) Average docking and SA scores for top 100 molecules. (b) Distribution of drug-likeness for top 100 
compounds for individual runs. Top scored structures from individual runs are shown on the left. The numbers are 
SA score, docking score and QED, respectively. 
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Previous studies have demonstrated that molecules with a higher degree of saturation are more likely to 

advance through various clinical development stages [41]. In this work, several strategies were employed to bias 

molecular generation towards compounds with at least 30% sp3 carbon atoms in their scaffolds. Additionally, the 

CReM fragment databases were pre-filtered to exclude fragments containing rings larger than six atoms. Retaining 

these larger rings in databases significantly increased the frequency of such ring systems in generated molecules, 

because they disproportionately contributed to the sp³ carbon fraction. 

All simulations were performed in triplicate, and the statistical results were averaged for simplicity. The first 

strategy involved augmenting the docking score with the fraction of sp³ carbon atoms in Bemis-Murcko scaffolds 

(Csp³BM). This approach yielded only a marginal improvement in the proportion of generated molecules meeting 

the desired criteria (Figure 8a). A more effective strategy involved employing a custom sampling function that 

selected fragments from the CReM database in proportion to the squared fraction of sp³ carbon atoms. 

The most substantial improvement was achieved by pre-filtering the starting fragments to include only those 

with Csp3BM values of 0.3 or higher. This filtering reduced the number of starting fragments from 23840 to 2851 

but significantly increased the proportion of generated molecules with Csp³BM values meeting the threshold, from 

15-22% to 63-66% (Figure 8a). This filtering also resulted in higher synthetic accessibility (SA) scores for top-scoring 

compounds that satisfied PLIP and had Csp³BM ≥ 0.3, while maintaining docking scores comparable to those results 

obtained using the full fragment set (Figure 8b). 

To further investigate, an alternative set of starting fragments was prepared using the same protocol outlined 

in the Methods section, starting from the CReM SA2.5 database. This yielded 27802 starting fragments enriched in 

sp³ carbon atoms. Using this set, a similarly high proportion of compounds meeting the desired criteria (57-65%) 

was achieved. The top-scoring molecules from this dataset exhibited slightly higher docking scores and comparable 

SA scores. Representative examples of these top-ranked molecules are provided in Table 3. 

In conclusion, the widely employed strategy of augmenting docking scores with additional parameters to steer 

molecular generation towards a desired region of chemical space proved inefficient in this context, likely due to the 

need for fine-tuning the augmented objective function. A more effective approach was direct control over the 

composition of starting fragments and the fragments used during molecule growth. 
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Figure 8. (a) The average fraction of molecules having at least 30% of sp3 carbon atoms in their Bemis-Murcko 
scaffolds, which were generated in three independent runs. (b) Average docking and SA scores for top 100 
molecules across three independent runs for different setups. The top 100 molecules were selected among those 
which satisfied PLIP and had Csp3BM ≥ 0.3. 

 

Table 3. Top scored generated compounds across three independent runs for each combination of settings. 
Compounds bind to the hinge region and have the fraction of sp3 carbon atoms in scaffolds equal or greater than 
0.3. 

 
Starting fragments 

SA2 SA2 Csp3-rich SA2.5 Csp3-rich 

docking score & 
no fragment 

sampling 
 

3.32; -11.7 

 
4.22; -11.8  

4.39; -12.3 

docking score & 
Csp3 fragment 

sampling 
 

3.56; -11.8 
 

4.19; -11.7 
 

3.62; -12.5 

docking score + 
Csp3 (BM) & no 

fragment 
sampling  

2.51; -11.6 

 
3.78; -12.3 

 
3.62; -12.5 
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docking score + 
Csp3 (BM) & Csp3 

fragment 
sampling 

 
2.65; -11.6 

 
4.35; -12.0 

 
2.78; -12.3 

 

The effect of protein conformation 

A protein in complexes with different ligands may have different conformations of binding site residues and 

we explored the effect of protein conformations on the output of the generative pipeline. We chose three other 

complexes of CDK2 (PDB: 2FVD, 3RAL, 6GUH) and performed three independent runs using the optimal parameters 

defined above. The results show that while SA scores vary in a narrow range of values, docking scores were affected 

more pronounced (Figure 9a). Diversity of Murcko scaffolds within individual runs was similar and was not 

dependent on protein conformation: there were 16-22 distinct scaffolds among top 100 compounds in average. 

