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Abstract

The complete active space second-order perturbation theory (CASPT2) is valuable for ac-

curately predicting electronic structures and transition energies. However, optimizing molec-

ular geometries in the solution phase has proven challenging. In this study, we develop an-

alytic first-order derivatives of CASPT2 using an implicit solvation model, specifically the

polarizable continuum model (PCM), within the open-source package OpenMolcas. Analytic

gradients and non-adiabatic coupling vectors are computed by solving a modified Z-vector

equation. Comparisons with existing theoretical and experimental results demonstrate that the

solvent effects can be qualitatively captured using the developed method.
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1 Introduction

The electron correlation is formally divided into the “static” and “dynamical” electron correla-

tions, both of which must be considered for accurate quantum chemical calculations. The former

is typically described by the multiconfiguration self-consistent field (MCSCF) method, where the

wavefunction is expressed as a linear combination of selected configuration state functions (CSFs).

A particularly useful variant of the MCSCF method is the complete active space SCF (CASSCF)

method. In this approach, an active space is defined, and the wavefunction is obtained by perform-

ing full configuration interaction (CI) within this active space. The latter, dynamical or non-static

electron correlation, is generally treated with post-MCSCF methods, commonly referred to as mul-

tireference (MR) methods, such as MR coupled-cluster (MRCC)1–3 and configuration interaction

(MRCI).4 Although these two MR approaches are highly accurate, their computational cost is sig-

nificant. Another class of MR approaches is perturbation theory (MRPT), with the complete active

space second-order perturbation theory (CASPT2)5–7 being one of the most well-known MRPTs.

Note that the “static” electron correlation computed with the MCSCF method can contain con-

tributions that should belong to the dynamical electron correlation in modern electron correlation

theory.8,9 They are referred to as the “internal” dynamical electron correlation, and the rest, taken

account by post-MCSCF methods, is referred to as the “external” dynamical correlation. These

post-SCF treatments can also be applied to the single-configuration Hartree–Fock method. In par-

ticular, the CC approach can be extended to excited states through the equation-of-motion (EOM)

formalism,10 typically utilizing the CC singles and doubles (EOM-CCSD) method.

Since many chemical events occur in solution, it is highly desirable to include solvent effects

in the aforementioned accurate quantum chemical calculations. A straightforward approach is to

treat solvent molecules explicitly; however, the number of atoms to consider in this manner can be

substantial. Even with advancements in the quantum mechanical/molecular mechanical (QM/MM)

method,11 the computational cost of such calculations remains relatively high. One challenge in

achieving accurate QM/MM calculations arises from the sampling required to ensure convergence

of the free energy, which may be addressed using a reweighting technique.12 Another class of
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explicit solvent models includes the effective fragment potential,13,14 enabling a more accurate

treatment of solvent molecules. On the other hand, solvent effects can also be efficiently consid-

ered in an implicit manner. This class includes the generalized Born model,15,16 the polarizable

continuum model (PCM),17 the conductor-like screening model (COSMO),18 and the reference in-

teraction site model (RISM).19,20 The first three approaches are known as the dielectric model and

have a relatively modest computational demand compared to that of RISM. Among these methods,

the PCM approach is widely utilized and has been combined with various computational method-

ologies. These primarily include single-configuration methods, though some earlier studies have

incorporated electron correlation methods.21–24

Determining molecular structures using a combination of accurate quantum chemical methods

and implicit solvent models, particularly for excited states, remains challenging. One difficulty is

developing the analytic derivative with respect to the atomic coordinates. A notable example is

the combination of EOM-CCSD or symmetry-adapted cluster-configuration interaction (SAC-CI)

with PCM, as demonstrated by Cammi,25,26 which has been applied to absorption and emission

energies. The integration with multiconfiguration methods is less common, though some earlier

studies exist.20,27–30 However, the integration with MRPT is much more limited. Noteworthy de-

velopments by Yamazaki31 (with CASSCF) and Mori32 employed the RISM method to incorporate

non-equilibrium solvent effects and applied it to finding conical intersections (CoIns). Unfortu-

nately, the program code for these methods is not publicly available. Additionally, some studies

have successfully incorporated explicit solvents (QM/MM) at the MRPT level,33,34 which is use-

ful for including kinetic effects. Technically, the electronic coupling between solute and solvent

molecules is typically decoupled in QM/MM calculations, allowing for the use of program code

developed for vacuum with minimal modifications. While this approach can be beneficial in many

situations, the standard (non-polarizable) QM/MM method employs a fixed charge in the MM

region, which is unsuitable when the electronic structure of the solvent varies following an elec-

tronic transition. In contrast, implicit solvation models account for a solvent charge dependency

on the solute’s electronic structure, necessitating additional development for analytic derivatives
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with PCM and possibly for polarizable QM/MM methods.35

In this study, we develop analytic first-order derivatives (gradients and non-adiabatic coupling

vectors) for the state-averaged (SA) MCSCF and CASPT2 methods in combination with the con-

ductor PCM (C-PCM) within the open-source package OpenMolcas.36–38 The CASPT2 energy is

obtained using the perturbation to energy (PTE) approach,39 where the solvent reaction field is

generated at the SCF level and remains fixed during the PT2 calculation. While it is theoretically

possible to generate the reaction field at the CASPT2 level by iteratively determining the solvent

charge and solute density (perturbation to energy and density; PTED), this approach appears im-

practical for applications and thus is not considered here. This study primarily focuses on the

CASSCF-based wavefunction, but the developed method can also be applied to the restricted ac-

tive space (RAS)40 SCF and the PT2 extension (RASPT2).41,42 The developed method is applied

to typical molecules, focusing on solvent effects.

2 Methodology

In this section, the following indices are used without further notation:

• General molecular orbitals (MOs): p, q, r, s, t, u

• Internal states: α , β , γ , η , θ (∈ P)

• General states: π , ρ (∈ P +P⊥)

• Tesserae: i, j

P denotes the reference space, which typically includes the states averaged in the reference SCF

calculation. It is assumed that all states are equally averaged in SCF and included in the PT2

calculation. Conversely, P⊥ represents the orthogonal complement to P . States within P and

P⊥ are commonly referred to as internal and external states, respectively.

4

https://doi.org/10.26434/chemrxiv-2024-05mq8-v2 ORCID: https://orcid.org/0000-0001-5581-4712 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-05mq8-v2
https://orcid.org/0000-0001-5581-4712
https://creativecommons.org/licenses/by/4.0/


2.1 PCM for Single-Configuration Methods

In PCM, the solute–solvent interface is defined using discretized surface elements known as tesserae.

Each tessera carries a polarizable charge called the apparent surface charge (ASC) Qi, which is used

to evaluate the electrostatic interaction between the solute and solvent. The ASCs are determined

by solving a matrix equation, the specifics of which depend on the chosen PCM model. For the

C-PCM used in this study, the equation is given by:

Q =−ε −1
ε

C−1V (1)

with 
Ci,i = 1.0694

√
4π
ai

Ci, j = 1
|ri−r j|

, (2)

where ai and ri represent the area and center of tessera i, respectively, and ε is the dielectric con-

stant (relative permittivity) of the solvent. V is the sum of the nuclear and electronic electrostatic

potentials (ESP) of the solute: V = VN +Ve with

V N
i = ∑

ζ

Zζ

|rζ − ri|
(3)

V e
i =−∑

p,q
Dp,q

⟨
p
∣∣∣∣ 1
|r− ri|

∣∣∣∣q⟩ , (4)

where Zζ and rζ are the nuclear charge and coordinates of atom ζ , r is the electronic coordinate,

and Dp,q is the solute’s density matrix. Thus, ASCs can be calculated separately by solving Eq. (1):

Q = QN +Qe. Since Ve and, consequently, Qe depend on the solute density, the electrostatic

contribution to the (one-electron) Hamiltonian is updated at each SCF cycle.

The free energy of the solute–solvent system is typically expressed as:

G = Esolute +
1
2

E int +G non-es, (5)
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where Esolute is the solute’s internal energy, E int is the electrostatic interaction energy between

the solute and solvent, and G non-es is the sum of the non-electrostatic cavitation, dispersion, and

repulsion free energies. E int is generally given by:

E int = ∑
i

ViQi . (6)

While Esolute is computed as in vacuum, the wavefunction parameters are determined in the pres-

ence of the solvent’s reaction field. Half of E int accounts for the work required to polarize the

dielectric medium when a polarized solute molecule is inserted into the cavity, making the total

energy a free energy. Thus, the free energy is obtained with consistent densities for both the solute

and solvent.

If the solute wavefunction is written as Ψ, the solute–solvent free energy can be explicitly

written as:

G =
⟨
Ψ
∣∣Ĥvac∣∣Ψ⟩+ 1

2 ∑
i

ViQi +Enuc +G non-es

=
⟨
Ψ
∣∣Ĥvac +V̂

∣∣Ψ⟩− 1
2 ∑

i
V e

i Qe
i +

1
2 ∑

i
V N

i QN
i +Enuc +G non-es. (7)

Here, Ĥvac is the vacuum Hamiltonian, V̂ is the electrostatic operator from the solvent, and Enuc

is the nuclear repulsion energy of the solute molecule. The wavefunction Ψ is obtained by min-

imizing the free energy (Eq. (7)) with respect to wavefunction parameters, and the electrostatic

operator V̂ is

V̂ = ∑
p,q

Êp,qVp,q =−∑
p,q

Êp,q ∑
i

⟨
p
∣∣∣∣ Qi

|r− ri|

∣∣∣∣q⟩ . (8)

In Eq. (7), the second term subtracts the double counting of electron–electron interactions from the

first term, while the third term accounts for the electrostatic interaction between the solute nuclei

and the ASCs induced by the solute nuclei. If only one state is involved in the computation, the

definition of free energy and the computation process is straightforward. In this study, we do not

consider G non-es further in the derivation and computation.
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2.2 SA-MCSCF/PCM

Unlike single-state methods, the free energy for multistate methods cannot be uniquely defined.

