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Abstract 
Efficient and accurate calculation of macromolecule pairwise similarity is essential for developing 
database search engines and is useful for machine learning based predictive tools. Existing 
methods for calculating macromolecular similarity suffer from significant drawbacks. Graph edit 
distance is accurate but computationally expensive, and graph kernel methods are computationally 
efficient but inaccurate. This study introduces a graph neural network model, MacroSimGNN, 
which significantly improves computational efficiency while maintaining high accuracy on 
macromolecule pairwise similarity. Furthermore, this approach enables feature embeddings based 
on macromolecular similarities to a set of landmark molecules, enhancing both unsupervised and 
supervised learning tasks. This method represents a significant advancement in macromolecular 
cheminformatics, paving the way for the development of advanced search engines and data-driven 
design of macromolecules. 

 

Introduction 
Macromolecules are both ubiquitous and indispensable.1, 2 Biological macromolecules, such as 
glycans,3, 4 proteins5-7 and nucleic acids,8-10 are essential for life, serving as catalysts for survival 
and growth functions, while synthetic macromolecules find extensive use in fields such as 
textiles,11 water purification,12, 13 energy,14 transportation,15 construction,16 and biotechnology.17 
Macromolecule similarity offers insights into quantitative structure-property relationships18, 19 as 
similar macromolecules are more likely to have similar properties. Similarity is also essential for 
efficient search algorithms for macromolecule databases by enabling ranking of targets.20-26 
Furthermore, macromolecular similarity enhances machine learning techniques, including 
clustering, classification, and regression for predicting properties and discovering new 
macromolecular materials.19, 27-44 
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While sequence matching algorithms45, 46 can be used for similarity calculations in simple linear 
macromolecules, many complex macromolecules have non-linear topologies.4, 47-50 To address this, 
both atomistic and coarse-grained graph representations51-53 were developed for macromolecule 
similarity calculations. However, the graph similarity calculations between atomistic graph 
representations of macromolecules are computationally expensive and impractical due to the high 
number of atoms compared to small molecules. Consequently, coarse-grained graph 
representations47, 54, 55 were utilized, where nodes represent monomers and edges represent 
connections between monomers. Two main approaches have been used to calculate pairwise 
similarity in these coarse-grained representations: graph edit distance (GED)47, 54, 55 and graph 
kernels.47, 56-59 GED measures the minimum operation costs to transform one graph to another.60 
However, GED is a nondeterministic polynomial-time hardness (NP-hard) problem. Even with 
coarse-grained representations, computing the exact GED remains costly,47, 54, 55, 61, 62 limiting its 
use in scale-up or time-sensitive applications. Graph kernel methods map graphs to a high-
dimension space and measure similarity between graphs using inner products in that space. Graph 
kernels often provide an approximation of graph similarity rather than an exact measure since the 
mapping processing and inner production operation can lose small but important structural 
differences between graphs. Therefore, graph kernel methods offer improved efficiency but often 
suffer from reduced accuracy.47, 56-59 Several recent advances in deep learning demonstrated that 
deep neural networks have the potential to learn graph matching-related tasks, leading to state-of-
the-art matching accuracy while also benefits from the efficiency.62-64 
  
Bai et al.62 proposed the SimGNN framework which is a graph neural network approach designed 
for rapid and accurate computation of small molecule pairwise graph similarity. In SimGNN,62 
each small molecule is represented as a chemical compound graph, with nodes representing atoms 
and embedded using one-hot encoding. Applying SimGNN to the atomistic graph representations 
of macromolecules is impractical because obtaining a dataset with the exact GEDs between 
atomistic graph representations of macromolecules, which have a large number of atoms within a 
reasonable timeframe is unrealistic. On the other hand, in the coarse-grained graph representations 
of macromolecules, nodes represent monomers or linkage groups, and one-hot encoding cannot 
accurately quantify the chemical differences between these nodes. Therefore, the direct application 
of SimGNN to the coarse-grained graph representations of macromolecules reduces the chemical 
resolution for macromolecule similarity calculation. 
 