Reproducibility of scaffolds for the same protein conformations was low and scaffolds were almost not reproduced 

across different protein conformations (Figure 9b). The generated compounds poorly overlap with the reference 

ChEMBL space and frequently created distant clusters. However, compounds generated for different protein 

conformations keep certain level of similarity. According to UMAP compounds generated for 2BTR and 3RAL are 

often closely clustered, there should be also some similarity between compounds from 2BTR and 6GUH (Figure 10). 

This is confirmed by checking the best scored molecules. Top scored compounds for 2BTR and 3RAL frequently 

possess the same 1(2H)-isoquinolinone core. Some molecules generated for 6GUH also have this core (Table 4). 

These results suggest that for real applications it would be more reasonable to use different conformations of 

a protein to design compounds with higher docking score and better fitting to the shape of a protein binding site. 

These can be conformations from X-ray of protein-ligand complexes as well as conformations sampled from 

molecular dynamics simulation of complexes. However, the latter hypothesis we did not verify in this study. 

 

Figure 9. (a) Average docking and SA scores for top 100 generated molecules bound to the hinge region from three 
independent runs for each of CDK2 protein structures. (b) The number of distinct Murcko scaffolds for individual 
runs and across runs. 
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Table 4. Compounds with the highest docking score generated in individual runs for particular conformations of 
CDK2. The numbers below structures are SA and docking scores. 

 Run1 Run 2 Run 3 

2BTR 

 
2.84; -13.5 

 
2.92; -13.8 

 
3.04; -13.3 

2FVD 

 
2.78; -12.6  

2.98; -12.2 

 
3.12; -12.6 

3RAL 

 
2.86; -12.7 

 
3.57; -11.2 

 
3.00; -11.9 

6GUH 

 
3.06; -14.3 

 
2.81; -14.0  

2.92; -14.2 
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Figure 10. UMAP (number of neighbors is 10) of top 100 generated compounds from three independent runs for 
four different conformations of CDK2 protein (1200 compounds in total), known CDK2 inhibitors from ChEMBL33 
(pKi/pKd/IC50 ≥ 6) and a random set of 50000 compounds from ChEMBL as a reference space. 

 

Post hoc evaluation of possible selectivity of designed CDK2 inhibitors 

We investigated possible selectivity of generated compounds to highly related protein targets. Therefore, we 

selected several kinases which share high sequence similarity to CDK2 (39-66% of identity) and had X-ray structures 

of protein-ligand complexes: CDK1 (6GU2), CDK5 (4AU8), CDK6 (6OQO), CDK7 (8P4Z), CDK16 (5G6V), MAPK7 (5BYZ) 

and MAPK13 (5EKO). For each kinase we determined protein-ligand interaction patterns encoding the hinge region 

and collected inhibitors having pIC50/pKi/pKd ≥ 6 from ChEMBL33 as reference compounds. Known inhibitors were 

docked into corresponding proteins and we chose the median docking score as an activity threshold for further 

assessments (Table S2). 

Top 100 compounds from each of the previous 45 generations of CDK2 ligands for 2BTR protein conformation 

(3 runs × 3 fragment databases × 5 radiuses) were selected for analysis. These compounds were docked to all of 

selected kinases and we counted the number of compounds having docking scores better than the median docking 

scores for reference active compounds. The designed compounds mainly achieved docking scores better than the 

median score of known inhibitors (Figure 11). The only notable drop was observed for CDK6. Docking scores of 

designed compounds, which bind to the hinge region of corresponding kinases, were frequently better than docking 

scores of known actives in all cases (Figure S2), but the number of such compounds is very low (Figure 11). 

