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Abstract

Diffusion generative models, a class of machine learning techniques, have shown remarkable promise

in materials science and chemistry by enabling the precise generation of complex molecular structures.

In this paper, we propose a novel application of diffusion generative models for stabilizing reactive

molecular structures identified through quantum mechanical screening. Specifically, we focus on the

design challenge presented by Singlet Fission (SF), a phenomenon crucial for advancing solar cell

efficiency beyond theoretical limits. While theoretical chemistry has been successful in predicting

intermolecular arrangements with enhanced SF coupling, the practical implementation of these config-

urations faces challenges due to discrepancies between favorable and stabilized structures. To address

this gap, we introduce a three-step strategy combining quantum mechanical screening for identify-

ing optimal molecular arrangements and diffusion generative models for predicting stabilizing linkers.

Through a case study on cibalackrot dimers, a promising SF material, we demonstrate the efficacy of

our approach in enhancing SF efficiency by stabilizing the desired molecular arrangements.

Diffusion models (DMs) are a class of generative machine learning (ML) techniques that model complex

data distributions by learning to iteratively transform random noise into structured outputs through a guided

stochastic process, enabling the precise generation of highly diverse and high-quality data.1,2 In recent years,

DMs have received considerable attention and have become state of the art for image generation tasks.3,4 This

progress has led to the development of popular tools such as StabilityAI’s Stable Diffusion and Midjourney,
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as well as the introduction of OpenAI’s DALL·E.5–7 In the realm of materials science and chemistry, these

models have begun to demonstrate significant potential in the design and prediction of novel compounds

and assemblies.8,9 A major application of DMs in chemistry is the generation of novel molecular structures,

which are essential for tasks such as molecular design and property prediction. These models exploit the

ability of diffusion processes to capture long-range dependencies in complex molecular structures, allowing

the generation of diverse and chemically plausible molecules.10,11 In drug discovery and development, DMs

can accelerate innovation by learning latent representations of molecular structures, facilitating the genera-

tion of novel compounds with desired traits such as high efficacy and low toxicity.12 In this context, DMs

have also been adapted to include the protein target binding pocket as a condition for the generation process,

allowing for modeling of protein-ligand interactions.13–15 Here, DMs for molecule discovery employ various

neural network architectures, such as graph-neural networks (GNNs),16–18 convolutional neural networks

(CNNs),19,20 transformers11,21,22 or combinations of them,23 and operate on different molecular represen-

tations based on SMILES or molecular graphs.17,24 They can also integrate with reinforcement learning

strategies, directing synthesis towards molecules with specific properties, thereby enhancing the efficiency of

drug discovery efforts.25–27 In addition to drug design, DMs have also been used to generate new polycyclic

aromatic hydrocarbons with defined electronic properties for optoelectronic applications.28 Further, DMs

are employed to predict chemical reactions by modeling how reactant molecules diffuse through a reaction

network. This ability allows them to estimate the likelihood of various reaction pathways and uncover

novel reaction mechanisms.29,30 Other applications of DMs for molecules include conformer generation,18

molecular dynamics simulations31,32 or linker design.33

Diffusion Generative Models

The basic idea of DMs — learning to map a simple distribution to a complex one using a parameterized

transition kernel — is inspired by nonequilibrium thermodynamics.1,2 Starting from a tractable distribution,

such as a standard normal distribution, the goal is to transform it to the target distribution, represented by

the training data set. To learn this mapping, a forward diffusion process is applied where a data point x0

from the target distribution is progressively diffused from time t = 0 to t = T by adding random Gaussian

noise

q(xt|xt−1) = N (xt|
√

1 − βtxt−1, βtI) (1)

until all of its structure is lost. Here, βt ∈ (0, 1) controls how much of the data is retained and how much

noise is added. In a reverse denoising process, the goal is to reverse the noise addition process by making a
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parameterized distribution kernel

pθ(xt−1|xt) = N (xt−1|µθ(xt, t), σ
2
t I) (2)

as close as possible to the true but unknown reverse denoising transition probabilities q(xt−1|xt). In practice,

this is achieved by training a neural network ϵθ to predict the noise ϵt added during the forward process,

and thus the parameters θ of the neural network are typically learned by minimizing the mean squared error

loss between the predicted and true noise

L = Et,x0,ϵ

[
∥ϵt − ϵθ(xt, t)∥2

]
. (3)

This setting constitutes a powerful generative model, since, starting from a random sample xT from the initial

normal distribution, one can generate new and unseen data by iteratively removing noise from time t = T to

t = 0 using the trained neural network. The result is a completely new sample x0 that follows the underlying

distribution of the training data. While DMs have produced impressive results in text-to-image generation,

advances in the development of efficient equivariant neural networks have significantly improved the ability

of these models to also handle data with complex geometric structures, such as molecular data. In so-called

geometric DMs, molecules are typically represented as point clouds of atoms, with the diffusion process

acting on both atom positions and atom types. Geometric DMs have been successfully used in the past to

generate molecular structures of small drug-like molecules, protein scaffolds and molecular linkers.17,33 We

provide a more detailed description of the mathematical background of (geometric) DMs in the SI.