Building on the work of SimGNN62, this study introduces MacroSimGNN, an extension tailored 
for macromolecule coarse-grained graph representation pairwise similarity calculations. 
MacroSimGNN uses Morgan Fingerprints for node embeddings to accurately quantify the 
differences between nodes which represent monomers or linkage groups. MacroSimGNN aims to 
overcome the significant drawbacks47, 54-59 of existing approaches by enhancing computational 
efficiency while preserving high accuracy. MacroSimGNN is then applied along with landmark 
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distance embedding65, 66 for both unsupervised and supervised learning tasks. This work has 
potential applications in macromolecule search, as well as quantitative design tools for 
macromolecules. 

 
Methods 
MacroSimGNN 

As shown in Figure 1a, in the coarse-grained graph representations of macromolecules, each node 
is a monomer or linkage group; the Morgan fingerprint (radius = 3, nBits = 128, 
useChirality=True)47 of the monomer or linkage group is the embedding of the node, which is the 
same setting in Mohapatra et al.47 Edges represent connections between monomers or linkage 
groups without chemical specificity or directionality in order to align with the frameworks of 
MacroSimGNN and SimGNN, 62 which do not include edge-specific information. 

 

As illustrated in Figure 1b, the methodology of MacroSimGNN comprises four stages, mirroring 
those of SimGNN but with modifications to accommodate macromolecular complexities. Stage 1 
inludes graph convolutional networks (GCNs) for node-level embeddings. Nodes are initially 
embedded using Morgan molecular fingerprints,47 where 𝑢𝑢𝑖𝑖,𝑛𝑛0 ∈ ℝ𝐷𝐷 is a 128 dimension vector for 
node 𝑛𝑛 of graph 𝑔𝑔𝑖𝑖  which has 𝑁𝑁 nodes, differentiating this initial stage from SimGNN62 which 
uses one-hot encoding. The graph convolution operation generates the node embeddings for a set 
of nodes in graph 𝑔𝑔𝑖𝑖, 𝑈𝑈𝑖𝑖 ∈ ℝ𝑁𝑁×𝐷𝐷, where the n-th row, 𝑢𝑢𝑖𝑖,𝑛𝑛 ∈ ℝ𝐷𝐷 is the embedding of node 𝑛𝑛 after 
graph convolution operation. Stage 2 is graph-level embedding, where an embedding vector for 
each graph (ℎ𝑖𝑖) is generated by aggregating the input node embeddings (𝑈𝑈𝑖𝑖). The node weights are 
dependent on the similarity matric and are learned and optimized during the training process. Stage 
3 is graph-graph interactions including the neural tensor network62, 67 and the pairwise node 
comparison.62 The neural tensor network models the relationship between two graph-level 
embeddings.  

𝑝𝑝�ℎ𝑖𝑖 ,ℎ𝑗𝑗� = 𝑓𝑓 �ℎ𝑖𝑖𝑇𝑇𝑊𝑊
[1:𝐾𝐾]ℎ𝑗𝑗 + 𝑉𝑉 �

ℎ𝑖𝑖
ℎ𝑗𝑗
� + 𝑏𝑏� 

Where 𝑊𝑊[1:𝐾𝐾] ∈ ℝ𝐷𝐷×𝐷𝐷×𝐾𝐾 is a weight tensor, [] denotes the concatenation operation, 𝑉𝑉 ∈ ℝ𝐾𝐾×2𝐷𝐷 is 
a weight vector, 𝑏𝑏  ∈ ℝ𝐾𝐾  is a bias vector and 𝑓𝑓 ( ∙ ) is a ReLU activation function. 𝐾𝐾  is a 
hyperparameter controlling the number of interaction (similarity) scores produced by the model 
for each graph embedding pair. 

However, if only the neural tensor network was used, the node-level information such as the node 
feature distribution and graph size may be lost by the graph-level embedding.62 The differences 
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between two graphs lie in small substructures and are usually hard to reflect in graph-level 
embedding. To overcome this limitation, the pairwise node-level interaction score is obtained by 
𝑆𝑆 = 𝑈𝑈𝑖𝑖𝑈𝑈𝑗𝑗𝑇𝑇, through matrix multiplication. Next, a normalized histogram feature vector 𝑞𝑞�hist (𝑆𝑆)� 
is created and concatenated with the graph-level interaction scores 𝑝𝑝(ℎ𝑖𝑖 ,ℎ𝑗𝑗). Stage 4 is a fully 
connected neural network which predicts the similarity score, 𝑠̂𝑠�𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗� between graphs 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗. 
𝑠̂𝑠�𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗� is compared against the ground-truth similarity score 𝑠𝑠�𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗� using the following mean 
squared error loss function: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
1

|𝒟𝒟|
� �𝑠̂𝑠�𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗� −  𝑠𝑠�𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗��

2

(𝑖𝑖,𝑗𝑗)∈𝑠̂𝑠�𝑔𝑔𝑖𝑖,𝑔𝑔𝑗𝑗�.

