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Abstract 
 
Utilizing Large Language Models (LLMs) for handling scientific information comes with risk of 
the outputs not matching expectations, commonly called hallucinations. To fully utilize LLMs in 
research requires improving their accuracy, avoiding hallucinations, and extending their scope to 
research topics outside their direct training. There is also a benefit to getting the most accurate 
information from an LLM at the time of inference without having to create and train custom new 
models for each application. Here, augmented generation and machine learning driven prompt 
optimization are combined to extract performance improvements over base LLM function on a 
common chemical research task. Specifically, an LLM was used to predict the topological polar 
surface area (TPSA) of molecules. By using augmented generation and machine learning 
optimized prompts, the error in the prediction was reduced to 7.44 root mean squared error 
(RMSE) from 59.41 RMSE with direct calls to the same LLM. 
 
Introduction 
 
LLMs are opening new possibilities for leveraging natural language processing in chemistry and 
other scientific fields. These models can access and generate chemical information, potentially 
assisting researchers with tasks such as predicting molecular properties, extracting structured 
data from text, and even designing new molecules. However, using LLMs in chemical research 
comes with unique challenges. One prominent issue is "hallucination," where the model 
produces outputs that are confidently incorrect, often due to gaps or inconsistencies in its training 
data [White, 2022]. Hallucinations present a substantial obstacle in chemistry, where even minor 
inaccuracies can lead to significant misinterpretations in predicting molecular properties or 
reactions [Bran, 2024]. To fully integrate LLMs into chemical research workflows, these 
hallucinations must be addressed and it is critical to improve the models’ ability to better handle 
chemical data. 
 
Existing research efforts are exploring various ways to improve LLM performance on chemistry-
specific tasks. Some groups have developed specialized models, like ChemLLM, which is 
trained on extensive chemical datasets to ensure it is proficient in a wide array of chemical tasks 
[Zhang, 2024]. This specialization helps ChemLLM perform well in chemical applications. 
Instruction tuning is another promising approach; models such as MolecularGPT pre-train 
models with Simplified Molecular Input Line Entry System (SMILES) strings connected to 
molecular properties to enhance few-shot learning on chemical properties, outperforming 
traditional models on certain tasks [Liu, 2024]. Additionally, fine-tuned models have 
demonstrated success in converting unstructured chemical text into structured data for reaction 
databases, highlighting LLMs’ potential to build organized and accessible chemical knowledge 
bases [Pang, 2024] [Ai, 2024]. Some studies have also assessed the performance of general-
purpose LLMs in chemistry-related programming tasks, such as generating code for chemical 
data analysis [White, 2022]. Alternatively, custom models can be created from the same 
transformer architecture that powers LLMs but using molecular properties as the training data. 
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For example, Prompt-MolOpt uses prompt engineering to improve multi-property optimization 
and address data scarcity issues common to this field [Wu, 2024]. This method excels in few- 
and zero-shot learning scenarios due to its ability to leverage single-property datasets to learn 
generalized causal relationships. Another area where LLMs are being used to automatically 
design more effective and efficient agentic systems is a novel research field called Automated 
Design of Agentic Systems (ADAS) [Fateen 2024].  
 
These efforts underscore the progress being made with specialized chemical LLMs and 
instruction-tuned models, but they come with limitations. Developing or fine-tuning models on 
dedicated chemical datasets requires substantial computational and energy resources [Strubell 
2022] and domain-specific expertise [Zhang, 2024]. Furthermore, once models are fine-tuned for 
a specific chemical application, their generalizability may suffer, and their adaptability to other 
domains or newly emerging chemical knowledge can become constrained [Wu, 2024]. 
Therefore, there is a need for time-of-prompt solutions that can enhance the accuracy of LLM 
predictions at inference time—without requiring extensive retraining or fine-tuning [Soylu, 
2024]. Such techniques would allow LLMs to be applied to a wider range of chemical tasks, 
even in cases where the model’s pre-existing knowledge may be incomplete or out-of-date. 
 
Two emerging approaches that could address these limitations are Retrieval-Augmented 
Generation (RAG) and the Multiprompt Instruction PRoposal Optimizer (MIPRO). RAG 
combines a retrieval system with a generative model, enabling LLMs to dynamically fetch or 
calculate relevant, up-to-date information from external databases or knowledge sources [Lewis, 
2021]. In the context of chemistry, RAG could draw on calculations or curated databases to 
supply the LLM with accurate molecular data or specific molecular properties in real time 
[Fateen, 2024]. This external grounding could significantly reduce the likelihood of 
hallucinations by ensuring that the LLM has access to precise chemical data instead of relying 
solely on its potentially limited training set. RAG is potentially valuable for tasks like predicting 
properties using group contribution methods, where relationships between molecular structure 
and molecular properties are complex and require detailed, accurate data that an LLM may not 
robustly encode [Wu, 2024]. 
 