The most physically and mathematically rigorous approach is to use the state-specific or single-

state MCSCF (SS-MCSCF) energy and density, allowing the free energy of the solute–solvent

system to be defined similarly to the single-state case (Eq. (7)). However, it is well known that

SS-MCSCF calculations for excited states suffer from the root-flipping problem,43 making them

impractical for many applications. For locating minimum energy CoIn (MECoIn), it is usually

necessary that the two (or more) crossing states are orthogonal, which SS-MCSCF calculations

cannot easily satisfy. Furthermore, using a single reference state may be insufficient for MRPT

calculations, where multistate or quasi-degenerate MRPT methods are often required to achieve

satisfactory accuracy. Therefore, a widely accepted approach for accurate quantum chemical cal-

culations in vacuum is to average over several states during the MCSCF calculation, followed by

MRPT calculations if possible. Although pursuing the SS-MCSCF approach is an interesting av-

enue of research,44 the prevailing method for excited-state calculations with multiconfigurational

approaches is to SA-MCSCF.

However, combining SA-MCSCF with PCM is not straightforward. Ideally, we would want

the solute energy to be state-averaged (equally, in most cases) while the solvent is polarized by the

state-specific density, and the state-averaged energy can be variationally optimized. Unfortunately,

formulations that satisfy these requirements do not appear to be available. If we assume that both

the solute energy and solvation density are averaged in the same manner, it is possible to varia-

tionally minimize the state-averaged energy. However, it is difficult to imagine a scenario where

the solvent is naturally polarized by the equally averaged density, making this situation unrealistic.

In earlier work by Song,27 the state-averaged energy is obtained using fixed or dynamic weights,

leading to (quasi-)state-specific and state-averaged characteristics around the minimum energy and

CoIn regions, respectively. The dynamically weighted solvation scheme35 is particularly useful

for molecular dynamics simulations. However, in electron transitions, the transition probability

strongly depends on the character of the excitation (i.e., whether it is allowed or forbidden), so a
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state-specific solvation model is ultimately needed. On the other hand, using different densities for

solute and solvent polarization complicates the variational minimization process, as discussed be-

low. Additionally, this approach introduces another type of root-flipping problem when selecting

the density for polarizing the solvent.35

Since it is not possible to formulate a physically and mathematically satisfying model in a

straightforward manner, the original formulation implemented in OpenMolcas is used in this study.

One of the earliest PCM calculations with (Open)Molcas can be traced back to the work in Refs.

45–47, and there are several studies48–52 that employ SA-CASSCF or CASPT2 calculations with

PCM as implemented in (Open)Molcas. Despite the challenges outlined here, SA-MCSCF and

CASPT2 calculations with PCM remain valuable methods.

2.2.1 SA-MCSCF/PCM energy

In vacuum, the SA-MCSCF calculation averages adiabatic energies as follows:

Eave = ∑
γ∈P

ωγ

⟨
Ψ(0)

γ
∣∣Ĥvac∣∣Ψ(0)

γ

⟩
+Enuc (9)

where ωγ is the weight for state-averaging, which in many cases is the inverse of the number of

internal states, and satisfies the normalization condition: ∑γ∈P ωγ = 1. The zeroth-order wave-

function Ψ(0)
γ is expressed as a linear combination of CSFs ΦI

Ψ(0)
γ = ∑

I
cI,γΦI , (10)

where cI,γ is the expansion (CI) coefficients.

Based on the equally state-averaged MCSCF energy, we aim to optimize molecular geometries

at the state ϕ (∈ P) with which the solvent charges are polarized. Under this assumption, we first
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define the free energy of the state ϕ , analogously to the single-state case (Eq. (7)):

G
[ϕ ]
ϕ =

⟨
Ψ(0)

ϕ
∣∣Ĥvac∣∣Ψ(0)

ϕ

⟩
+

1
2 ∑

i
V [ϕ ]

i Q[ϕ ]
i +Enuc

=
⟨

Ψ(0)
ϕ

∣∣∣Ĥvac +V̂ [ϕ ]
∣∣∣Ψ(0)

ϕ

⟩
− 1

2 ∑
i

V e,[ϕ ]
i Qe,[ϕ ]

i +
1
2 ∑

i
V N

i QN
i +Enuc . (11)

Here, “[ϕ ]” denotes the state used to generate the reaction field. The electrostatic operator V̂ [ϕ ] can

be written as:

V̂ [ϕ ] = ∑
p,q

Êp,qV
[ϕ ]

p,q =
ε −1

ε ∑
i, j

∑
p,q

Êp,q

⟨
p
∣∣∣∣ 1
|r− ri|

∣∣∣∣q⟩(C−1)
i, j V

[ϕ ]
j (12)

Hereafter, the superscript on the integral V
[ϕ ]

p,q refers to the density used to polarize the ASC:

V A
p,q := Vp,q(DA)

=−ε −1
ε ∑

i, j

⟨
p
∣∣∣∣ 1
|r− ri|

∣∣∣∣q⟩(C−1)
i, j ∑

r,s

⟨
r
∣∣∣∣ 1
|r− r j|

∣∣∣∣s⟩DA
r,s (13)

Similarly, the energy for state γ ∈ P is written as:

E
[ϕ ]
γ =

⟨
Ψ(0)

γ

∣∣∣Ĥvac +V̂ [ϕ ]
∣∣∣Ψ(0)

γ

⟩
− 1

2 ∑
i

V e,[ϕ ]
i Qe,[ϕ ]

i +
1
2 ∑

i
V N

i QN
i +Enuc (14)

If γ = ϕ , Eq. (14) becomes identical to Eq. (11), which represents the free energy. Since the primary

focus of this study is to optimize molecular geometries for a specific state, the energy for γ = ϕ

is the most important energy to define rigorously. On the other hand, the energy of other states

(γ ̸= ϕ ) does not have a simple form and lacks straightforward physical interpretation. Therefore,

transition energies should be evaluated as differences between two separate calculations. Finally,
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the state-averaged energy can be expressed as:

E
[ϕ ]
SA = ωϕG

[ϕ ]
ϕ + ∑

γ ̸=ϕ∈P

ωγE
[ϕ ]
γ

= ∑
γ∈P

ωγ

⟨
Ψ(0)

γ

∣∣∣Ĥvac +V̂ [ϕ ]
∣∣∣Ψ(0)

γ

⟩
− 1

2 ∑
i

V e,[ϕ ]
i Qe,[ϕ ]

i +
1
2 ∑

i
V N

i QN
i +Enuc (15)

This expression has been used in (Open)Molcas.

One drawback of the above formulation is that the current implementation does not yield a cor-

rect variational energy. This is because the electronic gradient and Hessian used during SCF cal-

culations is approximated such that the algorithm remains consistent with that of the gas phase cal-

culation. The approximation introduced in the electronic gradient assumes that the state-averaged

and state-specific ASCs are identical, as described in the Appendix (Eqs. (50) and (51)), and the

approximate orbital Hessian should be the first term in Eq. (52). While this is clearly not the case

and remains a crude approximation, we expect that solutions obtained using approximate gradi-

ents and Hessian will still be reasonably close to the true solution, provided iterative optimization

converges.53 With PCM, SCF convergence is indeed slower and may suffer from another type of

root-flipping problem, particularly for excited states.

2.2.2 SA-MCSCF/PCM gradients

We now consider the analytic differentiation of the energy E
[ϕ ]
γ . Once SCF convergence is achieved,

the conventional SA-MCSCF energy (in the gas phase) remains invariant with respect to internal

and external state rotations. However, when applying the formulation from the previous section,

this invariance does not hold for states γ ̸= ϕ . Moreover, due to the unequal averaging of the

solute density for polarizing the ASCs, the SA-MCSCF energy is not invariant under rotations

between internal states. While the following formulation and implementation are valid for γ ̸= ϕ ,

in this study, we restrict calculations to cases where γ = ϕ , as the energy for γ ̸= ϕ lacks physical

significance.

Although the state-averaged energy is not variationally minimized, this does not preclude the
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formulation of analytic derivatives. We only need the conditions that are satisfied at the conver-

gence of SCF. With this in mind, the Lagrangian used in this study is as follows:

L
[ϕ ]

γ = E
[ϕ ]
γ +L

SCF,[ϕ ]
γ

= E
[ϕ ]
γ +∑

p,q
κγ,[ϕ ]

p,q
∂ Ẽ

[ϕ ]
SA

∂κp,q
+ ∑

η∈P
∑

π>η
Pγ,[ϕ ]

η ,π
∂ Ẽ

[ϕ ]
SA

∂Pη ,π
(16)

The first term is the energy of the target state γ to be differentiated (free energy if γ = ϕ ). In

vacuum, the second term represents the generalized Brillouin condition, and the third term is the

CI condition. The last two terms (L SCF,[ϕ ]
γ ) are constraint conditions that are themselves equal

to zero. The explicit form of these partial derivatives is provided in the Appendix (Eqs. (50) and

(51)). In the conventional SA-MCSCF, these terms relate to the partial derivatives of the SA-

MCSCF energy. The coefficients κγ,[ϕ ]
p,q and Pγ,[ϕ ]

η ,π are the multipliers to be determined.