 

Where 𝒟𝒟 is the set of training graph pairs.  

During training, no explicit symmetry constraint is imposed on the MacroSimGNN framework. 
Instead, the model learns physical symmetry from the inherently symmetric training data, where 
the ground truth of 𝑠𝑠(𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗) and 𝑠𝑠(𝑔𝑔𝑗𝑗 ,𝑔𝑔𝑖𝑖) are both used for training MacroSimGNN. As a result, 
the predicted values of 𝑠̂𝑠(𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗) and 𝑠̂𝑠(𝑔𝑔𝑗𝑗 ,𝑔𝑔𝑖𝑖) are very close, though slightly different due to the 
regression nature of the task. For predictions on testing datasets, a symmetry-enforced prediction 
strategy is implemented to ensure strictly symmetric results and improve prediction accuracy. This 
symmetry strategy uses the average value  �𝑠̂𝑠�𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗� +  𝑠̂𝑠�𝑔𝑔𝑗𝑗 ,𝑔𝑔𝑖𝑖�� /2 as the final similarity score 

prediction for the graph pair (𝑔𝑔𝑖𝑖 ,𝑔𝑔𝑗𝑗). Detailed discussion and mathematical proof of this symmetry 
strategy are provided in the Supporting Information. 

Stages 2 to 4, with the exception of the symmetry strategy, are consistent with the methodology 
described by Bai et al.62 This adapted framework allows for efficient macromolecule similarity 
calculations while maintaining the core strengths of the SimGNN approach. By using coarse-
grained representations and Morgan fingerprints, MacroSimGNN can handle the complexity of 
macromolecules without sacrificing computational efficiency or accuracy. The hyperparameters 
of MacroSimGNN are tuned by minimizing the mean squared error loss function on the validation 
dataset through a grid search. The details of the optimized hyperparameters are included in the 
Supporting Information. 
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Figure 1: (a) Coarse-grained graph representations of glycans where the nodes represents glycan 
monomers (monosaccharide). (b) Schematic representation of the MacroSimGNN methodology. 
The four-stage process of MacroSimGNN, adapted from SimGNN.62 Stage 1 includes graph 
convolutional networks (GCNs) for node-level embedding. Nodes represent monomers, which are 
embedded using Morgan molecular fingerprints, a key modification from SimGNN. Stage 2 is 
graph-level embedding with the global context-aware attention (Att) layer, which generates graph 
embedding vectors by aggregating node embeddings with learned weights. Stage 3 is graph-graph 
interactions which include a neural tensor network and pairwise node comparison. Stage 4 is fully 
connected network layers for the prediction of similarity scores. At the end, a symmetry strategy 
is employed to ensure that the order of the pairs of graphs, 𝑔𝑔𝑖𝑖 and 𝑔𝑔𝑗𝑗, do not matter. This adapted 
framework enables efficient macromolecular similarity calculations while maintaining 
computational efficiency. 

 

