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Abstract

During charge/discharge cracking occurs in Nickel Manganese Cobalt (NMC)
secondary particles. Secondary particles with cracks will have observably lower
grey-levels in micro-CT datasets compared to an otherwise identical pristine par-
ticle. This is due to the ‘partial volume effect’ where voxels representative of
space containing both void and solid phases result in grey-levels that are inter-
mediate between voxels of void or solid only. In this work, we present a method
for automatically tracking changes in grey-level due to this effect in large sta-
tistically relevant micro CT datasets of 10,000+ discrete particle instances. This
work extends previous work from our group where the GREAT algorithm was
used to track the grey-level change in tomography images of NMC particles. This
study processed datasets of hundreds of particles with different electrochemical
histories and was capable of processing ca.1400 particles per day. In this work,
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we develop the GREAT2 algorithm which is capable of processing 10,000 simi-
lar particles in under a minute. This was achieved with an automated particle
tracking method allowing the same particle to be tracked through different states
of charge in an operando experiment. Additionally, we demonstrate methods for
processing the data in-order to extract useful insights. This method can expedite
tomographic analysis of electrode particle cracking from upto 100 particles per
day with nano-CT to 10,000+ particles per day with micro-CT (or much more at
synchrotron micro-CT beamlines). This may benefit both academic and commer-
cial research. These methods and the GREAT2 algorithm have been packaged
into the GRAPES python toolkit and GUI for open source distribution.

Keywords: Micro-CT, Image Analysis, Batteries, Degradation, NMC

1 Introduction

The development of battery electric vehicles is critical in efforts to decarbonise
transport [1] and lithium-ion (Li-ion) batteries have become synonymous with this
effort. As a result, much research has focused on developing high rate and capac-
ity cathode materials for Li-ion batteries [2]. The high nickel content in NMC811
(LixNi0.8Mn0.1Co0.1O2) cathodes provides good performance by these metrics [3, 4]
and the reduction in cobalt compared to other NMC family materials offers important
supply chain benefits [3, 5]. However, these materials suffer from a wide range of degra-
dation mechanisms that lead to capacity fade after many charge/discharge cycles. For
example, undesirable phase transitions [6–8], increased transition metal dissolution
[3, 9, 10], gas release [11, 12], and the formation of cracks [13–16], have all been shown
to lead to capacity fade, especially in nickel rich chemistries. Cracking in particular
has been shown to be one of the primary considerations in capacity fade [17].

X-ray Computed Tomography (XCT) has been used extensively to study NMC
secondary particles [20]. When studying the cracks that form at the particle scale
during cycling, nano-resolution XCT (nano-CT) can be utilised [18, 21, 22]. In pre-
vious work from our group, Parks et al. [18] showed that electrochemical cracking
occurs at high State-of-Charge (SoC), above c-lattice collapse [23], even during the first
charge/discharge cycle. This work showed that cracking was most intense at the centre
of NMC811 particles with smaller cracks advancing radially outwards from the centre.
This demonstrated the capability of nano-CT to directly observe different cracking
mechanisms in NMC secondary particles. This is shown in figure 1.e,f where we have
reproduced nano-CT slices of pristine and 4.5V SoC NMC particles from Parks et al.

However, whilst nano-CT is an important tool for studying cracking mechanisms on
the particle level, it has limitations at the electrode or cell level. Principally, nano-CT
has a significantly smaller field-of-view (FOV) compared to micro-CT, which means
fewer particles can be analysed. As a result, drawing statistically significant conclusions
about larger, real, populations of particles, and variations within these populations, is
challenging. Furthermore, due to the much larger Surface Area : Volume ratio of nano-
CT samples, a larger fraction of particles may be damaged during sample fabrication.
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Fig. 1 The partial volume effect of sub-resolution cracks in Micro-CT images of NMC particles. (a)
Micro-CT slice showing pristine NMC particles with Area 1 highlighted, (b) the same micro-CT ROI
at 4.4V SoC with Area 1 highlighted. (c) A high contrast & magnified micro-CT view of area 1 when
pristine. The mean grey-level in area 1 is 148.0 . (d) A high contrast & magnified micro-CT view
of area 1 at 4.4V SoC. The mean grey-level in area 1 is now 147.1. (e) Nano-CT of a pristine NMC
particle, (f) Nano-CT of a NMC particle at 4.5V SoC. Nano-CT courtesy of Parks et al. [18], data
available at [19].

The smaller FOV also introduces challenges to in-situ and operando cell design, mean-
ing that quasi in-situ methods such as that developed by Parks et al. [18] are often
used in place of in-situ cells. Finally, it should be noted that nano-CT microscopes
are in general more expensive, less available, and have longer scan times compared to
micro-CT microscopes. As a result it can be difficult to get enough microscope time to
image many samples without applying for synchrotron beamtimes, which have similar
availability issues.

Micro-CT, on the other hand, has a larger FOV and thus has excellent sample
level statistics. However, it is limited by its resolution when studying cracking on the
particle level. As a result, it is difficult to resolve cracks sufficiently so that they can be
reliably segmented. Many researchers have segmented resolvable cracks in micro-CT
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datasets and have used advanced methods to help detect and segment these cracks
[24–28]. However, these studies have been constrained to analysis of large cracks that
may not be representative of the whole sample. We may reasonably expect to miss
cracks that are representative of lower or intermediate damage with such methods.