Next, we derive the Z-vector equation to be solved:

∂L
[ϕ ]

γ

∂κr,s
=

∂L
[ϕ ]

γ

∂Pθ ,ρ
= 0 (17)

for all independent rotations of r, s and θ , ρ . This results in the following linear matrix equation:

A

κγ,[ϕ ]

Pγ,[ϕ ]

=−

(∂E
[ϕ ]
γ )/(∂κ)

(∂E
[ϕ ]
γ )/(∂P)

 (18)

The explicit expressions of the approximate Hessian A are given in Appendix [Eqs. (52), (54), (55),

and (57)]) The right-hand side is obtained by taking the partial derivative of the energy E
[ϕ ]
γ . Unlike

the conventional SA-MCSCF, the partial derivative with respect to CI coefficients (state transfer

parameters) is not necessarily zero when γ ̸= ϕ . While the formulation here includes only orbital

and CI rotation parameters, it is also possible to treat the ASC as wavefunction parameters in an

equivalent fashion.27 However, since ASCs depend on relatively simple functions (for C-PCM),

they need not be treated explicitly as parameters.
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Because the constraint conditions above do not correspond to the first-order derivatives of E
[ϕ ]
SA

with respect to wavefunction parameters, the expressions in Eqs. (52)–(57) are not exact second-

order derivatives of E
[ϕ ]
SA . They are approximate Hessians and, more precisely, are exact first-

order derivatives of the approximate electronic gradient. The matrix A is no longer symmetric

(and maybe non-positive definite), so the conventional preconditioned conjugate gradients method

cannot be used for improved convergence. In this study, the conjugate gradients squared (CGS)

method54,55 is employed. Preconditioning is also implemented according to Algorithm 4 in Ref.

55. Using CGS, the linear equation can be solved without explicitly considering the transpose of

matrix A, and there is no requirement for the matrix to be symmetric positive definite, making

CGS ideal for solving the linear equation in Eq. (18).

After solving the Z-vector equation, the gradient vector of E
[ϕ ]
γ with respect to the nuclear

displacement ξ can be computed as:

dE
[ϕ ]
γ

dξ
=

∂L
[ϕ ]

γ

∂ξ

= ∑
p,q

Dγ,var
p,q

∂hp,q

∂ξ
+ ∑

p,q,r,s
dγ,var

p,q,r,s
∂gp,q,r,s

∂ξ
−∑

p,q
Fγ,eff

p,q
∂Sp,q

∂ξ
+

∂Enuc

∂ξ

−∑
p,q

∑
i

[
Dγ,var

p,q Q[ϕ ]
i +D[ϕ ]

p,q

(
Qe,γ,var

i −Qe,[ϕ ]
i

)] ∂
∂ξ

⟨
p
∣∣∣∣ 1
|r− ri|

∣∣∣∣q⟩+∑
i

∂V N
i

∂ξ
Qγ,var

i

+(Qe,γ,var)⊤
∂C
∂ξ

Q[ϕ ]− 1
2

(
Qe,[ϕ ]

)⊤ ∂C
∂ξ

Qe,[ϕ ]+
1
2
(
QN)T ∂C

∂ξ
Q⊤ (19)

Here, hp,q and gp,q,r,s are the one-electron and electron repulsion (two-electron) integrals, respec-

tively, and Sp,q is the overlap matrix in the MO basis. The auxiliary (variational) density is given

by:

Dγ,var
p,q = Dγ

p,q +Dorb
p,q +DCI

p,q + ĎCI
p,q (20)

dγ,var
p,q,r,s = dγ

p,q,r,s +dorb
p,q,r,s +dCI

p,q,r,s + ďCI
p,q,r,s (21)

where Dorb
p,q, DCI

p,q, dorb
p,q,r,s, and dCI

p,q,r,s are identical to Eqs. (12), (13), (15), and (16) in Ref. 56.
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The CI contribution from the internal state rotations can be computed with the transition density

matrix:

ĎCI
p,q = ∑

η>π∈P

ωγPγ,[ϕ ]
η ,π

⟨
Ψ(0)

η
∣∣Êp,q + Êq,p

∣∣Ψ(0)
π

⟩
(22)

ďCI
p,q,r,s =

1
2 ∑

η>π∈P

ωγPγ,[ϕ ]
η ,π

⟨
Ψ(0)

η
∣∣êp,q,r,s + êp,q,s,r + êq,p,r,s + êq,p,s,r

∣∣Ψ(0)
π

⟩
(23)

for the target state γ . Êp,q and êp,q,r,s are the one- and two-electron spin-averaged excitation oper-

ators, respectively. The effective Fock matrix is:

Fγ,eff
p,q = ∑

t
Dγ,var

p,t hq,t +∑
r,s,t

dγ,var
p,r,s,tgq,r,s,t +∑

t
D[ϕ ]

p,tV
γ,var

q,t . (24)

Thus, the derivative of the wavefunction parameters are not explicitly evaluated because the mul-

tipliers have been determined so that the Lagrangian satisfies Eq. (17). The last three terms in

Eq. (19) account for the displacement of tesserae. In this study, the position of tesserae is allowed

to move, and these terms are evaluated in each geometry optimization step. With C-PCM, no

approximations are required for the evaluation.57

2.2.3 Minimum energy conical intersections

Chemical processes near conical intersections are fundamentally dynamic in nature,58 and implicit

solvation models that rely on the equilibrium model are not very suitable for including solvent

effects. Nevertheless, having a method to incorporate these effects would be highly advantageous.

The energy defined in Eq. (11) or (14) is not suitable for the crossing region. The order of states

is easily flipped near degeneracy, and the state-specific solvation model may exhibit discontinuities

in the potential energy surface (PES). While OpenMolcas includes a feature that automatically

selects the relevant state for applying solvent effects, the resulting energy remains non-invariant

under rotations between crossing states, rendering the formulation unsuitable for exploring such

regions. Therefore, an energy expression that remains invariant near degeneracy is required. To
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address this issue, the state-averaged energy in this study is defined as:

E
[ϕ ,χ]
SA = ∑

γ∈P

ωγ

⟨
Ψ(0)

γ

∣∣∣Ĥvac +V̂ [ϕ ,χ]
∣∣∣Ψ(0)

γ

⟩
− 1

2 ∑
i

V e,[ϕ ,χ]
i Qe,[ϕ ,χ]

i +
1
2 ∑

i
V N

i QN
i +Enuc (25)

for crossing between states ϕ and χ (∈ P), where V [ϕ ,χ]
i is written as

V [ϕ ,χ]
i =

1
2

(
V [ϕ ]

i +V [χ]
i

)
(26)

and the ASC Qe,[ϕ ,χ]
i is determined by solving the matrix equation (Eq. (1)) using this ESP. Con-

sequently, both the ASC and ESP are computed as the average of states ϕ and χ . If the transition

rate between these crossing states is significant in degenerate regions, the solute density can be

approximated as the average of the two states, validating the definition of Eq. (26). For state ϕ , the

state-specific energy is:

E
[ϕ ,χ]
ϕ =

⟨
Ψ(0)

ϕ
∣∣Ĥvac∣∣Ψ(0)

ϕ

⟩
+

1
2 ∑

i
V [ϕ ,χ]

i Q[ϕ ,χ]
i +Enuc . (27)

For state χ , Ψ(0)
ϕ is replaced by Ψ(0)

χ . The average of the state-specific energies for both crossing

states can be expressed as:

G
[ϕ ,χ]
ϕ χ =

1
2

(
E
[ϕ ,χ]
ϕ +E

[ϕ ,χ]
χ

)
=

⟨
1
2

(
Ψ(0)

ϕ +Ψ(0)
χ

)∣∣Ĥvac∣∣ 1
2

(
Ψ(0)

ϕ +Ψ(0)
χ

)⟩
+

1
2 ∑

i
V [ϕ ,χ]

i Q[ϕ ,χ]
i +Enuc . (28)

The (free) energies for ϕ and χ , defined in this manner, are invariant with respect to rotations

between the two states (though not for others). This invariance is crucial for ensuring smooth

PESs (and convergence of SCF) in the vicinity of crossing regions.

To find (minimum energy) CoIns, we usually compute the gradient difference and non-adiabatic

14

https://doi.org/10.26434/chemrxiv-2024-05mq8-v2 ORCID: https://orcid.org/0000-0001-5581-4712 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-05mq8-v2
https://orcid.org/0000-0001-5581-4712
https://creativecommons.org/licenses/by/4.0/


coupling (NAC) vectors:

gϕ ,χ
ξ =

dE
[ϕ ,χ]
χ

dξ
−

dE
[ϕ ,χ]
ϕ

dξ
(29)

hϕ ,χ
ξ =

⟨
Ψ(0)

ϕ

∣∣∣∣∣∣
d
(

Ĥvac +V̂ [ϕ ,χ]
)

dξ

∣∣∣∣∣∣Ψ(0)
χ

⟩
(30)

The gradient difference vector gϕ ,χ can be derived as shown in previous sections. On the other

hand, the NAC vector hϕ ,χ requires a slight adjustment to the right-hand side of Eq. (11). Specif-

ically, instead of the free energy, we use ⟨Ψ(0)
ϕ |Ĥvac + V̂ [ϕ ,χ]|Ψ(0)

χ ⟩. This requires omitting the last

three terms in Eq. (11). The Lagrangian can be generalized as follows:

L
[ϕ ,χ]

αβ =
⟨

Ψ(0)
α

∣∣∣Ĥvac +V̂ [ϕ ,χ]
∣∣∣Ψ(0)

β

⟩
+δα,β

(
−1

2 ∑
i

V e,[ϕ ,χ]
i Qe,[ϕ ,χ]

i +
1
2 ∑

i
V N

i QN
i +Enuc

)

+∑
p,q

καβ ,[ϕ ,χ]
p,q

∂ Ẽ
[ϕ ,χ]
SA

∂κp,q
+ ∑

η∈P
∑

π>η
Pαβ ,[ϕ ,χ]

η ,π
∂ Ẽ

[ϕ ,χ]
SA

∂Pη ,π
, (31)

where δα,β is the Kronecker delta. The rest of the calculation is quite similar to the gradient of

E
[ϕ ]
γ .