MIPRO is a prompt optimization framework that creates and refines the LLM prompts for 
improved accuracy and consistency [Soylu, 2024]. MIPRO uses an LLM to generate additional 
instructions to add to the prompt and then selects few-shot examples that illustrate successful 
executions of the given task, optimizing the selection of both using a PyTorch powered ML 
framework [Opsahl-Ong, 2024]. MIPRO can bootstrap examples from training data and 
dynamically generate instruction candidates to provide structured, task-specific guidance [Zhang, 
2024]. Through Bayesian optimization, MIPRO iteratively identifies the optimal combination of 
examples and instructions, evaluated against a user-generated quantitative metric. This prompt 
refinement reduces hallucinations by ensuring that the LLM has a clear and relevant framework 
for understanding underlying data, without the need for creating or fine-tuning a model for a 
specialized application [Wu, 2024]. 
 
TPSA is used as a molecular descriptor in drug research because it can efficiently predict a drug's 
ability to passively cross biological membranes, such as the intestinal lining or the blood-brain 
barrier [Pajouhesh, 2005]. This efficiency is crucial in early drug discovery stages, where 
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researchers need to evaluate a large number of potential drug candidates. Several studies have 
shown that TPSA correlates well with drug permeability [Ertl, 2000]. For instance, drugs that are 
readily absorbed from the gut or those that can penetrate the central nervous system typically 
have lower TPSA values [Zhang, 2015]. TPSA has also been used in a model that predicts drug 
exposure in pregnant women and their fetuses. This model relies on a "permeability-limited 
placenta model" that simulates drug transfer between the mother and fetus [Zhang, 2015]. 
 
Together, RAG and MIPRO present a powerful solution for improving LLM performance. RAG 
addresses the issue of outdated or incomplete information by grounding the LLM’s responses in 
current, high-quality data sources, ensuring that predictions are accurate and contextually 
relevant. MIPRO complements this by optimizing the prompt structure, allowing the LLM to 
interpret and utilize retrieved data more effectively through well-designed instructions and 
examples. Here, as an example of this approach, I describe a method for predicting TPSA that 
combines RAG and MIPRO using a commercially available LLM, ChatGPT-4o-mini. In tandem, 
these approaches enabled the LLM to make accurate, data-driven predictions at inference time, 
enhancing its reliability without fine tuning the weights of the base model. This approach 
reduced the root mean squared error (RMSE) from 59.41 for prediction using the GPT-4o-mini 
LLM directly to 7.44 RMSE when MIPRO and RAG were employed for predictions on a set of 
random molecules. The individual contribution of the various elements of this approach is 
described below. 

 
 
Figure 1. Process for generating prompt components (blue) for tpsa model from input SMILES 
(green) and RAG components (yellow). 
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Material and methods 
 
Data Preparation 
Molecular data were acquired from PubChem by querying random compound identifiers and 
fetching properties through the PubChem PUG-REST API. A dataset was constructed by binning 
TPSA values in intervals of 5 units, with 20 molecules per bin to ensure even distribution across 
TPSA values and provide a robust dataset for prompt tuning. Since PubChem defines TPSA as 
“a simple method - only N and O are considered,” 
[https://pubchem.ncbi.nlm.nih.gov/docs/glossary accessed on Nov 12, 2024.] only molecules 
with C, N, O, and H were included and if the N and O functional groups could not be mapped to 
one of the specified functional groups [Ertl 2000], they were excluded. Bins were populated by 
randomly sampling molecules from PubChem until each TPSA interval had 20 molecules. 
RDKit was used to parse SMARTS patterns, generating a list of functional groups. SMARTS 
patterns were loaded and iteratively applied to each SMILES string, with RDKit identifying the 
presence of targeted functional groups in each molecule. These functional group assignments 
were then linked to TPSA contributions using lookup data containing TPSA values associated 
with each group. 
 
To focus on drug-like molecules, SMILES codes with more than 10 hydrogen bond acceptors or 
more than 5 hydrogen bond donors were removed. Additionally, molecules with a mass greater 
than 500 were filtered out, further aligning the dataset with criteria typically used for drug-like 
compound properties. Finally, molecules with a non-zero charge were excluded to maintain 
focus on neutral compounds. The training set contained 30 structured examples from this list for 
selecting bootstrap examples from, while the validation set contained a second set of 30 that 
were used to validate prompt performance.  
 