In this work, we demonstrate methods for quantifying the degradation of NMC
particles, at both particle and sample levels, and at low and intermediate damage
states. This was achieved in large micro-CT datasets of 10,000+ particle instances.
The method assumes secondary particles with cracks will have observably lower grey-
levels with absorption contrast CT compared to an otherwise identical pristine particle,
see figure 1. This is due to the ‘partial volume effect’ where voxels representative
of space with both void and solid phases result in grey-levels that are intermediate
between voxels representative of void or solid only, as previously described in Wade
et al. [29]. We show that although this grey-level change is small on the particle level
(when averaged over a whole particle), when considered over a sample of thousands of
particles, it is statistically significant. Hence, by tracking grey-level change we have a
proxy for tracking cracking in particles.

In this work we achieved this using our newly developed GRAPES (GRay-level
Analysis of ParticlES) python toolkit that rapidly transforms large tomography
datasets into easily queryable tables for tracking grey-level change. As part of this
work, we improved the GREAT algorithm previously demonstrated by our group in
Wade et al. [29]. Our new GREAT2 algorithm, used in the GRAPES toolkit and pre-
sented here, is able to process large datasets rapidly. Wade et al. reports processing
about 1400 particles per day with GREAT. By comparison the updated GREAT2
algorithm is able to process ∼10,000 similar particles in 37 seconds. The GRAPES
toolkit calculates a variety of useful particle characteristics and contains utility func-
tions designed to help users process the dataset created. As we show in this article
the GRAPES toolkit can work effectively with operando data where the aim is to
track grey-level change in the same particle at different time steps. Alongside the
manuscript, the GRAPES python toolkit and a user friendly GRAPES graphical user
interface (GUI) have been made publicly available.

Here, we focus on the data analysis method developed to study grey-level change
in XCT images of particles due to degradation, and prove the statistical significance
of this approach in the case of NMC811 secondary particle cracking. Presented here
are two case studies used to demonstrate this method. Case study 1 looks at the
degradation of an NMC811 cathode that was harvested from a commercial cell (LiFun
Technologies, China). The sample was imaged ex-situ in both the pristine state and
at the top of charge. The tomography was performed using a commercially available
laboratory micro-CT microscope. Case study 2 looks at crack formation during the
first charge/discharge cycle in NMC811 particles. The data set is operando and looks
at a single region of interest (ROI) that degrades over time at multiple different SoC.
In this case study, we demonstrate how 10,000+ particles can be automatically tracked
through these SoC. In this case, the tomography was performed at the Diamond Light
Source (DLS) synchrotron I13-2 beamline.
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2 Methods

Please see Appendix.A for details of cell fabrication and cell electrochemical history.

2.1 Micro-CT Acquisition

In case study 1, ex situ micro-CT was acquired using a ZEISS Xradia 620 Versa at the
UCL Centre for Correlative X-ray Microscopy. The samples consisted of an NMC811
cathode that had been harvested from a commercial cell (LiFun Technologies, China).
An 80 × 250 µm protrusion, or tab, was laser cut at the top of the electrode. This
tab geometry is ideal for tomographic imaging that has been used in previous studies
[30, 31]. This laser cut, pristine, ex-situ electrode was then mounted in the microscope
and the tab was centred in the FOV for imaging. A total of 1601 projections were
acquired over a 360 degree angular range and each projection had an exposure time of
45 s. An 80 kV accelerating voltage was used to create an X-ray beam that illuminated
the sample at a source-to-sample distance of 30.49 mm. The 40 × objective lens
coupled with the 2048 px CCD detector was used at a sample-to-detector distance of
16.48 mm, this resulted in a pixel size of 220.3 nm. Once the tomogram was acquired,
this electrode was removed and assembled into a single-layer pouch cell. The cell
was then charged to 4.5 V at a rate of C/50. The pouch cell was then disassembled,
the electrode removed, and then re-imaged using the same acquisition parameters as
described above for the pristine state.

In case study 2, operando micro-CT of NMC811 at multiple SOC was acquired at
the DLS i13-2 beamline [32]. A bespoke pouch cell sample holder made of Polyether
Ether Ketone (PEEK) with an aluminium x-ray window compressed the pouch cell
throughout the experiment. This allowed the same ROI to be scanned repeatedly
without removing the cell between scans. The ROI was a tab that had been laser
cut from the electrode so that it extended above the rest of the pouch cell, which
is shown in figure.2. Electrical connections allowed for electrochemical control of the
cell for charge/discharge between specific voltages (vs. Li/Li+). The ROI was first
scanned in the pristine state, and then after being charged and held at; (charging) 4.0
V, 4.1 V. 4.2 V, 4.3 V, 4.4 V, and (discharging) 4.3 V, 4.2 V, 4.1 V, 4.0 V, 3.8 V,
& 2.5 V. However, in this paper, the data analysed is limited to tomograms acquired
at pristine, 4.0 V, 4.4 V, and 2.5 V after discharge. Scanning was performed at open
circuit voltage, after a voltage hold until current had dropped to 10% of the charging
current. A pco.edge 5.5 scintillator-coupled detector with a 10 × objective lens was
used which resulted in an effective pixel size of 325 nm. The FoV was 0.83 × 0.70 mm.
For each tomography scan, 3000 projections were acquired between 0-180◦ with 0.8
seconds exposure. The ‘pink beam’, which makes use of multiple harmonics from the
undulator, was utilised, resulting in higher flux than the monochromatic beam. The
beam had an average energy of ∼ 27 keV.