Landmark Distance Embedding 

Landmark distance embedding leverages pairwise distances between entities as embedding vectors, 
as opposed to crafting embedding vectors for each macromolecule. The approach has previously 
been used in small molecule property predictions65, 66 and is particularly useful for macromolecules 
where a simple embedding may not exist due to the architectural complexity. In this work, as 
illustrated in Figure 2, this method utilizes the pairwise distances of macromolecules as their 
embedding vectors. In this study, these distances may be GEDs, normalized GEDs (NGEDs), or 
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dissimilarity (𝑑𝑑 = 1 − 𝑠𝑠). Calculating exact GEDs which is NP-hard, is inefficient and impractical 
for all pairwise combinations in landmark embedding. Nevertheless, the development of 
MacroSimGNN has enabled the efficient and accurate computation of pairwise GEDs, NGEDs, 
and dissimilarity, thus rendering the landmark distance embedding method feasible for 
macromolecules. Landmark distance embeddings are utilized for unsupervised learning and 
supervised learning tasks. In this work, specifically, principal component analysis (PCA)68-71, a 
linear dimensionality reduction technique, implemented in scikit-learn72 
(sklearn.decomposition.PCA) with the number of components being 2, is used for data analysis 
and visualization of the landmark distance embeddings. Gaussian process classification31, 33, 73-76 
implemented in scikit-learn72 (sklearn.gaussian_process.GaussianProcessClassifier) with the 
kernel setting being a combination of constant kernel and radial basis function kernel,  is utilized 
to determine whether a glycan is non-immunogenic or immunogenic. 

 

 

Figure 2: The landmark distance embedding method utilizes the pairwise distances of 
macromolecules as their embedding vectors. 

 
Dataset 
Macromolecule GED Dataset and Dataset Preprocessing 
This study utilizes a glycan dataset, originally from GlycoBase77 and compiled by Mohapatra et 
al.47 due to the topological diversity, encompassing both linear and nonlinear configurations, as 
well as the breadth of monomer chemistries (946 types).47 This variety makes this dataset an ideal 
test case for the robustness of MacroSimGNN. From the original dataset of 19,147 glycans,47 400 
glycan coarse-grained graph representations are randomly selected for this study. In the following 
section, Impact of the Training Dataset Size, this sample size of 104 GEDs formed by about 100 
glycan glycan graph representations is proved to be sufficient for training MacroSimGNN.  Further 
increasing data size does not provide a noticeable improvement in prediction performance but does 
requires larger memory capacity and longer training time. The distributions of node and edge 
counts in these 400 graphs are illustrated in Figures 3a and 3b, respectively. The exact GEDs for 
all 160,000 pairwise combinations of the 400 selected graphs are calculated by using the A* 
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algorithm78 implemented in NetworkX.79 In the setting of the GED calculation, the cost for each 
operation of deletion and insertion of nodes and edges is 1;  the cost for node substitution is based 
on the Tanimoto dissimilarity80 between the two nodes;47, 54 there is no edge substitution. The 
distribution and matrix of pairwise exact GEDs are shown in Figures 3c and 3d. These 160,000 
pairwise GEDs constitute the macromolecule GED dataset. 
 
To preprocess the data for training MacroSimGNN, the ground truth absolute 𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔1,𝑔𝑔2) is 
transformed into a similarity score 𝑠𝑠(𝑔𝑔1,𝑔𝑔2) within the range 0 and 1.54, 55, 62 First, the absolute 
GED is normalized to be NGED, 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔1,𝑔𝑔2) =
𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔1,𝑔𝑔2)
(𝑁𝑁1 + 𝑁𝑁2)/2

 (1) 

where 𝑁𝑁𝑖𝑖 denotes the number of nodes of the graph 𝑔𝑔i. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔1,𝑔𝑔2) is 0 when graph 𝑔𝑔1 and 𝑔𝑔2 
are identical. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔1,𝑔𝑔2)  is symmetric such that 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔1,𝑔𝑔2) =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔2,𝑔𝑔1) . The 
distribution and matrix of pairwise NGED are shown in  Figures 3e and 3f. 
 
Then an exponential decay function is used to transform the 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔1,𝑔𝑔2) to a similarity score 
𝑠𝑠(𝑔𝑔1,𝑔𝑔2),55, 62 

𝑠𝑠(𝑔𝑔1,𝑔𝑔2) = exp�−𝛼𝛼 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑔𝑔1,𝑔𝑔2)� = exp�−
𝛼𝛼 ∙ 𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔1,𝑔𝑔2)

(𝑁𝑁1 + 𝑁𝑁2)/2
� (2) 

where 𝛼𝛼 is a tunable parameter with the default value being 1. 𝑠𝑠(𝑔𝑔1,𝑔𝑔2) equals 1 when 𝑔𝑔1 and 𝑔𝑔2 
are identical and approaches 0 as dissimilarity increases. 𝑠𝑠(𝑔𝑔1,𝑔𝑔2)  is also symmetric. The 
distribution of similarity scores and the heatmap of the pairwise similarity score matrix are 
illustrated in Figures 3g and 3h. This transformation ensures a one-to-one mapping between GED 
and 𝑠𝑠, while scaling the values to a range between 0 and 1.  