Thus, while designed compounds possess high docking scores to structurally related protein targets, they may 

not form important protein-ligand interactions and, therefore, may still be selective. Explicit inclusion of other 

proteins as anti-targets into the generation pipeline may solve this issue, but this is not implemented. However, 

this will proportionally increase required computing capacity and still will not guarantee generation of selective 

compounds, because these proteins may also exist in different conformational states while ligands may bind only 

to some of them and inclusion of all conformations of all anti-targets would be unfeasible. 
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Figure 11. The number of designed compounds which achieved docking scores better than the median docking 
scores of corresponding actives for each kinase. Yellow bars denote compounds without consideration of hinge 
region binding and blue bars denote compounds which additionally satisfy at least 2 out of 3 hinge region contacts. 

 

De novo design of ligands for different protein families 

To demonstrate wider applicability of the developed pipeline we chose typical human proteins from different 

protein classes (Table 5), which have experimental 3D structures and a large number of known ligands. For every 

structure we define a set of important protein-ligand contacts (H-bond donor or acceptor, metal acceptor or 

cationic interactions) which were used as a restriction during the generation process (Table S2). In all cases the 

threshold for similarity of protein-ligand interaction pattern (PLIP) was set to 0.6. This means that for patterns with 

one or two contacts all contacts should be found to make a compound eligible to be chosen for the next iteration. 

For patterns with three contacts, that meant the at least two contacts should be satisfied. 

One simulation per target was executed using the optimal settings determined above. The total number of 

enumerated and docked compounds varied from 110 000 to 147 000 for individual targets. The percentage of 

compounds matched the require protein-ligand interaction patterns within 0.6 threshold was very variable, from 

2.3% for ESR1 to 53.5% for HDAC2 (Table 5). 

Table 5. Statistics on the number of generated compounds and diversity of Murcko scaffolds. 

Protein 
target 

Protein target name and 
family 

PDB 
Total number 
of generated 
compounds 

Number of 
compounds satisfying 
PLIP at the level of 0.6 

Number of distinct Murcko 
scaffolds in top 100 

generated compounds 
satisfying PLIP 

BACE1 Beta-secretase (protease) 6UWP 111 232 11 277 (10.1%) 8 

DRD2 
Dopamine D2 receptor 

(GPCR) 
6CM4 125 005 36 695 (29.4%) 10 

ESR1 
Estrogen receptor (nuclear 

receptor) 
8DV7 147 125 3 449 (2.34%) 40 

HDAC2 
Histone deacetylase 2 
(epigenetic regulator) 

7ZZT 112 085 59 994 (53.5%) 39 

PARP1 
Poly [ADP-ribose] 

polymerase 1 (transferase) 
7ONT 110 931 27 328 (24.6%) 19 

 

For the further analysis we selected top 100 compounds with the highest docking scores and satisfying PLIP 

requirements. In the majority of cases docking scores of top 100 generated compounds were better than those 
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scores of known active ligands (pKd/pKi/pIC50 ≥ 6) deposited in ChEMBL33 (Figure 12a). Synthetic accessibility scores 

were mainly below 3 and comparable with SA scores of compounds from ChEMBL (Figure 12b). One exception was 

DRD2 where SA scores of top 100 designed compounds were greater than SA scores of ChEMBL compounds (~3.5 

vs. ~2.6). Other exception was BACE1, where designed compounds had better SA scores than compounds from 

ChEMBL (~2.8 vs. ~4). High SA scores for ChEMBL compounds can be explained by presence of many polycyclic and 

spirocyclic chiral compounds among actives. Novelty of generated compounds was high. Tanimoto similarity 

calculated for every generated compound based on 2048-bit Morgan radius 2 fingerprints to the closest neighbor 

from the whole ChEMBL33 and from the subset of known actives was mainly below 0.5 and 0.3, respectively, 

indicating high novelty of generated compounds (Figure 12c). 

 

Figure 12. (a) Docking scores for top 100 generated compounds satisfying PLIP requirements and active compounds 
from ChEMBL33 (pKi/pIC50 ≥ 6 and MW ≤ 500) regardless their protein-ligand interaction patterns. (b) SA scores for 
the same compounds as on plot (a). (c) Novelty of generated compounds expressed as Tanimoto similarity of top 
100 generated compounds to the closest neighbor from the whole ChEMBL33 and from known actives. 