2.2 Image Processing

In case study 1, the general image processing workflow follows that shown schemati-
cally in figure 3. Projections were reconstructed into image volumes using the filtered
back projection algorithm and the data was cropped to the ROI. The CT volume
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Fig. 2 Case Study 2: The fabrication of an in-situ imaging pouch cell. (a) An operational single layer
pouch cell, (b) the electrode that is inserted in the pouch cell, the laser cut imaging tab is visible
at the top of the image, (c) reconstructed slice from a tomogram acquired during the experiment
showing the imaging tab. This imaging tab is our region-of-interest (ROI).

Fig. 3 The general workflow for processing image data from both case studies. For both case studies
it is critical to have a good particles labels segmentation where each particle is accurately separated
and assigned a unique 16-bit label. This segmentation and a correlated 8-bit or 16-bit (unsigned
integer) unsmoothed grey-level image are used as inputs into the later GRAPES analysis.
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was then segmented into a binary segmentation (of solid & void) using a threshold
value. Morphological binary erosion and dilation were required to fill binary ‘holes’
and remove ‘islands’ from the binary segmentations. The binary segmentation was
used to create a label segmentation where each particle was assigned its own 16-
bit unsigned integer label. This was achieved using the watershed threshold method
from scikit-image on a smoothed distance map [33]. The unsmoothed grey-level and
label segmentation were then used as inputs to the GRAPES analysis. Figure 6 shows
example segmentations.

In case study 2, the image processing workflow also follows that shown schemat-
ically in figure 3, but with an additional image registration step to align the data
acquired at different SoC. Projections were processed and reconstructed using Savu
data pipelines at the I13-2 beamline [34, 35]. Projections were processed with dark-
flat field correction and the ring removal algorithm from Vo et al. [36] and were
reconstructed with TomoPy’s GridRec algorithm [37]. The reconstruction was com-
puted with limited angles (3-177◦) because of projections at extreme angles being
obscured by the sample holder. The reconstructed data was cropped to contain the
ROI only. This data was registered such that corresponding pixels represented the
same real space in tomograms taken at different SoC. This was achieved using the
SimpleITK python library [38]. This registered data was converted to 8-bit unsigned
integer volumes and smoothed using the fast non-local means (NLM) algorithm from
scikit-image which was parallelised using the python concurrent.futures module [33].
A threshold was used to calculate a binary segmentation of solid and void. Mor-
phological binary erosion and dilation was required to fill binary ‘holes’ and remove
‘islands’ from the binary segmentations. When calculating the labels segmentation,
it was critical to preserve particle labels between time steps so that they could
be tracked at different SoC. The same watershed segmentation using a smoothed
distance map (as in case study 1) is used to compute the label segmentation in the
pristine state. However, for the remaining tomograms (acquired at different SoC),
the label values are initiated using seeds labelled with the corresponding value from
the pristine labels segmentation. This enforces the same labels across the tomograms
but relies on good registration between the tomograms and relatively little particle
drift during the experiment. The unsmoothed 8-bit unsigned integer grey-level data
and the labels segmentation was then used in the GRAPES analysis (figure 6 shows
example segmentations).

2.3 The GRAPES toolkit

The GRAPES toolkit is a python toolkit we developed to rapidly transforms large
datasets of separated particles into easily queryable tables of particles, particle charac-
teristics, and radial particle characteristics. The tables are calculated using an updated
version of the GREAT algorithm presented by Wade et al. [29]. The new GREAT2
algorithm uses a parallelised multi-label anisotropic 3D euclidean distance transform
(MLAEDT-3D) [39] and scikit-image’s regionprops function [33] to calculate these
tables from a grey-level image of particles and a corresponding labels segmentation.
A number of useful particle characteristics are calculated (such as volume, diameter,
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Fig. 4 (a) grey-level image intensity of a particle (b) radial layers of the particle as calculated by
the toolkit. Both visualised using the viridis colormap.