Since the definition of the ESP is inconsistent when finding equilibrium (single state) and

MECoIn (averaged over crossing states) structures, PESs may not connect smoothly. However, as

this study focuses on specific stationary points (with few exceptions), this issue is not of immediate

concern. In cases such as molecular dynamics simulations, where surface hopping events are

investigated, a weighted average solvation approach may prove useful.27

2.3 CASPT2/PCM

As long as the coupling between the CASPT2 density and the solvent is ignored, extending the

method to CASPT2 is straightforward. The reaction field is determined at the SCF level, and
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during the PT2 calculation, the solvent effect is fixed and included in a perturbative manner. This

approach is similar to that described in Ref. 59 and corresponds to the PTE approach.39 Although

the solvent reaction field remains fixed during the PT2 calculation in this study as well, it is possible

to relax the solvent after obtaining the fully relaxed (or unrelaxed) density matrix. The impact of

this relaxation on the energetics is discussed in Section 4.3.2.

2.3.1 CASPT2/PCM energy

In CASPT2, we first define the generalized Fock operator as:

F̂γ,[ϕ ] = ∑
p,q

f γ,[ϕ ]
p,q Êp,q

= ∑
p,q

(
hp,q +V

[ϕ ]
p,q +∑

r,s

[
gp,q,r,s −

1
2

gp,r,q,s

]
Dγ

r,s

)
Êp,q (32)

The solute density used in the third term of Eq. (32) is independent of the density that polarized the

solvent, being determined solely by the selected CASPT2 model. Next, the zeroth-order Hamilto-

nian for MS-CASPT2 is typically defined as:

Ĥ(0),[ϕ ]
γ = ∑

γ∈P

|Ψ(0)
γ ⟩⟨Ψ(0)

γ |F̂γ,[ϕ ]|Ψ(0)
γ ⟩⟨Ψ(0)

γ |

+ ∑
k∈P⊥

|Ψ(0)
k ⟩⟨Ψ(0)

k |F̂γ,[ϕ ]|Ψ(0)
k ⟩⟨Ψ(0)

k |

+ Q̂γ
SDF̂γ,[ϕ ]Q̂γ

SD + Q̂γ
TQ···F̂

γ,[ϕ ]Q̂γ
TQ··· (33)

Q̂γ
SD and Q̂γ

TQ··· project onto the first-order and higher-order interacting spaces, respectively. If

the extended-type MS-CASPT2 methods, extended multistate (XMS-),60 extended dynamically

weighted (XDW-),61 and rotated multistate (RMS-),62 are employed, the rotated reference states

Ψ̃(0)
γ that satisfy:

⟨Ψ̃(0)
γ |F̂SA,[ϕ ]|Ψ̃(0)

η ⟩= 0 (34)
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for γ ̸= η ∈ P are used instead of the (unrotated) reference states Ψ(0)
γ . The key difference be-

tween the XMS-, XDW-, and RMS-CASPT2 methods lies in how the generalized Fock operator

(Eq. (32)) is defined. XMS- uses the equally state-averaged density matrix, XDW- uses a dy-

namically weighted average, and RMS- employs a state-specific density matrix. To compute the

second-order perturbation energy, the first-order correction to the wavefunction Ψ(1)
γ is required,

expressed as a linear combination of doubly excited configurations from the reference state:

|Ψ(1)
γ ⟩= ∑

p,q,r,s
T γ

p,q,r,sÊp,qÊr,s|Ψ̃(0)
γ ⟩ (35)

The excitation amplitude T γ
p,q,r,s is iteratively determined by solving the linear equation

⟨Φp,q,r,s|Ĥvac +V̂ [ϕ ]|Ψ̃(0)
γ ⟩+ ⟨Φp,q,r,s|Ĥ(0),[ϕ ]

γ −E(0),[ϕ ]
γ +Eshift|Ψ

(1)
γ ⟩= 0 , (36)

where |Φp,q,r,s⟩ is the doubly excited configuration, E(0),[ϕ ]
γ is the zeroth-order energy, and Eshift is

the term that comes from the real or imaginary shift to avoid the intruder state problem.

The (electronic) MS-CASPT2 energy is then obtained by diagonalizing the effective Hamilto-

nian Heff,[ϕ ]
η ,θ :

Heff,[ϕ ]
η ,θ = ⟨Ψ̃(0)

η |Ĥvac +V̂ [ϕ ]|Ψ̃(0)
θ ⟩− 1

2 ∑
i

V e,[ϕ ]
i Qe,[ϕ ]

i δη ,θ

+
1
2

(
⟨Ψ̃(0)

η |Ĥvac +V̂ [ϕ ]|Ψ(1)
θ ⟩+ ⟨Ψ̃(0)

θ |Ĥvac +V̂ [ϕ ]|Ψ(1)
η ⟩
)

(37)

The first term is the sum of the zeroth- and first-order energies of the rotated reference state, and the

second term is the free energy correction determined at the SCF level. The third term is evaluated

at the PT2 level, using the first-order correction to the wavefunction Ψ(1)
η . Since the free energy

correction term (the second term in Eq. (37)) applies to all internal states, the unitary transformation

of Heff,[ϕ ]
η ,θ leads to the original free energy correction. This means that the free energy correction

at the MS-CASPT2 level is equivalent to that at the SA-MCSCF level. Consequently, the MS-
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CASPT2 energy is expressed with the rotation matrix Rη ,θ that diagonalizes H [ϕ ],eff
η ,θ :

E
CASPT2,[ϕ ]
γ = ∑

η ,θ∈P

Rη ,γHeff,[ϕ ]
η ,θ Rθ ,γ −

1
2 ∑

i
V e,[ϕ ]

i Qe,[ϕ ]
i +

1
2 ∑

i
V N

i QN
i +Enuc

= ECASPT2
γ +∑

i
V e,[γ],PT2

i Q[ϕ ]
i − 1

2 ∑
i

V e,[ϕ ]
i Qe,[ϕ ]

i +
1
2 ∑

i
V N

i QN
i +Enuc

≈ ECASPT2
γ +

1
2 ∑

i
V [ϕ ]

i Q[ϕ ]
i +Enuc . (38)

ECASPT2
γ is the electronic CASPT2 energy, and the electrostatic contribution V e,[γ],PT2

i is the ESP

from the unrelaxed density matrix at the PT2 level (including the density at the SCF level). The

final approximation holds when γ = ϕ and the perturbed state γ after the rotation is predominantly

characterized by ϕ (V e,[γ],PT2
i ≈ V e,[ϕ ]

i ). This condition is typically satisfied if the state γ is en-

ergetically non-degenerate, with exceptions occurring near CoIn. In such cases, the density of

the crossing states must be averaged, as discussed in Section 2.2.3. Although degeneracies at the

CASPT2 level do not necessarily correspond to degeneracies at the SCF level, the reaction field is

generated based on the average of the SCF-determined densities.

Therefore, energy calculations and geometry optimizations at the CASPT2/PCM level should

be performed exclusively for γ = ϕ . Note that γ and ϕ are determined by the character of the state

rather than its energetic order, which may differ at the SCF and PT2 levels. Consequently, the

RFROOT and RLXROOT keywords must be specified separately in the input file to define ϕ and γ ,

respectively.
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2.3.2 CASPT2/PCM gradients

The analytic derivatives of MS-CASPT2 variants can be computed following the approach outlined

in Ref. 63. We begin by defining the PT2 Lagrangian for state γ as:

L
PT2,[ϕ ]

γ,αβ =
1
2 ∑

η∈P

Heff,[ϕ ]
γ,η

(
Rγ,αRη ,β +Rγ,β Rη ,α

)
+ ∑

p,q,r,s
λ γ,αβ

p,q,r,s

(⟨
Φγ

p,q,r,s|Ĥvac +V̂ [ϕ ]|Ψ̃(0)
γ

⟩
+
⟨

Φγ
p,q,r,s|Ĥ [ϕ ],(0)

γ −E [ϕ ],(0)
γ +Eshift|Ψ

(1)
γ

⟩)
(39)

Additional terms may be required if frozen core approximations64 and/or ionization potential–

electron affinity (IPEA) shift65 are applied. The first term in Eq. (39) represents the (electronic)

energy to be differentiated, and the second term is the constraint condition for determining the ex-

citation amplitude (Eq. (36)). Since this energy is not obtained through a variational minimization

with respect to the excitation amplitudes (and wavefunction parameters), we first need to solve the

following λ -equation for each γ:
∂L PT2

γ,αβ

∂T γ
p,q,r,s

= 0 (40)

to determine λ γ,αβ
p,q,r,s. Since the reaction field is fixed during the PT2 calculation, there is no need

for PCM-related computations during the CASPT2 calculation. Next, we need to define the total

PT2 Lagrangian:

L
PT2,[ϕ ]

αβ = ∑
γ∈P

L
PT2,[ϕ ]

γ,αβ + ∑
γ>η∈P

ωαβ ,[ϕ ]
γ,η

⟨
Ψ̃(0)

γ

∣∣∣F̂SA,[ϕ ]
∣∣∣Ψ̃(0)

η

⟩
. (41)

The second term comes from the constraint condition for the extended MS-CASPT2 (Eq. (34)),

and the Lagrange multiplier ωαβ ,[ϕ ]
γ,η can be determined non-iteratively, as described in Ref. 63.