 
Structuring Examples for Training  
DSPy examples serve as modular, query-answer pairs that allowed standardization of data inputs 
and generated a comprehensive dataset spanning a wide range of TPSA values. This dataset was 
balanced across TPSA intervals to prevent biases toward certain values and ensure that the LLM 
was exposed to a representative set of molecular features. A scaffold split was performed to 
ensure that the train or test sets would contain examples of any scaffolds that repeated across the 
data. The examples were then loaded into the LLM program as a structured dataset, where each 
Example provided the model with a consistent input-output relationship.  
 
Prompt Optimization  
GPT-4-o-mini was used as the model for generating and testing prompts, ensuring that both 
prompt generation and task completion maintained consistent model behavior. GPT-4o-mini 
which has a reduced model size compared to GPT-4o was used here in part to minimize the risk 
that prior training data would contain direct answers to the questions being asked. The reduced 
parameter size means these direct connections are less likely. The most recent version of 
MIPRO, MIPROv2 from the DSPy package was used. 10 few-shot example sets were proposed 
during the optimization.  By generating 10 sets, MIPRO can experiment with a range of 
examples, allowing it to assess which examples best aid the model in reducing TPSA prediction 
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errors. An initial temperature of 1.2 was used. This increases prompt diversity at the start. This 
helps MIPRO to explore various prompt combinations early on, with a controlled decrease in 
diversity over time for convergence. 
 
25 trials were run, allowing MIPRO to iteratively refine prompts based on validation 
performance. Each trial generates a new prompt set, and Bayesian Optimization identifies which 
sets perform best. Minibatch evaluation was performed in batches of 5 examples, enabling 
efficient prompt evaluation in each trial. This approach allows for broader prompt testing within 
the given trial limit of 30. The number of few-shot and labeled examples in each prompt was set 
to a maximum of 8, ensuring manageable prompt length and optimizing example diversity 
without overwhelming the model with too many examples at once. After every 5 minibatches, a 
full evaluation on the validation set was performed. This periodic full evaluation providef a more 
stable performance benchmark, allowing the Bayesian optimizer to adjust prompt selection based 
on more reliable performance data. 
 
Evaluation Metric  
A custom metric was used to calculate the absolute error between the LLM predicted TPSA 
value and the true TPSA value, using this difference to guide prompt and example selection 
across bootstrap example selection and prompt optimization. During bootstrap example 
selection, the metric assesses the accuracy of candidate few-shot examples generated from the 
training dataset. A threshold-based approach was used, retaining only examples where the 
absolute error was below 20. This threshold ensures that the examples selected for bootstrapping 
are reliable representations of a good TPSA prediction, forming a solid foundation for the few-
shot examples used in prompt optimization. In prompt optimization, the metric guides Bayesian 
Optimization by continuously measuring the accuracy of different prompt configurations. At 
each trial, the effectiveness of a prompt is evaluated by calculating the negative absolute error 
across a batch of examples. Additionally, every few minibatches the entire validation set was 
evaluated to confirm that the current prompt configuration performs well on a broader set of 
examples, enhancing stability and reducing noise in prompt selection. By calculating negative 
absolute error between predicted and actual TPSA values, this metric guides the optimizer 
towards more accurate prompt selections. 
 
The TPSA predictor is derived from DSPy Module object and utilizes the TypedPredictor 
program to ensure responses with correct formatting. The predictor encapsulates the logic for 
preparing, formatting, and training the model on prompt-optimized TPSA prediction tasks. It 
utilizes a structured prompt that can integrate molecular descriptions, functional group data, and 
specific atom counts.  These modules include 1) Describing Molecular Functional Groups: The 
method first calls describe_molecule with the SMILES code. This function returns an assignment 
of functional groups based on predefined SMARTS patterns.  
 
Augmented Generation 
The prompts are generated in segments that are removed selectively during the ablation study. 
The prompt segments include: 1) Functional Group Information: A function was created using 
rdkit to provide a list of functional groups present in the smiles code as matched to the list of 
TPSA contributors [Ertl 2000], 2) Atom Counts: identifies the number of nitrogen and oxygen 
atoms in the molecule. 3) The total atom count is used to generate specific instructions on how 
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each atom’s presence should impact the TPSA value. 4) Data from the published group 
contribution table to the TPSA for each functional group present 5) Details that specify the 
response format, ensuring the LLM outputs a JSON object with a list of TPSA values. The 
predicted TPSA contributions are summed to avoid math hallucinations [Rawte 2023] and to 
provide a single TPSA value. 
 