sphericity, surface area, centroid, local centroid etc.). These are mostly characteristics
that can be calculated with popular python image processing libraries, such as with
the scikit-image regionprops function, or are easy to calculate, such as sphericity and
surface area. For each particle label, the Euclidean Distance Transform (EDT) is cal-
culated and rounded to the nearest integer in order to calculate ‘layers’, see figure 4.
Care was taken to develop an algorithm that used vectorised operations and avoided
nested loops for rapid computation with the large 3D image datasets typical in tomo-
graphic imaging. Once the radial layers are extracted, we calculate the mean grey-level
and mean normalised grey-level in each radial layer and store this in the table. In
addition, the table is populated with the mask, grey-level, and EDT image of each
particle in a bounding box. The toolkit contains a number of other utility functions
that help characterise, subset, and explore both in-situ and ex-situ datasets of parti-
cles. When benchmarked, the computation of a GRAPES table took 36 seconds, with
a peak memory usage of 1600 MiB, this for a dataset that contained ∼ 10,000 particle
labels with an average pixel volume of 25,300 px. An Intel® Xeon® 2.70 GHz CPU
processor on a workstation with 128 GB of installed RAM was used for this compu-
tation. All 24 cores were used in parallel during the parallel computation of the label
EDTs. Alongside this article, we make available this code in the form of the GRAPES
python toolkit and a user-friendly GRAPES GUI.

2.4 Data Cleaning

Tables of particles and particle characteristics were calculated from the unsmoothed
grey-level images and the corresponding label segmentations for both case studies by
using the grapes toolkit, see figure 6. A critical step in processing data like this is
to clean the dataset and remove edge cases. In case study 2 (the operando and time
resolved case) one of the most critical steps was to make sure that particle labels were
consistent between the tomograms that represented the ROI at different SoC. This
was mostly achieved by the segmentation; however, segmentation errors still had to be
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Fig. 5 Some example windows from the GRAPES GUI. Including the Home, Analysis, and GREAT2
windows.

removed from the analysis. This was achieved by removing any particle labels from the
analysis that did not exist in all the tables representing different SoC (by dataframe
merging). Furthermore, it was found that it was necessary to remove any particles that
shared an edge or were close neighbours with a particle label that was not consistent
across the dataset (i.e. one of the particles removed in the previous step). This was
because particle labels surrounding these inconsistent labels often absorbed the pixels
otherwise assigned to the inconsistent label. In addition to this, in both case examples,
any particle labels from the analysis that shared an edge with the edge of the image
ROI were removed. This was important as it removed partial particle volumes from
the analysis. The data was then ready to be queried in order to extract insights on
NMC secondary particle degradation.
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Fig. 6 Case Study 1: (a) grey-level image of 4.5 V ex-situ sample (b) the corresponding label
segmentation overlayed onto the grey-level image. Case Study 2: (c) unsmoothed grey-level image
from the in-situ study at a 4.4 V SoC (d) the corresponding labels segmentation overlayed onto the
grey-level image.

3 Results

In case study 1 we aim to show that this method can be used to detect damage due
to cracking and void formation in NMC particles by comparing the pristine and 4.5 V
SOC images. In this case the images were not registered, therefore particles grey-level
cannot be tracked in specific particles at different SoC. Therefore, we are interested
in the detection of damaged regions within particles, rather than the distribution of
grey-levels between particles. This means we are interested in detecting regions within
particles that have significantly lower grey-level than the surrounding material. For
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Fig. 7 Case Study 1: The normalised mean grey-levels in radial layers for the pristine and cycled
data from case study 1. There are lower grey-levels in the cycled data which is indicative of cracking
and damage. Included are standard error bars (±2SE) for every radial layer.

example, the dark patch in the centre of figure 1.d. In order to do this, radial grey-
levels from each particle were extracted and normalised such that the highest radial
layer grey-level value is normalised to 1 and the radial grey-level at the particle surface
is normalised to 0. Across the sample set of particles, a mean normalised grey-level
for each radial layer was calculated. A plot of such normalised mean radial grey-levels
is shown in figure 7. In this example the set of particles was sub-set to just include
the largest quartile of particles. In figure 7 there is a trend by which radial layers
toward the centre of the cycled particles have, on average, relatively lower grey-levels
compared to the same region in the pristine dataset. This is characteristic of damage in
these materials, where we expect to see lower grey-level cracks and voids appear in the
4.5 V SoC particles, with these emanating from the particle centres [18]. Furthermore,
the SE in radial layer grey-levels in the 4.5 V SoC image is higher, particularly towards
the centre of the particles, this shows that average grey-level in radial layers is quite
inconsistent compared to the pristine state, suggesting a varying amount of damage
between particles. This underlines the importance of using characterisation techniques
with good sampling statistics in terms of the number of particles under study.

An operando method where the exact same set of particles can be analysed at
each step is demonstrated for case study 2. In this case, by careful segmentation and
the removal of inconsistent particle labels, it was possible to see how the grey-level
in an identical set of particles changed during charge/discharge over 1 cycle. Figure

8.a tracks how the ‘mean of mean particle grey-levels’, or ¯̄I, changes in this set of
particles at different SoC. ¯̄I was calculated by calculating the mean grey-level within
a ROI for each particle (see figure 9.b for ROI), and then calculating the mean of
the population of particles at each SoC. In figure 8 it is observed that there is a
general trend where grey-levels dropped during charging and then recovered during
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Fig. 8 Case Study 2: (a) A plot showing the ¯̄I at a range of SoC. Error bars plot ±3SE. (b) A plot

showing the ∆¯̄Iprist at a range of SoC. Error bars plot ±3SE. In both examples the smallest volume
quartile of particles was excluded. Additionally, the outer 5 pixels in each particle were removed from
the analysis (see figure 9.b for relevant ROI). X-axis labels refer to the SoC, the letter in brackets

refers to phase of the cycle; charging (C), discharging (D). * By definition the ∆¯̄Iprist at the the
pristine state equals zero.

discharging. This indicates that damage, such as cracking and void formation, occurs
during charging and then ‘healing’ occurs during discharging. Healing in this case
refers only to the spatial closing of cracks and voids and not the resintering of primary
particle grains.