After this, we solve the Z-vector equation:

∂L
CASPT2,[ϕ ]

αβ

∂κp,q
=

∂L
CASPT2,[ϕ ]

αβ

∂Pη ,π
= 0 (42)
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where

L
CASPT2,[ϕ ]

αβ = L
PT2,[ϕ ]

αβ +L
SCF,[ϕ ]

αβ

+δα,β

(
−1

2 ∑
i

V e,[ϕ ]
i Qe,[ϕ ]

i +
1
2 ∑

i
V N

i QN
i +Enuc

)
. (43)

The remaining computation is similar to the SA-MCSCF/PCM case (Section 2.2.2), and the total

derivative of the CASPT2 energy can be computed as a partial derivative of the Lagrangian:

dE
CASPT2,[ϕ ]
αβ

dξ
=

∂L
CASPT2,[ϕ ]

αβ

∂ξ
(44)

Analytic derivatives of the RASPT2 energy can be obtained similarly, as shown in Ref. 64. The

extension to the NAC vector is also analogous to the SA-MCSCF/PCM case.

In principle, computing analytic gradients requires evaluating the relaxed density. Thus, it is

possible to include solvent effects using the CASPT2 density (PTED approach). However, this

would require evaluating the relaxed density multiple times during each geometry optimization

step, making it impractical for realistic molecular systems.

2.4 Equilibrium and non-equilibrium solvation

The electron (de)excitation process occurs rapidly, while the relaxation (reorganization) of solvent

molecules is relatively slow. When both the electron and molecular configurations are fully relaxed

in a given state, this is referred to as the equilibrium regime. However, the geometrical relaxation

of solvent molecules does not happen instantaneously and cannot keep pace with the absorption

or emission processes. To account for the different timescales, we separate the fast and slow

components: only the fast component responds to the (de)excited state, while the slow component

is constructed using the reaction field of the initial state. This situation is described as a non-

equilibrium regime.

In OpenMolcas, the Marcus partition scheme (Partition I, see Table 2 in Ref. 17) is used. A
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similar (equivalent if C-PCM is applied66) formulation exists, known as the Pekar partition. First,

we calculate the solvent charge in the initial state (init) Qinit, which is treated as the slow (orien-

tational or inertial) component: Qslow
init = (ε − ε∞)Qinit/(ε − 1), where ε∞ is the optical dielectric

constant. Then, during the calculation for the final state, the electrostatic potential on each tessera

Vfinal is computed in the presence of the fixed Qslow
init . The fast component of the ASC at the final

state Qfast
final is obtained by solving Eq. (1) using Vfinal and ε∞ instead of ε . The density used for

obtaining Qslow
init and Qfast

final can be determined at either the SCF or PT2 level. The SCF density is

directly obtained as a result of solving the SCF equation, while the PT2 density must be found

iteratively by solving the SCF and PT2 equations, as done in the PTED approach. Since using

the PT2 density is impractical, the SCF density is used for computing non-equilibrium energies as

well.

3 Computational Details

The theory outlined in the previous section has been implemented in a development version of

OpenMolcas. The latest version of the developed code and example files can be found on GitHub

(https://github.com/YoshioNishimoto/Some-Developments-with-OpenMolcas) All CASSCF

and CASPT2 results were obtained using this version, which utilizes atomic compact Cholesky de-

composition67,68 to generate on-the-fly auxiliary basis sets for the resolution-of-the-identity treat-

ment of electron repulsion integrals. All CASPT2 calculations employed the frozen core approx-

imation, and the IPEA shift parameter69 was set to 0.00 unless otherwise noted. Symmetry con-

straints were not applied, and Löwdin’s canonical orthonormalization was used to orthonormalize

the internally contracted basis. A recently introduced gradient-enhanced Kriging approach70–72

was applied to locate stationary points. Nearly all PCM options were used as defaults, except

that the “COND” (conductor-PCM) and “PAUL” (Pauling atomic radii) options were explicitly

activated.

First, the accuracy of the implemented gradient and the smoothness of the potential energy
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surface (PES) are examined using acrolein in water. The reference wavefunctions were obtained

at the three-state-averaged (SA3)-CASSCF(6e,5o) level, where the active space consisted of six

electrons in five orbitals. CASPT2 calculations were carried out with an imaginary level shift73 of

0.2i.

The performance of the developed method for stationary points and MECoIn was tested with

the protonated Schiff-base (PSB3) in both vacuum and MeOH (methanol). To compare with previ-

ous CASSCF and MS-CASPT2 results using RISM,32 the reference wavefunction was obtained at

the SA3-CASSCF(6e,6o) level (six π orbitals) with the 6-31G(d) basis set.74,75 As it is well known

that PESs of MS-CASPT2 near crossing regions can show discontinuities,76 RMS-CASPT2 was

used to investigate the topography of CoIns. For consistency with previous studies, a real level

shift of 0.3 was employed.

To further evaluate the method, absorption energies of para-nitroaniline were computed in

vacuum, cyclohexane, toluene, dichloroethane, acetonitrile, and water. The reference SCF calcu-

lations were performed using a CAS(16e,12o) active space, consisting of ten π orbitals and two

nO orbitals (see Figure S1 in the Supporting Information). The first five states were equally av-

eraged (SA5). Geometry optimizations and absorption energy calculations were performed at the

CASSCF, XMS-CASPT2, and RMS-CASPT2 levels using the ANO-RCC-VTZP basis set.77,78

CASPT2 calculations were conducted with an imaginary level shift of 0.2i.

4 Results and Discussion

4.1 Acrolein

4.1.1 Accuracy of Analytic Gradients

The accuracy of the implemented analytic gradient was tested by comparing it with numerical

gradients for (s-trans) acrolein in water, calculated at the CASSCF, XMS-CASPT2, and RMS-

CASPT2 levels of theory. The geometry was initially optimized at the Hartree–Fock level us-
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ing the cc-pVDZ basis set79 in vacuum. The reference SCF calculations were performed with

SA3-CASSCF(6e,5o)/cc-pVDZ (four π orbitals and one nO orbital), with the solvent charge polar-

ized according to the state for which gradients were calculated. Since the energy computed with

PCM is translationally invariant but not rotationally (due to discrete tesserae), numerical gradi-

ents were obtained by differentiating in Cartesian coordinates with a displacement parameter of

5.0× 10−4 bohr. The root-mean-square (RMS) deviation is summarized in Table 1. The differ-

ences for CASSCF and CASPT2 across all states were on the order of 10−6 hartree bohr−1, which

is sufficiently accurate in practice.

Table 1: Root-mean-square (RMS) differences between analytic and numerical gradients (unit in
hartree bohr−1), with the SA3-CAS(6e,5o)/cc-pVDZ reference.

CASSCF XMS-CASPT2 RMS-CASPT2
S0 1.76×10−6 1.14×10−6 1.59×10−6

S1 1.72×10−6 4.76×10−6 5.08×10−6

S2 1.52×10−6 4.83×10−6 5.07×10−6

4.1.2 Smoothness of the PES

The smoothness of the PES was tested using the reference wavefunction from SA3-CASSCF(6e,5o)/cc-

pVDZ. PESs for S0 and S1 near a MECoIn at the XMS-CASPT2 level are shown in Figure 1 (a).

Corresponding figures for CASSCF and RMS-CASPT2 and x and y vectors for all levels are pro-

vided in Figures S2 and S3, respectively, in the Supporting Information. In Figure 1, x and y

represent linear combinations of the (orthonormalized) gradient difference and NAC vectors, with

displacement along these vectors lifting the degeneracy. The x and y approximately correspond

to in-plane and out-of-plane modes, respectively. The PCoIn and BCoIn parameters56 are summa-

rized in Table 2. The relatively large PCoIn values (PCoIn > 1) indicate that these MECoIns are

strongly sloped, which is evident from the steeply tilted PESs in Figure 1 (a). The BCoIn values,

which classify conical intersections as bifurcating or single-path, are all greater than one, signify-
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ing that these are single-path conical intersections, implying the local topography directs toward

a single product. Comparing these parameters in vacuum and water, the solvent effect does not

significantly impact the local topography in this example. Figure 1 (b) shows the XMS-CASPT2

energy difference between S0 and S1 around the CASSCF MECoIn. Since the CASSCF energy

is made invariant with respect to rotations between crossing states (Eq. (28)), and XMS-CASPT2

are strictly invariant to such rotations in the model space (except for minor non-invariance in the

first-order interacting space), the PESs at the CASPT2 level with PCM are smooth.
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Figure 1: (a) XMS-CASPT2 PESs of acrolein around the S0/S1 MECoIn obtained at the XMS-
CASPT2 level, and (b) XMS-CASPT2 energy differences around the S0/S1 MECoIn at the
CASSCF level, with the SA3-CAS(6e,5o)/cc-pVDZ reference.

Table 2: PCoIn and BCoIn values of the S0/S1 MECoIn of acrolein.