Singlet Fission

Herein, we propose the application of diffusion generative models to predict (supra)molecular linkers capa-

ble of stabilizing reactive molecular structures, which have been identified by quantum chemical methods.

The exploration of molecular architectures that promote or optimize specific processes is an essential topic

in computational chemistry. Singlet Fission (SF), a light-induced phenomenon in electronically interacting

molecules in which a single exciton is converted into two triplet excitons,34 serves as an exemplary case

in this research highlighting the complexities involved: besides the monomer-specific energy conditions, the

efficiency of SF is determined by the highly structure-dependent electronic couplings and therefore sensi-

tive to the intermolecular packing arrangement.35 SF has attracted considerable interest due to its ability

to potentially surpass the theoretical efficiency limits of single-junction solar cells, however, to date, only
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a limited number of materials have demonstrated the capability to efficiently support SF, motivating ac-

tive research in the theoretical development of SF materials. At the molecular level, theoretical design

strategies have proven effective in aligning energy levels, also employing ML techniques.36–42 However, at

the intermolecular level, despite efficient quantum mechanical descriptions of the electronic couplings that

allow the identification of optimal molecular (dimer) arrangements to enhance the SF rate,43–49 there ex-

ists a significant discrepancy between these predicted configurations and their stable structures. Effective

stabilization strategies are crucial to bridge this gap, ensuring that the theoretically ideal arrangements

are translated into reliably structured materials with preserved electronic properties. In response to this

gap, our research introduces a strategy that combines the conformational screening of desired electronic

functionalities to identify optimal molecular arrangements with the use of diffusion generative models to

predict (supra)molecular frameworks capable of stabilizing these structural motifs. Notably, the design of a

stabilizing matrix that promotes reactive molecular configurations is a strategy also employed by nature, as

exemplified by the Fenna–Matthews–Olson complex of green sulfur bacteria,50 in which the protein matrix

arranges the chlorophylls to modulate electronic couplings, enabling efficient excitation transport.51 Recent

synthetic work has successfully utilized a linker-stabilized strategy to produce defined dimer and trimer stacks

of perylene bisimide (PBI) molecules with packing motifs favorable for SF resulting in enhanced SF.52,53

Here, we rationalize this approach employing quantum mechanical screening along with diffusion generative

models and exemplify it by predicting stabilized 2,2’-dihydro-cibalackrot dimer arrangements with enhanced

SF efficiency. Cibalackrot has shown promise as an SF material due to its favorable T1/S1-ratio of approx-

imately 0.5, alongside high extinction coefficients and robust molecular stability. However, intermolecular

interactions in both crystalline and amorphous phases favor the stabilization of the S1-state over the T1-

state, leading to predominantly endothermic SF and the formation of excimers and charge-separating trap

sites. Therefore, cibalackrot is a promising candidate for the ligand-stabilized SF material design, in which

the intermolecular interactions are favorably adjusted by the packing motif.

Linker Design Strategy

In our approach, we employ a fast and generally applicable three-step workflow for the prediction of

supramolecular matrices capable of stabilizing reactive molecular structures, which we have adapted to the

prediction of the linker-stabilized dimer packing motifs with enhanced effective SF coupling, as illustrated

in Fig. 1 and described in the following.
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Figure 1: Schematic representation of the applied workflow for the stabilization of moelecular dimers with
enhanced SF coupling. The workflow integrates screening of the SF coupling (yellow), geometry optimization
(red), a geometric diffusion model (green) and evaluation steps (blue).

Quantum Chemical Screening

In the first, quantum mechanical targeting step, we identify the target structure by screening the suitable

electronic descriptor representing the reactivity of interest as a function of molecular coordinates. In this

work, we focus on the SF activity. According to Fermi’s Golden Rule, the SF rate is proportional to the

square of the SF electronic matrix element TRP. Using Michl’s molecular frontier orbital (FO) approach, we

estimate the effective SF coupling based on diabatic states formed by the frontier orbitals of two monomers

A and B. Each monomer has three electronic states: the ground state S0, the singlet excited state S1, and

the triplet state T1. The combined system includes seven singlet states: the ground state, two locally excited

(LE) states, two charge transfer states (CA and AC), and two doubly excited states (TT and S1S1). The SF

rate is assumed to be proportional to the squared matrix element of the diabatic Hamiltonian, which links

the exciton to the biexciton triplet states through indirect coupling via charge transfer states:

TRP =

∣∣∣∣∣ ⟨LE|Ĥ|CA⟩⟨CA|Ĥ|TT⟩
∆E(CA)