However, a more advanced analysis can be performed on a dataset that has particle
labels matched across images. As a result of this, it was possible to track grey-level
change in specific particles at different SoC. For every particle in the dataset, the mean
grey-level change relative to its mean grey-level in the pristine state was tracked, or
∆Īprist. (Again, when calculating the mean particle grey-levels the ROI of each particle
excluded pixels at the edge of the particles due to their phase contrast enhancement,
see figure 9.b). Calculating the mean ∆Īprist of a set of particles gives the ‘mean of

mean particle grey-level change vs. pristine’ or ∆¯̄Iprist. This is subtly different from

simply tracking the ¯̄I as in figure 8.a and is generally more precise, as shown in 8.b.
where the associated standard error is lower. This is because this method normalises
out the large variation in mean particle grey-levels within the sample, thereby reducing
sampling error. Tracking the ∆¯̄Iprist is particularly useful when comparing different

subsets of data. This is because when doing so a low ¯̄I does not necessarily indicate
that a drop in grey-level has occurred in this subset as the initial state is unknown
(i.e. the subset may have started with a low ¯̄I in the pristine state).

An example of the advantage of tracking ∆¯̄Iprist is shown in fig 9. In order to deter-
mine the relationship between grey-level change and the spatial location of particles
within the electrode, four subsets of particles were compared. These subsets contained
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Fig. 9 Case study 2: (a) A plot showing the ∆¯̄Iprist inside x-position quartiles (Q1, Q2, Q3, Q4).
The error bars plot ±1SE. The smallest volume quartile of particles was excluded. Additionally, the
pixels ≤ 5 radial layers from the edge of the particle were not considered, (b) Schematic showing how
pixels in the first five radial layers of a particle are removed from analysis.

particles from different x-position quartiles. The first quartile is furthest from the cur-
rent collector and the fourth quartile is closest to the collector. Plotted in figure 9
is the ∆¯̄Iprist for each quartile. It was observed that the smaller x-positions values
(further from the current collector) have a lesser drop in grey-level compared to those
next to the current collector. Implying that cracking reduces with distance from the
current collector in this case study. It should be noted that in modelling literature it
is predicted that particles furthest from the current collector would experience more
damage when C rate was ≥ 3C, whilst at 1C a homogenous distribution of cracking
was predicted [40]. Our findings above contradict this where we observed higher levels
of cracking closer to the current collector, albeit at a lower C rate of C/3. We sug-
gest that this may be due to particles further from the collector surface having poorer
than expected electrical contact, which may result in partial charging and thus less
observed damage. This effect may be exacerbated due to the sample being uncalen-
dered, a choice made to avoid the introduction of mechanically-induced cracks due to
calendering, as we wanted to isolate electrochemical cracking in this experiment [41].
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Fig. 10 Case study 2: (a) A pie chart showing the percentage of particles that have a lower grey-level
after charge at 4.4 V than in the pristine state. (b) A pie chart showing the percentage of particles
that have a higher grey-level at 2.5 V after discharge than at 4.4 V.

Additionally, it is possible to use the mean particle grey-level parameter to analyse
the behaviour of particles based on conditions. It is easy to calculate the percentage
of particles that obey a particular condition, for example, ‘Does the particle have a
higher mean grey-level in the pristine state compared to the 4.4 V SoC’ (Condition 1)
and ‘Does the particle have a lower mean grey-level at the 4.4 V SoC compared to 2.5
V SoC after discharging’ (Condition 2). The percentages of the particles that obey the
conditions are plotted as pie charts in figure 10. Again, the analysis here removed the
smallest quartile of particles and did not consider particle edges because they mostly
consisted of phase contrast enhanced pixels (see figure 9). From this analysis in figure
10.a, it is observed that a significant majority of particles obey condition 1, suggesting
that these particles are becoming damaged by cracks and voids that lower the particle
density and, therefore, grey-level. Figure 10.b shows that a smaller majority of particles
obey condition 2. This suggests that during discharge, the particles ‘heal’ as the cracks
and voids in the particle move back together, likely due to the expansion of primary
particle crystallites during delithiation [42, 43].