Vacuum PCM (water)
PCoIn BCoIn PCoIn BCoIn

CASSCF 14.37 2.46 15.77 2.54
XMS-CASPT2 4.55 1.68 4.71 1.70
RMS-CASPT2 4.85 1.72 4.92 1.73

It should be noted that the discontinuities discussed in this study are strictly related to the

electronic structure. PCM introduces other sources of discontinuity, such as the creation and anni-

hilation of tesserae80 and electrostatic interactions between tesserae,81 which are beyond the scope

of this study.
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4.2 Protonated Schiff-Base

Next, a comparison between RISM calculations32 in vacuum and MeOH was carried out for the

protonated Schiff base (PSB3; C5H6NH+
2 ), using a reference wavefunction of SA3-CASSCF(6e,6o)/6-

31G(d). The relative energies of three stationary points are summarized in Table 3. The “FC” entry

corresponds to the energy of the Franck–Condon geometry (planar) in the ground state, “SP” refers

to the energy of the saddle point (planar) in the first excited state, and "(CCT)CoIn" represents the

S0/S1 MECoIn around the C–C twisting coordinate. The optimized coordinates can be found in

the Supporting Information. Although the CASSCF results in vacuum were mostly reproduced,

the MS-CASPT2 results were already poorly reproduced in vacuum. The MS-CASPT2 calcu-

lations in this study and Ref. 32 were performed using different software packages, and there

were some technical differences (e.g., internal contractions, electron repulsion integrals, and spa-

tial symmetry), making direct comparison difficult. Nonetheless, we observe that the computed

relative energies in this study systematically underestimate the values for FC and (CCT)CoIn, sug-

gesting that qualitative discussion for these entries is possible. However, the discrepancy for SP is

notably large.

Table 3: Relative energies of PSB3 (unit in eV) with the SA3-CAS(6e,6o)/6-31G(d) reference.
Values in parentheses are from Ref. 32, where the solvent effect is treated using RISM.

CASSCF MS-CASPT2
FC SP (CCT)CoIn FC SP (CCT)CoIn

Vacuum
S2 5.739 (5.73) 5.569 (5.57) 6.629 (6.42) 5.252 (5.44) 4.906 (5.36) 5.787 (5.99)
S1 5.031 (5.01) 4.605 (4.60) 3.213 (3.25) 4.083 (4.28) 3.915 (3.86) 2.428 (2.60)
S0 0.000 (0.00) 0.847 (0.85) 3.213 (3.25) 0.000 (0.00) 0.163 (0.34) 2.428 (2.60)

MeOH
S2 6.116 (5.99) 5.875 (5.80) 6.846 (6.66) 5.669 (6.00) 5.155 (5.60) 5.917 (6.10)
S1 5.815 (5.71) 4.928 (4.86) 3.543 (3.26) 4.649 (4.09) 4.153 (3.86) 2.645 (2.67)
S0 0.000 (0.00) 0.866 (1.05) 3.543 (3.26) 0.000 (0.00) 0.394 (0.21) 2.645 (2.67)

For the CASSCF results, we find that the trend of solvent-induced shifts is generally reproduced

by PCM, though the shifts are overestimated by 0.1–0.2 eV for most entries. A significant excep-
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tion is found for (CCT)CoIn: the RISM calculation in Ref. 32 showed a minimal energetic shift

(0.01 eV) due to the solvent, while PCM predicted a shift of 0.33 eV in this study. This discrep-

ancy could be due to PCM systematically overestimating the shift or differences in the treatment

of the solvent near the CoIn. The present study assumes full equilibration of the solvent, with

polarization based on the averaged density of the crossing states. In contrast, the RISM calculation

in Ref. 32 used a non-equilibrium model in a linear-response fashion.31 The equilibrium regime

allows more degrees of freedom (e.g., solvent coordinates) to relax, leading to greater stabiliza-

tion when the system equilibrates. If the deviation arises primarily from the different treatment of

equilibration, we expect that PCM overestimates the stabilization and thus predicts lower relative

energies than the systematic shift. However, the observed shift is quite similar. Another potential

consequence of the differing equilibration regimes is that averaging the density matrices of the two

states may partially cancel out the ESP from the solute, reducing the polarization of the ASC and

thus the stabilization of the solute. While the dipole moment of charged systems is not uniquely

defined, the dipole moments of the crossing states point in similar directions, meaning that this

ESP cancellation should not be significant. The reason for the discrepancy of (CCT)CoIn is not

clear at the moment, but overall, solvent effects are qualitatively captured by PCM at the CASSCF

level, though improvements are needed, particularly in describing the crossing regions.

Since the CASPT2 results in vacuum are already significantly different, direct comparison be-

tween the two solvation models is challenging. Nevertheless, considering that the solvent effect

on FC is qualitatively captured at the CASSCF level, the discrepancy should largely be attributed

to differences in the CASPT2 implementation. One interesting observation is the shift in S1 en-

ergy for FC: RISM predicts a redshift, while PCM predicts a blueshift, consistent with CASSCF

results. This contradictory finding suggests that dynamical electron correlation effects depend sig-

nificantly on the solvation model, but further analysis is difficult given the inherent differences in

the CASPT2 calculations.

Despite these differences, the local topography of the (CCT)CoIn in vacuum and MeOH is

compared in Figure 2. To mitigate the non-invariance issue of the MS-CASPT2 method, RMS-
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CASPT2 was employed for subsequent analysis. The x and y (see page S-9 and Figure S4 in the

Supporting Information) approximately correspond to C–C stretching mode adjacent to the amino

group and the torsional mode around the C–C bond, respectively. The PCoIn value is 4.11×10−3

in vacuum and 0.40 in MeOH, indicating that the CoIn is locally peaked in both environments.

The smaller value of PCoIn in vacuum suggests that the CoIn could be a more efficient funnel.

The BCoIn value is 0.48 in vacuum and 1.27 in MeOH, indicating that the local topography of the

CoIn leads to two products in vacuum and one product in MeOH after relaxation. The potential

energy curve (PEC) for a displacement of 0.01 from the MECoIn point (in terms of normalized

x and y) is compared in Figure 3. The horizontal axis corresponds to the rotation angle between

x and y, and the displacement from the MECoIn structure is given by 0.01(x · sinθ + y · cosθ).

The dot products of x and y in vacuum and MeOH indicate that these vectors are almost parallel

(xvac ·xMeOH = 0.964 and yvac ·yMeOH = 0.996).
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Figure 2: (SA3-)RMS-CASPT2(6e,6o)/6-31G(d) PESs of PSB3 around the (CCT)CoIn in (a) vac-
uum and (b) MeOH

Indeed, the lower-state PEC (S0) indeed shows two shallow minima in vacuum, indicating

a bifurcating intersection (BCoIn < 1), while only one minimum appears in MeOH, indicating

a single-path intersection (BCoIn > 1). Minimum energy path (MEP) calculations from the two

displaced geometries corresponding to the minima in vacuum on the S0 PEC ((x,y) = (0.0034,

0.0094) and (0.0034, −0.0094)) lead to trans- and cis-PSB3, respectively. In contrast, there is only

one minimum on the S0 PEC in MeOH, and geometry optimization from the displaced geometry

((x,y) = (−0.0100, 0.0000)) leads to the cis-PSB3 structure, suggesting that solvent effects may
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influence the product ratio after non-radiative decay. Note that the solvent reaction field during the

MEP calculations was generated using an equally averaged density matrix over S0 and S1 at the

SCF level, regardless of the energy difference between the two states.

4.3 para-Nitroaniline

Para-Nitroaniline (Figure 4) exhibits a charge-transfer-type excitation. Due to the significant

change in dipole moment induced by charge-transfer excitations, this molecule is well-suited for

evaluating the performance of the developed method. The reference SCF calculations were carried

out using SA5-CAS(16e,12o), as the S4 state represents a charge-transfer state with the reaction

field of the S0 state. However, when the reaction field is equilibrated with the charge-transfer state

(in water), the S4 state becomes greatly stabilized relative to other states, ultimately settling as S1.
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Figure 4: Structure of para-nitroaniline.
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4.3.1 Geometrical parameters

We first compare geometrical parameters in vacuum with experimental results in crystal.82 The

comparison (Table 4) shows that discrepancies in CASSCF geometry are mitigated when using

XMS- and RMS-CASPT2. For example, the error in the N11–O12 bond (N–O in the nitro group)

is reduced from 0.05 Å at the CASSCF level to 0.01 Å when dynamic electron correlation is

included. Similarly, an improvement is observed for the C1–N14 bond (between the amino group

and benzene ring).

Table 4: Optimized bond distances of para-nitroaniline in vacuum (unit in Å) with the SA5-
CAS(16e,12o)/ANO-RCC-VTZP reference.

expa CASSCF XMS-CASPT2 RMS-CASPT2
C1–C2 1.408/1.415 1.397 1.405 1.404
C2–C6 1.373/1.377 1.386 1.385 1.385
C6–C10 1.390/1.395 1.388 1.391 1.391
C10–N11 1.460 1.454 1.455 1.454
C1–N14 1.371 1.392 1.378 1.378
N11–O12 1.246/1.247 1.197 1.240 1.237

a Fig. 3 in Ref. 82

The solvent effect on geometrical parameters is minimal at the CASSCF level (Table 5; ad-

ditional parameters can be found in Table S1 in the Supporting Information). The most affected

bond is C10–N11 (between the nitro group and benzene ring), with a difference of only 0.004 Å be-

tween vacuum and water. In contrast, at the CASPT2 level, solvent dependence becomes more

pronounced: both C10–N11 and C1–N14 bond lengths shorten by 0.013–0.015 Å. The RMS differ-

ences between bond lengths in vacuum and water are 1.37×10−3, 7.81×10−3, and 7.07×10−3

Å for CASSCF, XMS-CASPT2, and RMS-CASPT2, respectively. This indicates that CASPT2

geometry, incorporating dynamic electron correlation, is more sensitive to solvent polarity.