 

Comparison with state-of-the-art approaches 

For comparison purposes we chose REINVENT4 [42] (https://github.com/MolecularAI/REINVENT4) which 

includes the previously developed DockStream approach [23] for de novo design guided by molecular docking. 

REINVENT is a recurrent neural network model trained on SMILES of ChEMBL structures. DockStream implements 

reinforcement learning using molecular docking, optionally augmented, as a reward function. As targets we used 

CDK2 (PDB 2BTR), BACE1 (PDB 6UWP), DRD2 (PDB 6CM4), ESR1 (PDB 8DV7), HDAC2 (PDB 7ZZT), PARP1 (PDB 7ONT), 

which were used in other studies [23, 43, 44]. To achieve better comparison results we adjusted REINVENT4 settings 

in accordance with CReM-dock setup, but we tried to keep them close to optimal ones suggested by the authors 

(Table S3). For every case we run 400 REINVENT iterations to achieve approximately the same number of docking 

events as in the case of CReM-dock approach. To make results more compatible we introduced to REINVENT4 the 

same version of AutoDock Vina 1.2.5 as we used for CReM-dock experiments. The exhaustiveness parameter was 

set to 8 as this is the default value in REINVENT4 and it could not be changed in settings. The same value was applied 

for CReM-dock generations. We used an objective function suggested by the REINVENT4 authors which is a 

geometric mean of docking scores scaled by the sigmoid function and drug-likeness (QED). This should make 

generated structures more drug-like. For CReM-dock we chose to use not only the docking score as a single 

objective but also a geometric mean of docking scores and QED as described above. The latter should make results 

more comparable. Since reinforcement learning optimizes a single agent, this may result in highly similar output 

structures. Therefore, we enabled the Murcko scaffold diversity filter suggested by the REINVENT authors, that 
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should explicitly control diversity of solutions and keep it high. Support of PLIP is not implemented in REINVENT4, 

therefore we performed generation without these restrictions. REINVENT4 and CReM-dock were run once for each 

target. Radical and charge states of compounds generated by REINVENT4 were fixed by an in-house script, 

otherwise calculated physicochemical properties and SA scores were incorrect as well as PLIP detection. A small 

number of compounds (~500 across all generations) was discarded as the script was unable to fix them. 

The number of REINVENT compound docked to each target varied from 141 000 to 152 000. The percentage 

of REINVENT compounds satisfying the same physicochemical restrictions applied to CReM-dock varied from 34% 

to 51% (Table S4), that was lower than expected. The main issue was high lipophilicity of generated compounds. 

Top scored compounds had average lipopilicity above 5 almost for all targets (Table 6, Figure S4). Thus, 

augmentation of a docking score with QED did not fully solve the issue of generation of unfavorable molecules. The 

explanation could be that such highly lipophilic molecules have high docking score which compensate their poor 

drug-likeness. The explicit filtering of compounds by physicochemical properties implemented in CReM-dock looks 

more favorable because it avoids generation and docking of compounds with unfavorable properties and wasting 

computational resources. 

The percentage of REINVENT compounds satisfying PLIP was expectably low for the majority of targets (0.01-

2.7%) with the exception of HDAC2 for which 55.4% of molecules satisfied PLIP (Table S4). The small number of 

satisfying compounds can be explained by absence of explicit biasing of the REINVENT objective function with 

protein-ligand interaction patterns. The large number of generated HDAC2 ligands satisfying PLIP could be 

explained by the small number of required contacts – there was only one contact with Zn ion. However, in the case 

of DRD2 target, where the PLIP also consisted of only a single interaction with Asp114 (cationic), the number of 

generated compounds establishing this contact was low: 2274 compounds or 2.7% from the total number of 

generated molecules. This contact is considered canonical for dopamine D2 and many other GPCRs [45, 46] and 

highly likely it should be present in protein-ligand interactions of active compounds. This result highlights the 

importance of taking into account key protein-ligand interactions explicitly in order to generate a greater number 

of compounds preserving specific contacts. Otherwise, generation may be too broad and only a small portion of 

generated molecules will be able to establish these interactions. 