This work adopts a different data splitting method than the original SimGNN by Bai et al.62 in 
order to comprehensively evaluate the prediction ability and generalizability of MacroSimGNN. 
Based on the distribution of the number of nodes, 200 graphs are randomly selected out of the 400 
graphs and reindexed from 1 to 200, with the remaining 200 graphs reindexed from 201 to 400. 
As shown in Figure 3h, the black region represents the Training dataset, which comprises graph 
pairs from the first 200 graphs. This Training dataset is further randomly divided into training 
(80 %) and validation (20 %) subsets to reduce overfitting. The red region represents the Testing-
1 dataset, where one graph in the graph pairs exists in the Training dataset. The orange region 
represents the Testing-2 dataset, where neither graph in the graph pair exists in the Training dataset. 
The separation of Testing-1 and Testing-2 datasets aims to comprehensively assess 
MacroSimGNN's prediction ability and generalizability for similarity between unknown graphs. 
Equal graph pairs are excluded from all datasets because there are more efficient ways to detect 
equal graph pairs, and including equal graph pairs in the training hurts the model’s performance. 
The rationale for this exclusion is detailed in the Supporting Information. With 400 equal graph 
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pairs excluded, the actual size of the Training dataset is 39,800, and the actual size of the Testing-
2 dataset is also 39,800. There are no equal graph pairs in the Testing-1 dataset; therefore, the size 
of the Testing-1 dataset is 80,000. 

 

 

Figure 3: Characteristics of the macromolecular (glycan) dataset and derived graph similarity 
metrics. (a) Distribution of node counts in 400 glycan coarse-grained graph representations. (b) 

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Distribution of edge counts in 400 glycan coarse-grained graph representations. (c) Distribution of 
pairwise GEDs for 160,000 pairwise comparisons formed by 400 unique macromolecular graphs. 
(d) Heatmap of the pairwise GED matrix. (e) Distribution of pairwise NGEDs. (f) Heatmap of the 
pairwise NGED matrix. (g) Distribution of pairwise similarity scores. (h) Heatmap of the pairwise 
similarity score matrix, as well as the data splitting strategy. The black square presents the Training 
dataset (randomly split 4:1 for training and validation). The red squares represent the Testing-1 
dataset (pairs with one graph from the Training dataset). The orange square represents the Testing-
2 dataset (pairs with neither graph from the Training dataset). This splitting strategy enables a 
comprehensive evaluation of MacroSimGNN's prediction ability and generalizability for similarity 
between known and unknown graphs. 

 