Finally, it may seem naive to expect to be able to reliably detect particle-level
fluctuations of only a few 8-bit grey-level values when this is so close to the intensity
resolution of an 8-bit image. However, it is important to consider that the values being
reported here are average values calculated over many pixels in a particle. Many fluc-
tuations in grey-level within the particle images are much larger, as shown in figure
11. In this figure, the pixel grey-level change vs. pristine for the same particle at dif-
ferent SoC is shown. The displayed images were calculated from first re-registering
the particle onto itself at the different SoC (even though the image was already reg-
istered, re-registering just the particle bounding volume can be more accurate), then
smoothing the images with a Gaussian filter, and finally subtracting the intersecting
volumes of the pristine image from the SoC image. From this visualization of intra-
particle damage it was observed that damage primarily occurred in the centre of the
particle and that this damage was locally characterised by relatively large decreases
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in grey-level (∼ 40 grey-levels), thus demonstrating the ability of this technique to
resolve intra-particle damage and showing that the technique is not limited by the
intensity resolution of an 8-bit image.

Fig. 11 Case Study 2: Intra-particle visualisation of grey-level change. The figure shows the pixel
level grey-level change vs. pristine for a particle at 4.0 V & 4.4 V during charge and 2.5 V during
discharge. Positive changes are plotted in blue, and negative changes are plotted in red. The outer
five pixels of the particle are not plotted due to their high phase contrast enhancement.

3.1 Measurement & Sampling Uncertainty

Fig. 12 Case Study 2: The modelled normal distributions of mean grey-level values in particle ROIs
in the pristine and 4.0 V SoC samples. The vertical lines represent standard deviations from the
pristine mean.

Understanding uncertainty is critical when analysing this data. Error bars are
included in the figures (e.g., Figures 7, 8, and 9) to visually represent uncertainty. For
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example, in Figure 8, ±3 standard errors (SE) are plotted, indicating a 99.7% confi-
dence interval for the population mean. Uncertainty in this study is categorized into
two main types: measurement uncertainty and sampling uncertainty. These are com-
bined to calculate the total uncertainty (SEtot) using the specific equations described
below.

Measurement uncertainty refers to errors inherent in the imaging process. The
standard error of the mean particle grey-level (SEMP ) for a single particle is calculated
by dividing the noise level (σbg), estimated from the standard deviation of the image
background, by the square root of the number of pixels (npixels) in the region of interest
(ROI) for the particle:

SEMP =
σbg√
npixels

To calculate the uncertainty in the change in grey-level relative to the pristine
state (SEM∆P ), the measurement uncertainties in the pristine state (SEMP0

) and at
a given SoC (SEMPSoC

) are combined as follows:

SEM∆P =
√

SEM2
P0

+ SEM2
PSoC

The standard error of measurement of the ¯̄I and ∆¯̄Iprist parameters were calculated
by combining the standard error values for each particle in the sample as in the
equation below;

SEM =

√√√√ 1

n

n∑
i=1

(SEMi)2

Where SEM is the standard error of measurement of ¯̄I or ∆¯̄Iprist, n is the number
particles in the sample, and SEMi is the ith SEMP or SEM∆P value in our sample
of particles (depending on the parameter being calculated).

Sampling uncertainty arises from variability in the dataset due to measuring only
a subset of the total population. It is determined by dividing the standard deviation
of the sample (σ) by the square root of the sample size (n):

SES =
σ√
n

Finally, the total uncertainty (SEtot) is calculated by combining the measurement
uncertainty and the sampling uncertainty. This is expressed mathematically as:

SEtot =
√

SES2 + SEM2

To illustrate the significance of observed grey-level changes, a Z-test was performed
using data from Case Study 2. The null hypothesis (H0) assumed no change in the
population mean grey-level between the pristine state and 4.0 V SoC (i.e. any observed
change is a random fluke of sampling), while the alternative hypothesis (HA) posited
a decrease in mean grey-level at 4.0 V. The Z-statistic for this hypothesis test was
calculated as:
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Z =
¯̄I4.0V − ¯̄Iprist√
σ2
4.0V

n4.0V
+

σ2
prist

nprist

Substituting the observed values ( ¯̄I4.0V = 173.00, ¯̄Iprist = 174.41, σ4.0V = 11.27,
σprist = 11.08, and n4.0V = nprist = 3650) into the formula produced a Z-statistic of:

Z =
173.00− 174.41√

11.272

3650 + 11.082

3650

Z = −5.40

The critical value for a one-tailed test with a 5σ significance level is Vcrit = −5.01.
Since the calculated Z-statistic (Z = −5.40) is less than the critical value, the
null hypothesis is rejected. This confirms that the observed decrease in grey-level is
statistically significant and not due to random sampling.

These analyses demonstrate that even small changes in grey-levels, though subtle at
the individual particle level, are statistically significant when evaluated across the large
sample sizes enabled by this method. By carefully combining precise measurements
with robust statistical analysis, the method ensures high confidence in detecting subtle
changes in particle degradation.

3.2 Experimental Error

Several sources of experimental error were identified for this method, including user
error during image processing, segmentation inaccuracies, imaging artefacts, and
inconsistencies in CT acquisition parameters. Careful attention was paid to minimise
these errors and ensure the reliability of the results.

Imaging artefacts such as rings, streaks, and double edges can impact the accuracy
of grey-level measurements. For instance, in Case Study 2, the use of limited-angle
tomography due to the experimental geometry introduced streaking artefacts. These
were minimised by optimising the experimental setup, including a beamline configu-
ration that reduced the number of obstructed angles. When artefacts are unavoidable,
advanced reconstruction techniques such as iterative algorithms and ring artefact
removal could be employed to improve image quality.