This difference can be attributed to the larger dipole moment at the CASPT2 level. In vac-

uum, the dipole moments are 5.311, 6.781, and 6.378 debye at the CASSCF, XMS-CASPT2, and

RMS-CASPT2 levels, respectively, indicating a more polarized electronic structure in CASPT2.
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Table 5: Solvent dependence of bond lengths C10–N11 and C1–N14 (unit in Å) using SA5-
CAS(16e,12o)/ANO-RCC-VTZP reference.

C10–N11 C1–N14
CASSCF XMSa RMSb CASSCF XMSa RMSb

Vacuum 1.454 1.455 1.454 1.392 1.378 1.378
Cyclohexane 1.452 1.455 1.449 1.392 1.374 1.374
Toluene 1.452 1.449 1.448 1.392 1.373 1.374
Dichloroethane 1.451 1.443 1.443 1.391 1.366 1.368
Acetonitrile 1.450 1.441 1.441 1.391 1.365 1.366
Water 1.450 1.440 1.441 1.391 1.363 1.365

a XMS-CASPT2
b RMS-CASPT2

In water, the dipole moments increase further, to 6.633, 9.071, and 8.460 debye. The greater dipole

moments at the CASPT2 levels lead to stronger solvent effects and, consequently, larger changes in

the optimized structural parameters. The difference in electronic structures between CASSCF and

MS-type CASPT2 can be attributed to two main factors. The first is dynamic electron correlation,

arising from electron excitations outside the active space. Although not entirely separable, the sec-

ond factor involves the rotation of reference and perturbed states (diagonalization of Eqs. (34) and

(37)), resulting from rotations within the internal state (CI coefficients). A comparison of the CI

coefficients between CASSCF and XMS-CASPT2 for the S0 state reveals only minor differences,

underscoring the importance of dynamic electron correlation.

As presented in Table S1 of the Supporting Information, the reduction in the torsion angle

of the amino group83 is qualitatively reproduced, though the predicted angle is greater than the

ADC(2) result. Additionally, crystal packing effects and intermolecular interactions are required

to reproduce the experimentally observed planarity of the amino group.

4.3.2 Relaxation of solvent charges

It is advantageous to examine the impact of using the CASPT2 density, comparing the PTE and

PTED approaches.39 As described earlier, geometry optimizations at the CASPT2 level are per-

formed with a fixed reaction field determined at the SCF level (PTE approach). However, single-
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point energies can be computed using a more sophisticated method: the reaction field can be de-

termined at the CASPT2 level. The first-order correction to the wavefunction obtained in this way

alters the electron density of the solute molecule, and the solvent charges can polarize in response

to this perturbed density. Since the wavefunction and solvent charges are non-linearly coupled, the

free energy fully coupled with the CASPT2 density is obtained iteratively. This method is referred

to as the PTED approach. Although the variational (fully relaxed) density can be obtained during

the analytic gradient calculation, the unrelaxed density [excluding the response contribution of the

wavefunction at the SCF level (κγ,[ϕ ]
p,q and Pγ,[ϕ ]

η ,π )] is used to compute the PTED energy. Table 6

summarizes the evolution of the equilibrium free energy at both the ground (S0) and charge-transfer

excited states (S1) in water. The energy at the zeroth iteration corresponds to the PTE energy, while

the energy at convergence represents the PTED energy.

Table 6: The free energy G
[ϕ ]
ϕ (ϕ = 0,1) (unit in hartree) and the decrease of the energy ∆G

[ϕ ]
ϕ (unit

in eV) in water as a function of the iteration count at (SA5-)XMS-CASPT2(16e,12o)/ANO-RCC-
VTZP.

Iteration G
[0]
0 ∆G

[0]
0 G

[1]
1 ∆G

[1]
1

1 (PTE) −491.543 296 — −491.431 785 —
2 −491.544 107 −0.022 −491.432 834 −0.029
3 −491.544 222 −0.025 −491.432 762 −0.027
4 −491.544 245 −0.026 −491.432 708 −0.025
5 −491.544 252 −0.026 −491.432 684 −0.024
6 −491.544 253 −0.026 −491.432 680 −0.024
7 −491.544 254 −0.026 −491.432 678 −0.024
8 (PTED) −491.544 255 −0.026 −491.432 678 −0.024

The ground and first excited state energies almost converge by the second iteration. These ener-

gies are obtained by performing a CASPT2 calculation with the ASC determined at the SCF level,

updating the ASC using the relaxed density, and performing another CASPT2 calculation with the

updated ASC. Unlike single-reference methods, a significant part of the density is determined by

the zeroth-order wavefunction for both the initial and final states, while the first-order correction

from the PT2 calculation is perturbative. Consequently, relaxation has a minimal impact. The
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first cycle yields an energy decrease of 0.02 eV and 0.03 eV for the S0 and S1 states, respectively,

indicating that full relaxation is not critical. Furthermore, the difference in equilibrium energies be-

tween the PTE (3.034 eV) and PTED (3.036 eV) approaches is only 0.002 eV (≈ 0.5 kcal mol−1),

suggesting that, in practice, the relaxation correction for transition energies is below the expected

accuracy of the MRPT method. For this specific case, the PTE approach accurately reproduces the

PTED energy difference, and thus, PTE energies are used hereafter. It is important to note that

these energies represent equilibrium energies and are not directly applicable to absorption energy

calculations, which require a non-equilibrium solvation model.

A similar comparison, using the relaxed density matrix to compute the analytic gradient includ-

ing κγ,[ϕ ]
p,q and Pγ,[ϕ ]

η ,π is provided in the Supporting Information (Table S2). This result follows the

same trend as that observed with the unrelaxed density: the difference between the PTE and PTED

approaches is small but slightly larger (0.005 eV ≈ 1 kcal mol−1) when using the relaxed density.

Nevertheless, in both cases, the difference is relatively minor and may only be non-negligible if

extremely high accuracy is required or if the difference of interest is particularly small (e.g., the

singlet–triplet gap).59

4.3.3 Absorption energies

Finally, absorption energies for the transition from the closed-shell ground state to the lowest

charge-transfer state were calculated using CASSCF, XMS-CASPT2, and RMS-CASPT2, and are

summarized in Table 7. These energies were computed using a non-equilibrium solvation model.

First, the reaction field is generated at the closed-shell ground state with dielectric constant ε . The

slow component is fixed with this reaction field, while the fast component is determined at the

charge-transfer excited state using ε∞. The non-equilibrium energy for acetonitrile and water at

the CASSCF level could not be obtained due to the quasi-degeneracy of the target state during SCF,

so absorption energies were computed using nearly converged energy for reference (after 200 SCF

iterations). A potential solution involves mixing density matrices of nearby states, but the oscillator

strength of the transition from S0 to any excited states other than the target charge-transfer state is
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smaller by two to three orders of magnitude (as shown by state interaction calculations84), making

this approach difficult to validate. Furthermore, since the ordering of states at the SCF and PT2

levels can be different, averaging other states at the SCF level does not necessarily correspond to

averaging them at the PT2 level.

Table 7: Absorption energies (unit in eV) to the charge-transfer state with the SA5-
CAS(16e,12o)/ANO-RCC-VTZP reference.

Solvent ε ε∞ Exp. CASSCF XMS-CASPT2 RMS-CASPT2
Vacuum — — 4.24a 6.227 3.969 4.024
Cyclohexane 2.023 2.028 3.84b 5.802 3.579 3.695
Toluene 2.379 2.232 3.60c 5.733 3.402 3.492
Dichloroethane 10.36 2.085 5.575 3.277 3.319
Acetonitrile 36.64 1.806 3.41b (5.591)d 3.288 3.373
Water (PCM) 78.39 1.776 3.25b (5.593)d 3.286 3.373
Water (PCM + 2H2O) 78.39 1.776 3.25b —e 2.978 3.134
a Ref. 85 b Ref. 86 c Ref. 87 d Non-equilibrium calculation at the excited state did not fully

converge. e Geometry optimization did not converge.

CASSCF calculations significantly overestimated the absorption energies. In contrast, both

CASPT2 methods underestimated these energies by 0.1–0.3 eV, as is commonly known. The IPEA

shift technique,69 designed to address this issue, resulted in overestimated absorption energies

(e.g., 4.569 eV with XMS-CASPT2 in vacuum when using the recommended IPEA shift of 0.25).

Therefore, only results without the IPEA shift are presented. The deviation is still close to the

expected accuracy of CASPT2.

Experimentally, the solvatochromic shift in water is approximately 1 eV, but this shift was un-

derestimated by CASPT2 calculations with PCM without explicit solvent molecules. Even though

XMS-CASPT2 with PCM could reproduce the experimental absorption energy in water very well,

this fortuitous agreement is mostly attributed to the error cancellation. Since the description of sol-

vent with PCM is rather limited, adding a few explicit solvent molecules can be effective. While

the combination of implicit and explicit solvation models is a typical approach to remedy the poor

treatment of the local solute–solvent interaction in PCM, it should be noted that explicit solvation
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approaches have limitations: the number and positions of solvent molecules are rather arbitrary,

they may overestimate solute–solvent interactions,88 and parameters used in PCM are typically

optimized without considering the presence of explicit molecules. Still, if two water molecules

are explicit included in addition to PCM, we observe an additional shift of more than 0.2 eV, and

the solvatochromic shift of water is approximately 1 eV with CASPT2, being consistent with ex-

periment. Geometry optimization at the CASSCF level with two explicit water molecules did not

converge, because of the lack of the dynamical electron correlation (dispersion).