Results and Discussions 
Prediction Performance of MacroSimGNN 
Figures 4a and c illustrate the predictive accuracies of the MacroSimGNN. For a benchmark 
comparision, the graph kernel method is chosen. The details about the setting of the graph kernel 
method and the hyperparameter optimization are provided in the Supporting Information. As can 
be seen in Figure 4, MacroSimGNN effectively predicts 𝑠𝑠 for both partially known (Testing-1) and 
entirely unknown (Testing-2) graph pairs, showcasing its generalizability and accuracy. Figure 5 
and Figure 6 also demonstrates the higher accuracy of MacroSimGNN in predicting NGED and 
GED compared to the graph kernel method. 
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Figure 4: The performances of the MacroSimGNN vs the graph kernel on Testing-1 and Testing-
2 dataset for pairwise similarity score 𝑠𝑠 predictions. (a) MacroSimGNN on Testing-1 dataset (the 
𝑅𝑅2 score is 0.913 ± 0.007; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.0233 ± 0.0008; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.0015 ± 0.0001). (b) 
Graph kernel on Testing-1 dataset (the 𝑅𝑅2 score is −0.830; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.1400; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 
0.0325). (c) MacroSimGNN on Testing-2 dataset (the 𝑅𝑅2  score is 0.888 ± 0.007; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 
0.0270 ± 0.0008; and the 𝑀𝑀𝑀𝑀𝑀𝑀  is 0.0020 ± 0.0001). (d) Graph kernel on Testing-2 dataset 
(the 𝑅𝑅2 score is −0.801; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.1384; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.0321). 
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Figure 5: The performances of the MacroSimGNN with the symmetry strategy vs the graph kernel 
on Testing-1 and Testing-2 dataset for pairwise NGED predictions. (a) MacroSimGNN on Testing-
1 dataset (the 𝑅𝑅2 score is 0.953 ± 0.003; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.070 ± 0.002; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.0107 ±
0.0008). (b) Graph kernel on Testing-1 dataset (the 𝑅𝑅2 score is −0.931; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.518; and 
the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.437). (c) MacroSimGNN on Testing-2 dataset (the 𝑅𝑅2 score is 0.935 ± 0.004; the 
𝑀𝑀𝑀𝑀𝑀𝑀 is 0.082 ± 0.003; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.0148 ± 0.0009). (d) Graph kernel on Testing-2 dataset 
(the 𝑅𝑅2 score is −0.912; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.516; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.435). 
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Figure 6: The performances of the MacroSimGNN with the symmetry strategy vs the graph kernel 
on Testing-1 and Testing-2 dataset for pairwise GED predictions. (a) MacroSimGNN on Testing-
1 dataset (the 𝑅𝑅2 score is 0.968 ± 0.002; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.41 ± 0.01; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.37 ± 0.03). 
(b) Graph kernel on Testing-1 dataset (the 𝑅𝑅2 score is −0.131; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 2.85; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 
13.38). (c) MacroSimGNN on Testing-2 dataset (the 𝑅𝑅2  score is 0.958 ± 0.002; the 𝑀𝑀𝑀𝑀𝑀𝑀  is 
0.47 ± 0.01; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 0.52 ± 0.03). (d) Graph kernel on Testing-2 dataset (the 𝑅𝑅2 score is 
−0.102; the 𝑀𝑀𝑀𝑀𝑀𝑀 is 2.84; and the 𝑀𝑀𝑀𝑀𝑀𝑀 is 13.45). 

 
As shown in Table 1, evaluation metrics, including coefficient of determination (𝑅𝑅2 ), mean 
absolute error (MAE) and mean squared error (MSE), are used to quantify the accuracy of the 
model’s prediction on GED, NGED and 𝑠𝑠. In line with Figure 4, MacroSimGNN significantly 
outperforms the Graph Kernel method. Comparing the prediction performance between Testing-1 
(where one graph in the pair was seen during training) and Testing-2 (where both graphs were 
unseen), one finds that MacroSimGNN achieves better predictions when one of the graphs in the 
pairwise comparison has been encountered during training. This outcome is intuitive. Also, the 
comparison between the prediction performances with and without considering the symmetry are 
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shown in Table S1 in the Supporting Information, indicating that including the symmetry of graph 
pairs in the predictions makes the prediction strictly symmetric and slightly improves the 
prediction performance. 
 
Table 1: Summary of the Prediction Performance of MacroSimGNN and Graph Kernel on Testing-
1 Dataset and Testing-2 Dataset. 

Method MacroSimGNN Graph Kernel 

Testing 
Dataset Testing-1 Testing-2 Testing-1 Testing-2 

𝑹𝑹𝒔𝒔𝟐𝟐 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 ± 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.888 ± 0.007 −0.830 −0.801 
𝑴𝑴𝑴𝑴𝑬𝑬𝒔𝒔 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 ± 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 0.0270 ± 0.0008 0.1400 0.1384 
𝑴𝑴𝑴𝑴𝑬𝑬𝒔𝒔 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 ± 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 0.0020 ± 0.0001 0.0325 0.0321 
𝑹𝑹𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝟐𝟐  𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 ± 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.935 ± 0.004 -0.931 -0.912 

𝑴𝑴𝑴𝑴𝑬𝑬𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 ± 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.082 ± 0.003 0.518 0.516 
𝑴𝑴𝑴𝑴𝑬𝑬𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 ± 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 0.0148 ± 0.0009 0.437 0.435 
𝑹𝑹𝑮𝑮𝑮𝑮𝑮𝑮𝟐𝟐  𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 ± 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 0.958 ± 0.002 -0.131 -0.102 