Accurate segmentation of individual particles is critical for the analysis. In Case
Study 1, segmentation errors were less problematic because particle labels were not
required to match between pristine and cycled states. However, in Case Study 2, main-
taining consistent particle labels across different SoC was essential. This was addressed
using a seed-based segmentation approach, and by removing inconsistent labels from
the dataset with dataframe merging. The segmentation of smaller particles posed par-
ticular challenges due to phase contrast enhancement, and merged or erroneous labels.
To mitigate this, the smallest quartile of particles was excluded from most quantitative
analysis.

Consistency in imaging parameters was vital to ensure that observed grey-level
changes reflected true material change rather than variations in acquisition conditions.
In Case Study 2, all images were acquired during a single beamline session, ensuring
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consistent beam energy, filtering, and sample-to-detector distance. This consistency
was verified by observing stable histogram peaks in empty regions above the sample
across scans. In Case Study 1, additional care was required due to potential variability
in the lab-based source. Flat-field images and empty slices were examined for beam
variation, which was found to be negligible.

To address potential errors during image processing, all image processing steps were
automated using Python scripts to ensure repeatability. Visual validation of particle
labels and segmentation results confirmed their consistency. For both case studies,
datasets were cleaned by removing edge particles and inconsistent labels, ensuring that
only reliable data were included in the analysis. Furthermore, care was taken during
data comparison to normalize grey-levels and reduce the impact of sample-to-sample
variability. These measures collectively enhanced the robustness of the analysis and
minimised the impact of experimental errors on the results. We believe these to be
best practices when applying this method to similar data.

4 Conclusions

In this work, we have presented methods for quantifying damage due to cracking
and void formation in NMC particles using grey-level analysis of micro-CT images.
This study builds upon previous work by Wade et al. [29] by introducing significant
improvements in computation speed, handling operando datasets, and enabling auto-
mated tracking of grey-level changes across a much larger number of particle instances
(approximately 100,000). These advancements were achieved through the development
of the GRAPES python toolkit, which includes the updated GREAT2 algorithm for
rapid analysis of large tomography datasets. A GUI is also made available.

Two case studies were conducted to validate this approach. The first case study
used ex-situ data collected with a lab-based micro-CT system, while the second case
study employed operando data acquired at a synchrotron beamline. Both studies
revealed statistically significant grey-level changes in NMC particles subjected to dif-
ferent states of charge. These changes were attributed to cracking and void formation,
even when the cracks and voids were below the resolution of micro-CT imaging. By
leveraging the partial volume effect, the method demonstrated the ability to detect
these sub-resolution features, highlighting the power of micro-CT’s excellent sampling
statistics to assess large populations of particles.

A key strength of this method is its ability to detect small, statistically significant
changes in particle properties, even when individual variations are subtle. By analyzing
thousands of particles within a single dataset, this method provides robust sample-level
insights into material degradation. For example, the operando study demonstrated
spatially resolved damage patterns within the electrode, revealing that particles further
from the current collector sustained less damage due to poorer electrical contact. These
findings underscore the utility of this approach for linking particle-level damage to
cell-level behaviour.

This method has broader implications for battery research and development. By
enabling high-throughput analysis of particle degradation, it provides a valuable tool
for assessing prototype materials, optimising manufacturing processes, and developing
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predictive models of battery performance. Furthermore, the GRAPES toolkit simpli-
fies data processing, making it accessible to a wide range of researchers and facilitating
integration with machine learning models for advanced analysis.

Beyond micro-CT, the methods and tools presented in this work have the poten-
tial to be valuable in other imaging and microscopy contexts where tracking grey-level
change in labelled regions is desirable. The methods and GRAPES python toolkit
presented here are compatible with 2D images as well as images with anisotropic pix-
els/voxels. Thus GRAPES is compatible with other sources of image data used to
study electrochemically active particles such as optical scattering microscopy [44] and
serial sectioning scanning electron microscopy [45, 46]. Furthermore, we believe this
method could be useful for analysing data from more advanced synchrotron imag-
ing techniques such as X-ray Absorption Near Edge Spectroscopy (XANES) imaging
and K-edge subtraction imaging, where comparing grey-level change between datasets
acquired with different monochromatic beam energies implies chemical information
about the sample [47–49]. We anticipate that the GRAPES toolkit could have use in
other fields of research. For instance, the ability to process large datasets of particles
makes it suitable for fields such as catalysis, where micro-CT and advanced imaging
techniques are used to study the evolving structure and chemistry of active particles
[50, 51]. These capabilities position the GRAPES toolkit and the underlying analyt-
ical frameworks demonstrated here as useful tools for tackling challenges in imaging
and microscopy across scientific disciplines.