Consideration of highly lipophilic compounds in real applications may be not reasonable, therefore we selected 

top 100 REINVENT molecules satisfying the same physicochemical rules and, additionally, PLIP constraints as 

applied to CReM-dock generations (Table 6). Simultaneous application of both these criteria resulted in even less 

than 100 compounds for some targets (BACE1 – 29 compounds and ESR1 – 4, Table S4). Applying these criteria 

decreased docking scores of the remaining top scored compounds, but improved their drug-likeness, while 

synthetic accessibility scores were remained almost the same (Figure 13). CReM-dock resulted in comparable 

docking scores of top scored compounds relatively to REINVENT compounds filtered by physicochemical properties. 

However, applying the PLIP filter for REINVENMT compounds substantially reduced their number and 

correspondingly docking scores and even known actives outperformed molecules generated by REINVENT. This 

result was not very surprising because there was no bias by PLIP in the REINVENT objective function and therefore 

the number of analyzed compounds was much smaller than for CReM-dock. Synthetic accessibility of compounds 

generated by REINVENT and CReM-dock were comparable for the most targets. The notable difference was 

observed for DRD2 and HDAC2, where CReM-dock resulted in more complex molecules (Figure 13). 

Novelty of compounds generated by REINVENT was somewhat lower than for CReM-dock compounds. The 

generated REINVENT compounds were more similar to ChEMBL molecules, because the latter were used for 

training the REINVENT model (Figure 14). CReM-dock using fragments from the ChEMBL database generated 

compounds which were less similar to the reference space. CReM-dock compounds overlap with ChEMBL reference 

space to the lesser extent and sometimes create separate distant clusters (Figure S5). However, we found that 
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there were a reasonable number of known actives from ChEMBL which were similar to some of generated 

compounds (Table S5), that confirms that CReM-dock also explores relevant chemical space. 

 

Figure 13. Distribution of properties for top 100 compounds (with the highest docking scores) generated by CReM-
dock and REINVENT in comparison with known actives from ChEMBL33. REINVENT molecules were additionally 
filtered by physicochemical properties and PLIP as CReM-dock settings. 

 

 

Figure 14. Novelty of top 100 compounds generated by CReM-dock and REINVENT for different protein targets. 
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Table 6. Top scoring structures generated by CReM-dock and REINVENT4. The numbers below structures are SA 
and docking scores, respectively. 

 
CReM-dock 
(Docking) 

CReM-dock 
(Docking + QED) 

REINVENT4 
REINVENT4 

(physicochemical 
filters) 

REINVENT4 
(physicochemical 

filters + PLIP) 

B
A

C
E1

 

 
2.73; -11.0 

 
2.88; -10.9 

 
4.71; -13.8 

 
2.40; -12.1  

3.03; -10.0 

C
D

K
2

 

 
2.95; -13.7 

 
3.22; -12.2 

 
3.63; -13.6 

 
2.52; -12.7  

2.59; -11.6 

D
R

D
2

 

 
3.60; -14.4  

3.39; -14.0 

 
4.82; -15.8  

2.11; -14.0 

 
2.66; -13.6 

ES
R

1 

 
2.99; -11.5 

 
3.27; -11.6  

2.35; -13.4  
3.62; -12.5 

 
3.47; -9.00 

H
D

A
C

2 

 
2.94; -13.8 

 
3.53; -13.6 

 
2.41; -13.7 

 
2.3; -13.7 

 
2.3; -13.7 

P
A

R
P

1
 

 
2.75; -14.6 

 
2.48; -13.9  

3.90; -16.4 

 
5.15; -13.7  

2.55; -12.8 

 

Fragment expansion study 

CReM-dock approach based on fragment growing perfectly suits to tasks where a smaller ligand should be 

expanded within a binding site to generate a larger molecule better fill the cavity. To validate this ability of CReM-

dock we chose pairs of compounds from the previous work of Malhotra and Karanicolas [47], who collected a large 

set of pairs of smaller and larger ligands co-crystallized with the same protein and which are available in PDB 

database. As criteria for ligand pairs selection we used: (i) the number of heavy atoms in a larger ligand is less than 
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36 to roughly satisfy MW ≤ 500, (ii) smaller and larger ligands should have high volume overlap indicating that the 

pose is not substantially changed upon expansion, (iii) RMSD between binding pockets of corresponding protein 

conformations was low indicating that there were no major changes in positions of side chain residues and (iv) the 

difference in activity between smaller and larger ligand was greater than two orders of magnitude. Finally, we chose 

three pairs of ligands satisfying these criteria (Table 7). 