Results 
 
The effectiveness of structured prompt optimization using RAG and MIPRO (tpsa model, Figure 
1) was compared to a basic prompt (direct model) for predicting the TPSA of a set of 140 
molecules. The direct model, which uses a simple, non-augmented prompt without RAG or 
MIPRO optimizations, results in a mean RMSE of 59.41, with predictions showing little 
alignment to the actual TPSA values. The prompt used was “Predict the numerical value of the 
topological surface area, TPSA, for a molecule described by the SMILES code, {molecule},” 
where molecule was one SMILES code selected from a list. This basic prompt leads to poor 
model performance, as the LLM struggles to reliably relate molecular structure to TPSA without 
the additional context provided in the optimized prompt. SMILES codes are common but if the 
training data did not include the specific property connected to that specific form of the SMILES 
code, as appears to be the case, the LLM cannot infer what the values should be. (Figure 2A). 
The tpsa model, incorporating RAG and optimized with MIPRO's prompt structuring and few-
shot example selection, achieves an RMSE of 7.44, with most predictions closely matching the 
calculated values obtained from PubChem. This suggests that incorporating functional group 
details and other contextual information and optimizing prompts through MIPRO significantly 
enhances prediction accuracy. For the tpsa model a multi-part prompt structure (Figure 2B) was 
used that incorporated RAG components as well as text designed to ensure the response of the 
LLM followed the request for typed format of a list of float values which were then summed to 
get the predicted TPSA value. This prompt was used in the MIPRO process which produced 
examples and a data description that were appended to the prompt at inference. The outliers that 
had a predicted TPSA > 1 different from the calculated TPSA (supporting info, Figure S1) 
tended to have longer lists of functional groups (6.4 vs 4.6 mean) and more nitrogen and oxygen 
atoms suggesting that the more complicated molecules were harder to predict. 
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A

 
B 

 
Figure 2. A) direct LLM prediction of TPSA values for a set of randomly selected SMILES 
codes from PubChem using GPT-4o-mini. B) The same molecules predicted by the full model 
including RAG and MIPRO components.  
 
 
 
 
 

https://doi.org/10.26434/chemrxiv-2025-rwgt8 ORCID: https://orcid.org/0000-0003-2034-1999 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-rwgt8
https://orcid.org/0000-0003-2034-1999
https://creativecommons.org/licenses/by/4.0/


A

 
B

 

https://doi.org/10.26434/chemrxiv-2025-rwgt8 ORCID: https://orcid.org/0000-0003-2034-1999 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-rwgt8
https://orcid.org/0000-0003-2034-1999
https://creativecommons.org/licenses/by/4.0/


C

 
Figure 3. LLM prediction of TPSA values for a set of randomly selected SMILES codes from 
PubChem using GPT-4o-mini, excluding some RAG components, either A) the list of functional 
groups in the molecule, B) the table of TPSA contributions that match to the groups, and C) both 
of these pieces omitted. GPT-4o-mini used in each case. 
 
 
Next, different components were removed from the complete model to assess the impact each 
component had on the accuracy improvement over the direct LLM call. The 
tpsa_model_abcdf configuration excludes the RAG component that contains tabular TPSA 
contribution data [Ertl 2000] used for calculating group contributions additively for TPSA 
(Figure 3A). This omission results in a mean RMSE of 10.81. While the RMSE is slightly higher 
than the fully optimized model, most data points still cluster along the perfect prediction line, 
with most deviations at higher TPSA values. This suggests that the tabular TPSA data provide 
some accuracy benefit but are not critical to the model's overall performance. The outliers 
(supporting info, Figure S2) lean toward the more complex structures with increased heteroatom 
counts and number of functional groups. 
 
The tpsa_model_acdef omits only the RAG step that provides a list of functional groups present 
in the SMILES to the LLM. With a mean RMSE of 8.51, this configuration shows only a slight 
decline in accuracy compared to the fully optimized model, with good alignment between 
predicted and actual TPSA values (Figure 3B). This result implies that while functional group 
descriptions add value in helping with SMILES interpretation, the model can still achieve 
reasonably accurate predictions without them, correctly identifying functional groups from the 
provided SMILES. The outliers (supporting info, Figure S3) again are more complex with some 
molecules repeating between this and the prior list. 
 
The tpsa_model_acf, shows a substantial increase in mean RMSE to 28.95 after removing both 
the functional group list and specific atom counts (Figure 3C). The responses included many 
zero values for the predicted TPSA when the RAG portions with information about the number 
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and types of functional groups are removed. Without these critical details, predictions become 
widely dispersed from actual values. This configuration underscores the importance of functional 
group and functional group information for minimizing hallucinations and achieving reliable 
TPSA predictions. The outliers (supporting info, Figure S4) contain many of the same molecules 
as the individual RAG removals as well as some new ones. 
 