Supplementary information. All tomographic data is available for open access
use at DOI: 10.5522/04/25102538 under CC by 4.0 licence. The GRAPES toolkit
is maintained on GitHub under a MIT licence at https://github.com/MPJ-
Imaging/GRAPES. The Jupyter Notebooks used to process the dataset are available
on request.
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Appendix A Cell Fabrication & Electrochemical
History

Case Study 1: An electrode was sourced from a 220 mAh multi-layered pouch cell
(LiFun Technologies, China). One side of the electrode was cleaned of all active mate-
rial using an appropriate solvent. This single-sided electrode had an areal capacity of
approximately 3.3 mAh cm−2. The electrode sheets were mounted on a translation
table of a laser micro-machining instrument (A Series, Oxford Lasers) equipped with
a 532 nm laser and a spot size of 40 µm. The laser cut a series of lines, resulting in an
electrode with a 500 µm × 250 µm tab protrusion at the top for imaging.

Following initial imaging, the electrodes were dried in a glass vacuum oven (Buchi,
Germany) at 100°C overnight, then transferred to an argon-filled glove box and assem-
bled into a single-layered pouch cell approximately 4 cm wide and 8 cm high. The
cell was assembled with a lithium chip (Goodfellows, UK), using an excess of LiPF6

1 M electrolyte in EC/EMC 3:7, with 2% wt vinylene carbonate (VC) (Soulbrain MI,
USA). A tri-polymer separator (Celgard R 2320, USA) electrically isolated the elec-
trodes. After charging, the cells were disassembled in the argon-filled glove box and
left to dry before being placed into the custom-made electrode holder. The electrodes
were stored in the glove box until ready for imaging to avoid atmospheric damage.

The pouch cell was charged using a standard constant-current-constant-voltage
(CCCV) protocol on a Biologic BCS-805 cell cycler at room temperature to 4.5 V
(vs. Li/Li+) at a C-rate of C/50, based on a calculated theoretical capacity of 9.9
mAh. Constant voltage was applied until the current dropped to C/100, after which
the cell was disassembled as previously described.

Case Study 2: The positive lithium-ion electrode samples, composed of lithium nickel
manganese cobalt oxide (NMC811, NEI Corp.) and with an areal capacity of 2.2
mAh cm−2, were affixed to a petri dish using Kapton® tape. The petri dish, along
with the samples, was then securely attached to the translation table of a laser micro
machining instrument (A Series, Oxford Lasers Ltd.). This instrument featured a 532
nm laser with a spot size of approximately 40 µm. The laser was programmed to mill
a series of lines at a speed of 2 mm s−1. Subsequently, the resulting electrode was
cut to dimensions of 15 × 20 mm (width x height), with a protrusion measuring 500
× 250 µm (width × height) extending from the top of the main electrode body. This
protruding area, referred to as the ”tab,” was utilized for imaging the electrode using
limited field of view (FoV) techniques. Furthermore, an area of 5 mm × 10 mm was
milled into the opposite side of the electrode to facilitate ultrasonic welding of an
aluminium terminal onto the electrode’s bare current collector.

The single-layered pouch cell housed a NMC811 electrode, as previously described.
To assemble the cell, the laser-cut electrode was first ultrasonically welded to a positive
aluminium terminal from MTI Corporation. Subsequently, it was heat-sealed between
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Fig. A1 Case Study 2: Cell SoC history of the cycled sample. * indicates times where CT was
acquired.

two triple-layered aluminium pouch cell materials. The assembly was then dried for 24
hours at 80°C in a glass drying oven (B-585, BUCHI Ltd) equipped with a ceramic-
reinforced tri-layered polyolefin separator membrane (Celgard 2325, Celgard, LLC.)
and a nickel negative electrode terminal from MTI Corp. Following the drying process,
the pouch was transferred to an argon-filled glove box for further assembly. Here, the
lithium counter electrode from Goodfellows was positioned beneath the nickel termi-
nal, after which two sides of the pouch were sealed using a vacuum sealing machine
within the glove box. Before sealing the final edge of the pouch, an excess (200 µL) of
1.0 M lithium hexafluorophosphate in ethylene carbonate and ethyl methyl carbonate
with 2% by weight of vinylene carbonate additive (1.0 M LiPF6 in EC:EMC (3:7 v/v)
+ 2% VC, Soulbrain MI) was added. The pouch cell was left undisturbed for 24 hours
to allow proper wetting of the electrodes by the electrolyte. Some gentle massaging of
the cell was necessary during this time to aid in the distribution of the electrolyte.

The theoretical capacity of the cell was determined by calculating the product
of the electrode’s main body area (30 mm2) and the areal loading of the NMC811
electrode, assuming minimal contribution from the tab to the total capacity. For the
cell containing a 2.2 mAh cm−2 electrode, the calculated theoretical capacity was 6.4
mAh. A low-current potentiostat (SP-300, Bio-logic SAS) was utilized, employing a
constant-current constant-voltage (CC-CV) charge protocol. Each cell was charged to
specified voltages (3.8 V, 4.0 V, 4.1 V, 4.2 V, 4.3 V, 4.4 V vs Li/Li+) before discharging
to the same voltages. Charging and discharging were conducted at a C/3 rate based on
the calculated theoretical capacity. Cells were allowed to rest once the current dropped
below the C/20 threshold after the CV step, during which tomograms were obtained.
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