𝑴𝑴𝑴𝑴𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮 𝟎𝟎.𝟒𝟒𝟒𝟒 ± 𝟎𝟎.𝟎𝟎𝟎𝟎 0.47 ± 0.01 2.85 2.84 
𝑴𝑴𝑴𝑴𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮 𝟎𝟎.𝟑𝟑𝟑𝟑 ± 𝟎𝟎.𝟎𝟎𝟎𝟎 0.52 ± 0.03 13.38 13.45 

 
Impact of the Training Dataset Size 
The impact of the Training dataset size on MacroSimGNN model performance is examined by 
randomly sampling subsets of graphs at various size ratios: 10%, 12%, 14%, 16%, 18%, 20%, 
30%, 40%, 50%, 60%, 70%, 80%, and 90% of the 200 graphs which form the full Training dataset. 
For example, at the 10% size ratio, 20 graphs are randomly selected from a total of 200, yielding 
380 graph pairs (excluding self-pairs). These 380 graph pairs are randomly divided into a 4:1 ratio 
for training and validation during the training of MacroSimGNN. This process is repeated five 
times for each size ratio to ensure statistical robustness. For a fair comparison, the same testing 
datasets, Testing-1 and Testing-2, are used for the evaluation process. For both the Testing-1 
dataset and Testing-2 dataset, as the Training dataset size increases, the model's performance 
improves, as evidenced by increases in 𝑅𝑅² (Figure 7) and decreases in MAE (Figure 7) and MSE 
(Figure S2 in the Supporting Information) for GED, NGED, and 𝑠𝑠. Furthermore, the model's 
predictive performance stabilized when the training dataset size reached approximately 104 . 
Beyond this point, increases in dataset size yielded diminishing returns in performance 
improvement but increased the cost of memory capacity and computational time. This trend was 
consistent across both testing datasets and all evaluation metrics. 
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Figure 7: Impact of the training dataset size on the performance of MacroSimGNN predictions. (a) 
The left y-axis shows 𝑅𝑅² of 𝑠𝑠 predictions on Testing-1 dataset (blue circles) and Testing-2 dataset 
(red circles); the right y-axis shows MAE of 𝑠𝑠 predictions on Testing-1 dataset (blue squares) and 
Testing-2 dataset (red squares). (b) 𝑅𝑅² and MAE of NGED predictions. (c) 𝑅𝑅² and MAE of GED 
predictions. The error bar represents the standard deviation of the five randomly sampled subsets 
at each size. For both Testing-1 dataset and Testing-2, as the Training dataset size increases, the 
model’s performance improves, as evidenced by increases in 𝑅𝑅² and decreases in MAE for 𝑠𝑠, 
NGED and GED. Furthermore, when the training dataset size reaches approximately 104 , 
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increases in dataset size yielded diminishing returns in performance improvement of 
MacroSimGNN. 
 
Computational Efficiency 
As illustrated in Table 2, the computing speed for graph similarity calculation of MacroSimGNN 
is between the speed of the A* algorithm and that of the graph kernel. MacroSimGNN 
demonstrates significantly improved computational efficiency, being over 400 times faster 
compared to the A* algorithm. MacroSimGNN and A* algorithm calculate the graph pairwise 
similarity one-by-one, and the details of computing time distributions are shown in Figure S1 in 
the Supporting Information. The consistently low computation times of MacroSimGNN also 
suggest improved stability in performance across various graph structures, addressing the high 
variability often observed with exact methods like the A* algorithm. All computations were 
performed on a single core of a MacBook Air M1 CPU to ensure consistent comparison. 
 
Table 2: Computing Efficiency for A* algorithm (Exact GED), MacroSimGNN and Graph Kernel. 