To run simulations, we adjusted some settings to not going search too far and save computational resources, 

because molecules upon growing increase their molecular weight, it was unreasonable to continue generation after 

reaching the molecular mass of a desired ligand. The threshold values of physicochemical parameters were set to 

the corresponding values of a larger ligand + 15% (MW, logP, TPSA) and RTB was set to the corresponding value of 

a larger ligand + 1. To further restrict the generation, we chose RMSD threshold to 1Å and set minimum PLIP 

similarity 0.6 for 2ZWZ and 3S1G and 0.5 for 2HB1 (Table S6). This should guide generations towards compounds 

preserving the binding pose of a starting fragment and its interactions with a corresponding protein. For generation 

we chose CHEMBL SA2 fragment library and radius 2. As a selection strategy we used clustering with 100 clusters 

and selection of top 1 compounds from every cluster. This was done to make search more exhaustive and cover a 

larger chemical space. This did not increase computational costs substantially, because we started from relatively 

large fragments and the target molecules should be generated in a few steps. Overall, for each of three targets 

from 7600 to 23600 molecules were generated. 

Form the pool of generated compounds we selected most similar ones to the target compounds using 

Tanimoto similarity on 2048-bit Morgan fingerprints of radius 2. In all cases the most similar generated ligands 

possessed the same binding mode and preserved important protein-ligand interactions (Table 7, Figure 15). In the 

case of 2HB1-2QBS pair the pipeline was able to find a compound identical to the larger ligand 2QBS. There was 

also another compound with similarity 1, which contained a cycloheptyl residue instead of a cyclohexyl. Both 

compounds had very similar binding modes relatively to the target ligand. In the case of 3S1G-3GC4 pair the most 

similar generated ligand did not contain a positively charged secondary amine center and, thus, could not establish 

a contact with Asp280 like the target ligand. However, the generated compound contained an amino group 

strengthen the binding to Asp156 and a hydrophobic residue filling the pocket similarly as the target compound. In 

the case of 2ZWZ-2ZX9 pair the most similar generated ligand fills the hydrophobic pocket highly similar to the 

target compound, however, it contained a methyl group instead of a cyclopentyl residue. The most similar 

compound is represented by two enantiomers. While both enantiomers could adopt the binding site and preserve 

the contacts, S-enantiomer having the same configuration of the corresponding chiral center as the target 

compound had a slightly better docking score and RMSD value than R-enantiomer. In all cases the generated 

compounds could at least approach the chemical space represented by a target molecule and fit the binding site 

preserving the pose and contacts (Figure 15). This proves the ability of the approach to explore not only novel 

chemical space, but also relevant space which was previously experimentally confirmed. 
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Table 7. The pairs of smaller (starting) and larger (target) ligands and designed compounds the most similar to the 
corresponding target one. 

Starting ligand Target ligand 

Similarity 
of starting 
and target 
molecules 

Generated molecules most 
similar to the target one 

Similarity of 
a generated 
molecule to 
the target 

ligand 

RMSD of a 
generated 

ligand 
relatively to 
the starting 

one 

 
2HB1 

Ki = 160 µM 

 
2QBS 

Ki = 210 nM 

0.36 
 

1 1.25 

 

1 1.52 

 
3S1G 

Ki = 6500 nM 
 

3GC4 
Ki = 25 nM 

0.32 

 

0.63 0.06 

 
2ZWZ 

Ki = 16.3 nM 

 
2ZX9 

Ki = 0.054 nM 

0.32 

 
docking score = -9.2 

0.69 0.86 

 
docking score = -9.05 

0.69 1.03 

 