 
A

 
B

 
Figure 4. LLM prediction of TPSA values for a set of randomly selected SMILES codes from 
PubChem using GPT-4o-mini, excluding A) the signature developed by MIPRO, B) the 
bootstrapped examples produced by MIPRO.  
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Next, the text added by the MIPRO optimization was iteratively removed from the full model to 
assess the contribution of MIPRO to the improvement of the overall model. When the 
description of the dataset (termed signature in DSPy) was removed (Figure 4A) the mean RMSE 
value increased only slightly to 7.47. In contrast, when the bootstrapped examples were 
removed, the RMSE increased to 18.07 (Figure 4B). While some predictions remained close to 
the ideal value, many did not, including 15 values that were exactly doubled over the actual 
values, a hallucination not observed in the direct prediction. 
 
Discussion 
 
This study provided a simple example of a molecular property prediction that allowed a detailed 
examination of strategies to reduce LLM hallucinations in scientific applications. The results 
demonstrate the effectiveness of both RAG and MIPRO individually and in combination to 
improve the accuracy and reliability of LLMs in predicting molecular properties, a critical aspect 
of drug research. By augmenting LLMs with both external data retrieval and optimized prompt 
structures, we observed a significant reduction in prediction errors. Specifically, the fully 
optimized model achieved an RMSE of 7.44, closely aligning with calculated TPSA values and 
outperforming models that used only a simple prompt or incomplete prompt components.  
 
MIPRO iteratively identifies the optimal combination of examples and instructions, creating a 
prompt that enables the model to consider functional group contributions, functional group 
details, and additive rules when making predictions. The addition of MIPRO’s optimized 
prompts allowed the model to better interpret molecular structure and contextual details, such as 
functional group contributions which are essential for accurate predictions. Our ablation studies 
showed that removing specific prompt components led to increased error rates, confirming the 
importance of each element in minimizing model hallucinations. For instance, omitting 
functional group descriptions or atom counts resulted in poorer alignment, with RMSE rising to 
28.95 when both elements were removed. These findings underscore the necessity of detailed 
molecular context in LLM prompts, when property predictions depend on molecular features. 
 
By integrating a retrieval step that generates relevant molecular properties and functional group 
information, this RAG mitigates the risk of hallucinations. This approach addresses the 
limitations of relying solely on static training data, which may be unavailable for all possible 
inputs or insufficiently detailed for specialized tasks. By integrating RAG and MIPRO, the 
LLM’s applicability to the chemical task of TPSA prediction was improved, without retraining 
or fine-tuning the LLM. These results suggest that RAG and MIPRO can significantly improve 
the utility of general-purpose LLMs in chemical and other scientific research, providing a 
flexible, scalable solution that enhances prediction accuracy and contextual relevance. This 
combined approach offers a promising pathway for leveraging LLMs in chemistry and other 
fields where accurate, context-aware data interpretation is essential. By allowing the model to 
retrieve relevant information for each query, RAG helps ensure that its predictions are rooted in 
reliable data. 
 
By combining RAG’s data-driven retrieval with MIPRO’s prompt optimization, LLMs can be 
transformed into more accurate and versatile tools for chemical research, capable of delivering 
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reliable predictions even in complex or unfamiliar contexts [Fateen, 2024; Soylu, 2024]. This 
approach holds promise not only for chemistry but also for other scientific domains that require 
precise, contextually informed data interpretation [Bran, 2024]. Together, RAG and MIPRO can 
enhance the utility of general-purpose LLMs across a wide range of research applications, 
reducing the need for specialized models and allowing researchers to leverage LLM technology 
with greater flexibility and accuracy [Wu, 2024]. 
 
Training or fine-tuning models [Pang, 2024] with up-to-date information is another powerful 
approach but comes with drawbacks. Fine-tuning requires significant advance work to prepare a 
model tailored to a specific need. In contrast, approaches that can be performed at inference time 
offer the advantage of being applicable to any model without retraining the weights, thereby 
preserving generalizability. This combination could be especially useful in drug discovery, where 
accurate molecular property predictions are crucial for assessing drug permeability and potential 
efficacy early in the development pipeline. 
 
Conclusions 
As LLMs and their training data grow in size, their capabilities can seem limitless, however, they 
cannot be trained on data that does not exist yet. The approach described here takes an LLM 
incapable of a specific molecular task and makes it substantially more capable through 
augmented generation and prompt optimization. This approach could allow LLMs to be used as 
research assistants even when handling data outside of their initial training while maintaining the 
utility of LLMs in handling language. 
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