Method A* MacroSimGNN Graph Kernel 
Average Time Per One 

Graph Pair/second 7.1 × 10−1 1.6 × 10−3 5.8 × 10−5 

 
Landmark Distance Embedding for Unsupervised Learning and Supervised Learning 
MacroSimGNN is then applied to develop a landmark distance embedding65, 66 for both 
unsupervised and supervised learning tasks, using the glycan immunogenicity dataset as an 
example. The glycan immunogenicity dataset comprises 470 non-immunogenic and 549 
immunogenic glycans. MacroSimGNN is employed to obtain landmark distance embeddings65, 66 
for all glycans in this immunogenicity dataset. The indices of glycans have been reordered for 
intuitive visualization: indices 0-469 are non-immunogenic, and indices 470-1018 are 
immunogenic, as displayed in the pairwise dissimilarity ( 𝑑𝑑 = 1 − 𝑠𝑠 ) matrix of size 
1019 × 1019 (Figure 8a). Noticeable differences exist between the non-immunogenic and 
immunogenic regions.  
 
Each column of the dissimilarity matrix is a landmark distance embedding, which is a 1019-
dimension vector. For unsupervised learning, PCA uses the 1019-dimension landmark distance 
embedding as the input. The dimensionality reduction results from PCA are depicted in Figure 8b, 
showing that non-immunogenic and immunogenic glycans generally occupy distinct locations in 
the PCA space. Additionally, for supervised learning, the whole glycan immunogenicity dataset is 
divided into training and testing dataset with the ratio 4:1 (Specifically, 815 data for training the 
model and 204 data for the hold-out test dataset).  Gaussian Process Classification using landmark 
distance embedding as inputs, predicts immunogenicity with 96% accuracy on the held-out test 
dataset, as shown in Figure 8c. The results of using NGED and GED for landmark embedding are 
illustrated in Figures 8d-f and Figures 8g-i, respectively, which are similar to the results of using 
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dissimilarity. For comparison, graph kernel methods have also been used to compute the pairwise 
similarity and dissimilarity matrices, which are then applied in PCA and Gaussian Process 
Classification with 94% accuracy on the held-out test dataset. The details of the unsupervised 
learning and supervised learning results built upon the distance matrix calculated by graph 
kernels57, 58 are demonstrated in the Supporting Information. Comparison indicates that the 
matrices from MacroSimGNN yield superior distinction in PCA and higher prediction accuracy in 
Gaussian Process Classification than those from graph kernel methods. 
 

 
Figure 8: MacroSimGNN is applied to develop a landmark distance embedding for both 
unsupervised and supervised learning tasks for glycan immunogenicity (ImG) dataset. (a) Pairwise 
dissimilarity (𝑑𝑑 = 1 − 𝑠𝑠) matrix where indices 0-469 are non-immunogenic and 470-1018 are 
immunogenic. The index of glycans has been reordered for intuitive visualization. Noticeable 
differences exist between the non-immunogenic and immunogenic regions. (b) Dimension 
reduction results from PCA show that non-immunogenic (blue) and immunogenic (red) glycans 
generally occupy distinct locations in the PCA space. (c) Gaussian Process Classification using 
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landmark distance embedding predicts immunogenicity with 96% accuracy on the hold-out test 
dataset. (d) (e) (f) are the results of using NGED as landmark distance embedding, and (g) (h) (i) 
are the results of GED as landmark distance embedding. Respectively, they are similar to the 
results of using dissimilarity. 

 

Conclusion 
This study introduces MacroSimGNN, a graph neural network model designed to accelerate 
pairwise graph similarity calculations between macromolecules. This model addresses the 
limitations of previous graph similarity calculation methods, significantly enhancing 
computational efficiency over 400 times faster than the A* method while ensuring high accuracy. 
MacroSimGNN incorporates a physical symmetry strategy during prediction, ensuring strictly 
symmetric outputs and improving prediction performance. Moreover, this study develops 
landmark distance embeddings derived from MacroSimGNN similarity predictions, achieving 
promising results in unsupervised and supervised learning tasks, as demonstrated in a case study 
on glycan immunogenicity. The successful utilization of similarity for embedding underscores the 
importance of macromolecule similarity in machine learning projects for macromolecules. 
 
The efficient and precise approach of MacroSimGNN has important implications for large-scale 
analysis and comparison of macromolecular structures, potentially enabling real-time similarity 
searches in large databases and accelerating the quantitative design of macromolecules. 
 
Code Availability 
Example scripts and information necessary to run and reproduce all the examples and the 
corresponding results in this article are posted at the GitHub repository: 
https://github.com/olsenlabmit/MacroSimGNN. 
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