   
2HB1/2QBS 3S1G/3GC4 2ZWZ/2ZX9 

Figure 15. Binding poses of smaller (green) and larger (magenta) ligands as well as generated compounds 
(yellow/blue) the most similar to the target (larger) ligand. 
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Discussion 

Practical tips: 

• Use larger context radiuses and/or fragments obtained from more synthetically accessible molecules 

• For larger radiuses and smaller fragment databases there is no need to make repeated runs, results 

are highly reproducible 

• For higher diversity of solutions choose Pareto selection, for more robust runtime – selection based 

on clustering 

• Use several protein conformations, if possible 

• Apply restrictions to protein-ligand interactions, if possible 

• Augmentation of an objective function works for drug-likeness 

• Use fragments enriched with sp3 carbon atoms to generate corresponding molecules, augmentation 

of the objective function works poorly in this case 

Analyzing outputs of CReM-dock we noticed that there were many top scored compounds bearing many 

methyl groups of halogen atoms. Those atoms are mainly added at the later iterations and are unlikely critically 

important for ligand-protein recognition and binding. However, introduction of these groups can make structures 

more complex and less synthetically feasible. To overcome this issue, we may suggest to specify the minimum size 

of the attached fragment greater than 1, which is used by default. 

A fragment expansion strategy may be applied in an alternative context. Specifically, an anchor fragment that 

demonstrates binding to a protein can be derived from a co-crystallized ligand. This fragment can subsequently be 

expanded using CReM-dock while preserving its binding pose and interactions. Compared to de novo design, this 

approach offers potential advantages, as the binding pose of at least one fragment is known, thereby increasing 

the likelihood of generating active molecules. 

 

Conclusions 

The suggested fragment-based approach to structure generation guided by molecular docking demonstrated 

promising results. It solves to some extent the issue of synthetic accessibility of generated compounds and proposes 

indirect, but fine-tuning control over it. It was demonstrated that choosing of a larger context radius and a fragment 

database created by fragmenting more synthetically accessible molecules improves synthetic accessibility of 

generated structures. There is an option to augment the docking score with different physicochemical parameters 

to generate more favorable compounds. While this worked well in the case of drug-likeness it was not an optimal 

solution for generating of compounds with a large fraction of sp3 carbon atoms. In the latter case the better solution 

was explicit biasing by selecting Csp3-enriched staring fragments or fragments used for growing. Further flexibility 

of the approach comes from different selection strategies which allow to control diversity of created molecules. It 

was also demonstrated that using different protein conformations taken from different complexes results in diverse 

structures and different docking scores of generated compounds and, therefore, the reasonable strategy would be 

to use multiple available protein conformations to generate compounds and analyze the combined output of all 

runs. The ability to preserve particular protein-ligand contacts during the generation is important if these contacts 

were previously determined as essential. This greatly increases the number of compounds possessing the 

corresponding interaction patterns. It is possible to apply an additional restriction by setting an RMSD threshold 

relatively to the pose of a starting fragment to enable preserving the binding pose of generated compounds. We 

demonstrated in three retrospective studies that this strategy resulted in generation of compounds which were 
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identical or highly similar to the known target molecules which were designed by medicinal chemists in the course 

of optimization of starting fragments. The developed tool is competitive to the state-of-the-art REINVENT4 

approach using recurrent neural network to generate structures and reinforcement learning with a sophisticated 

objective function to guide generation. The structures generated by CReM-dock had frequently higher novelty and 

comparable docking and synthetic accessibility scores. The developed tool proposes great flexibility to adapt it to 

particular needs and address de novo generation as well as fragment expansion or scaffold decoration tasks. 

 

Availability and requirements 

Project name: CReM-dock 

GitHub: https://github.com/ci-lab-cz/crem-dock 

Operating system(s): Linux 

Programming language: Python 3 

Other requirements: RDKit, EasyDock 

License: BSD-3 

Any restrictions to use by non-academics: no 

 

Data deposition 

Structures of all molecules generated in the course of this study are accessible by this link - 

https://doi.org/10.5281/zenodo.14577996.  
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