5 Conclusions

The analytic gradient and NAC vectors for SA-MCSCF and CASPT2 with PCM have been derived

and implemented in a development version of the open-source package OpenMolcas. The current

formulation of the energy, which has been in use in (Open)Molcas, relies on the state-averaged

solute energy with a state-specific solvation model (Eq. (15)) for SA-MCSCF. For regions of state

crossings, the solvent charges are polarized with respect to the averaged density of the crossing

states, ensuring that the PESs near the crossing region remain smooth, as illustrated in Figures 1

and 2. As discussed, an approximate electronic gradient is employed to solve the SCF equa-

tion. However, analytic derivatives can be obtained by using the exact gradient of the approximate

electronic gradient and solving a modified Z-vector equation with internal state rotations. We ob-

served that fully relaxing the solvent charge with the CASPT2 density had a negligible effect on

the excitation energy, indicating that the PTE approach is sufficient for CASPT2 with PCM. The

experimental solvatochromic shift could also be reproduced using this method and explicit solvent

molecules.

While PCM is useful, it cannot explicitly describe the solvent structure and thermal fluctu-

ations, leading to inaccuracies in modeling intermolecular interactions. This is clearly demon-

strated by the calculation with explicit solvent molecules (Table 7). To address this, the RISM

method or the recently developed fluctuating charge force field,89 available in OpenMolcas, could
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prove beneficial. Furthermore, the current formulation does not yield the variational minimum of

the state-averaged energy. Given these limitations, it would be worth exploring the possibility of

integrating the recent formulation for RISM.90 Additionally, the present method cannot be applied

to molecular dynamics simulations that involve non-adiabatic transitions, as it assumes the solvent

is polarized with respect to a specific density. A preliminary implementation of a dynamic solva-

tion model, including analytic derivatives, seems promising and could be a potential direction for

future work. We plan to formally release the developed code as a part of OpenMolcas in the near

future.
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Appendix

Following Refs. 43 and 91, the wavefunction is parametrized as:

|Ψ̌(0)
γ ⟩= exp(−κ̂)exp(−P̂γ)|Ψ(0)

γ ⟩ (45)
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where κ̂ is the orbital rotation operator

κ̂ = ∑
p>q

κp,qÊ−
p,q = ∑

p>q
κp,q(Êp,q − Êq,p) (46)

and P̂γ is the state transfer operator

P̂γ = ∑
γ>π

Pγ,π(|γ⟩⟨π|− |π⟩⟨γ|) (47)

In the conventional SA-MCSCF case,91,92 the state transfer parameter can be entirely projected

onto the CSF space. However, for SA-MCSCF/PCM, the energy is not generally invariant with

respect to rotations between internal states, requiring the consideration of additional parameters.

In practice, rotations between internal and external states are projected onto the CSF space, while

rotations between internal states are handled separately. For simplicity, the zeroth-order wavefunc-

tion is denoted by the state index: |γ⟩= |Ψ(0)
γ ⟩.

The gradient of the state-averaged energy (Eq. (15)) with respect to the wavefunction parame-

ters is obtained by taking partial derivatives with respect to the rotation parameters κp,q and Pγ,π .

The analytic orbital gradient is expressed as:

∂E
[ϕ ]
SA

∂κp,q
= ∑

γ∈P

ωγ

⟨
γ
∣∣∣[Ê−

p,q, Ĥ
vac +V̂ [ϕ ]

]∣∣∣γ⟩−∑
i

∑
r,s

⟨
ϕ
∣∣[Ê−

p,q, Êr,s
]∣∣ϕ⟩⟨r

∣∣∣∣∣Qe,SA
i −Qe,[ϕ ]

i
|r− ri|

∣∣∣∣∣s
⟩
(48)

and the CI gradient is given by:

∂E
[ϕ ]
SA

∂Pη ,π
= 2

(
ωη − ∑

γ∈P

ωγδγπ

)⟨
η
∣∣∣Ĥvac +V̂ [ϕ ]

∣∣∣π⟩
−2
(
δϕ ,η −δϕ ,π

)
∑

i
∑
p,q

⟨
η
∣∣Êp,q

∣∣π⟩⟨p

∣∣∣∣∣Qe,SA
i −Qe,[ϕ ]

i
|r− ri|

∣∣∣∣∣q
⟩

. (49)

As discussed in the main text, the approximate gradient used in the actual calculations is obtained
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by neglecting the second term:

∂E
[ϕ ]
SA

∂κp,q
≈ ∑

γ∈P

ωγ

⟨
γ
∣∣∣[Ê−

p,q, Ĥ
vac +V̂ [ϕ ]

]∣∣∣γ⟩=:
∂ Ẽ

[ϕ ]
SA

∂κp,q
, (50)

∂E
[ϕ ]
SA

∂Pη ,π
≈ 2

(
ωη − ∑

γ∈P

ωγδγπ

)⟨
η
∣∣∣Ĥvac +V̂ [ϕ ]

∣∣∣π⟩=:
∂ Ẽ

[ϕ ]
SA

∂Pη ,π
(51)

The approximate gradient is thus defined by (∂ Ẽ
[ϕ ]
SA )/(∂κp,q) and (∂ Ẽ

[ϕ ]
SA )/(∂Pη ,π). No analytic

expression exists for Ẽ
[ϕ ]
SA . The neglected term implies that we can variationally minimize the state-

averaged energy without further modification if the solvent reaction field is generated using the

state-averaged density (Qe,[ϕ ] → Qe,SA) or if SS-MCSCF (Qe,SA → Qe,[ϕ ]) is employed. However,

these introduces other challenges discussed in the main text. The approximation worsens as the

number of averaged states increases, making it preferable, in principle, to restrict the number of

states being averaged. However, this introduces challenges similar to the root-flipping problem.

The rotation Hessian employed in this study can be obtained by taking a derivative of Ẽ
[ϕ ]
SA (but

not E
[ϕ ]
SA ) twice. The orbital–orbital rotation Hessian is given by:

∂ 2Ẽ
[ϕ ]
SA

∂κp,q∂κr,s
=

∂
∂κp,q

∂ Ẽ
[ϕ ]
SA

∂κr,s

= ∑
γ∈P

ωγ

⟨
γ
∣∣∣[Ê−

p,q,
[
Ê−

r,s, Ĥ
vac +V̂ [ϕ ]

]]∣∣∣γ⟩
−∑

t,u
∑

i

⟨
ϕ
∣∣[Ê−

p,q, Êt,u
]∣∣ϕ⟩⟨t

∣∣∣∣∣Qe,SA
r,s (i)

|r− ri|

∣∣∣∣∣u
⟩

, (52)

where

Qe,SA
r,s (i) =−ε −1

ε ∑
j

(
C−1)

i, j V
e,SA

r,s ( j)

=
ε −1

ε ∑
j

(
C−1)

i, j ∑
γ∈P

ωγ ∑
p,q

⟨
γ
∣∣[Ê−

r,s, Êp,q
]∣∣γ⟩⟨p

∣∣∣∣ 1
|r− r j|

∣∣∣∣q⟩ . (53)

The first term in Eq. (52) can be made symmetric, whereas the second term, newly added for PCM,
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is not symmetric (Êp,q operates on the ϕ th state only, whereas Êr,s operators on the averaged state).

The CI–orbital rotation Hessian is

∂ 2Ẽ
[ϕ ]
SA

∂Pη ,π∂κp,q
=

∂
∂Pη ,π

∂ Ẽ
[ϕ ]
SA

∂κp,q

= 2

(
ωη − ∑

γ∈P

ωγδγπ

)⟨
η
∣∣∣[Ê−

p,q, Ĥ
vac +V̂ [ϕ ]

]∣∣∣π⟩
−2
(
δϕ ,η −δϕ ,π

)
∑

i
∑
r,s

⟨
η
∣∣Êr,s

∣∣π⟩⟨r

∣∣∣∣∣Qe,SA
p,q (i)

|r− ri|

∣∣∣∣∣s
⟩

. (54)

The orbital–CI rotation Hessian is

∂ 2Ẽ
[ϕ ]
SA

∂κp,q∂Pη ,π
=

∂
∂κp,q

∂ Ẽ
[ϕ ]
SA

∂Pη ,π

= 2

(
ωη − ∑

γ∈P

ωγδγ,π

)⟨
η
∣∣∣[Ê−

p,q, Ĥ
vac +V̂ [ϕ ]

]∣∣∣π⟩
−2∑

r,s
∑

i

⟨
ϕ
∣∣[Ê−

p,q, Êr,s
]∣∣ϕ⟩⟨r

∣∣∣∣Qη ,π(i)
|r− ri|

∣∣∣∣s⟩ , (55)

where

Qη ,π(i) =
ε −1

ε ∑
j

(
C−1)

i, j

(
ωη − ∑

γ∈P

ωγδγ,π

)
∑
p,q

⟨
η
∣∣Êp,q

∣∣π⟩⟨p
∣∣∣∣ 1
|r− r j|

∣∣∣∣q⟩ . (56)

The CI–CI rotation Hessian is

∂ 2Ẽ
[ϕ ]
SA

∂Pη ,π∂Pθ ,ρ
=

∂
∂Pη ,π

∂ Ẽ
[ϕ ]
SA

∂Pθ ,ρ

= 2

(
ωη − ∑

γ∈P

ωγδγ,π

)(
1− τ̂θ ,ρ

)
(1+ τ̂η ,π)δη ,θ

⟨
π
∣∣∣Ĥ +V̂ [ϕ ]

∣∣∣ρ⟩
−2
(
δϕ ,η −δϕ ,π

)
∑
p,q

∑
i

⟨
η
∣∣Êp,q

∣∣π⟩⟨p
∣∣∣∣Qθ ,ρ(i)
|r− ri|

∣∣∣∣q⟩ , (57)

where τ̂p,q permutes the indices p and q.
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