+
⟨LE|Ĥ|AC⟩⟨AC|Ĥ|TT⟩

∆E(AC)

∣∣∣∣∣
(4)

with ∆E(AC) = E(AC) − E(S0S1). Considering the FO model and employing the zero differential overlap

approximation, equation (4) reduces to

FockTRP =

√
3

2

∣∣∣∣∣ (lA|F̂ |lB)(lA|F̂ |hB)

∆E(CA)

− (hA|F̂ |hB)(hA|F̂ |lB)

∆E(AC)

∣∣∣∣∣ ,
(5)

5

https://doi.org/10.26434/chemrxiv-2024-l7fl9-v2 ORCID: https://orcid.org/0009-0009-0020-6897 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-l7fl9-v2
https://orcid.org/0009-0009-0020-6897
https://creativecommons.org/licenses/by-nc/4.0/


where F̂ is the Fock matrix. TRP was approximated by switching from Fock matrix elements to overlap matrix

elements, represented as ⟨ϕ|F̂ |ψ⟩ ≈ ϵ⟨ϕ|Ŝ|ψ⟩, where Ŝ denotes the overlap matrix. This approximation is

consistent with the further simplification of Michl’s model:44

OverlapTRP =

√
3

2
ϵ2

∣∣∣∣∣ ⟨lA|Ŝ|lB⟩⟨lA|Ŝ|hB⟩∆E(CA)

−⟨hA|Ŝ|hB⟩⟨hA|Ŝ|lB⟩
∆E(AC)

∣∣∣∣∣
(6)

In this work we have kept ϵ constant. ∆E(CA) and ∆E(AC) are both approximated to one. By neglecting

the constant prefactor and ignoring the unit, we are effectively screening the SF coupling according to:

TRP =
∣∣∣⟨lA|Ŝ|lB⟩⟨lA|Ŝ|hB⟩ − ⟨hA|Ŝ|hB⟩⟨hA|Ŝ|lB⟩

∣∣∣ (7)

The decomposition of singlet fission rates into expressions based on Hartree–Fock (HF) orbital expansion

coefficients was first introduced and validated by Josef Michl.49 Building on this framework, we employed

our recently developed semi-empirical implementation, which utilizes the AM1 method within the PYSEQM

code, to compute the matrix elements efficiently.54 This approach enables rapid screening of numerous

molecules.41,55 In previous work, we benchmarked these singlet fission coupling expressions against higher-

level quantum chemistry methods, with additional details provided in the SI.41 The associated Python

code is openly accessible online.56 Employing this quantum mechanical model, we analyzed the effective SF

coupling as a function of intermolecular coordinates, focusing on both longitudinal and transversal slipping

(as illustrated in Fig. 2 b)), while maintaining a rigid monomer structure. Notice that screening strategies

that scan the entire inter- and even intramolecular coordinate space have been proposed and could be

employed for this purpose.45,49,57,58 The screening identified the configuration that maximizes SF coupling,

termed the SF structure, presented in Fig. 2 b). The dimer motif exhibits a slipping of -0.4 Å in the

x-direction and 0.6 Å in the y-direction relative to the perfectly parallel configuration. The vertical distance

was set to 3.5 Å. The effective SF coupling amounts T 2
RP = 1.47 ·10−9. To determine the need for stabilizing

the detected packing motif, we identified the minimum-energy conformation of the cibalackrot dimer using

global optimization with the CREST tool at GFN2-xTB level59–69 and subsequent Density Functional Theory

(DFT) optimization at r2SCAN-3c/def2-mTZVPP level.63,70–77 This conformational search revealed the

stable ground-state configuration, which we call the opt structure and is shown in Fig. 3 b). For the

cibalackrot dimer, this structure differs drastically from the SF structure due to a pronounced relative

rotation of the monomers of about 68° as well as a clear bowl-shaped curvature of the monomers, while the
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Figure 2: a) Two-dimensional scan of the effective SF coupling as a function of longitudinal and transversal
slipping in the cibalackrot dimer. Due to the rotational symmetry, only one half of the total scan is shown.
b) Illustration of the SF structure, indicating the scanning modes. c) Schematic representation of 2,2’-
dihydro-cibalackrot, highlighting the potential anchor sites R1 to R5 for linkers connecting the two monomers.

vertical distance is reduced to 3.12 Å. We further quantified this difference by determining the Root-Mean-

Square Deviation (RMSD), defined as

RMSD =

√√√√ 1

N

N∑
i=1

∥ri − r′i∥2 , (8)

between the opt structure r and the SF structure r′ as 2.393 Å. Here, we employed the Kabsch algorithm

to ensure maximum overlap between the compared structures.78,79 Importantly, the SF coupling of the

optimized dimer yields T 2
RP = 2.79 · 10−19 and is thus significantly lower compared to the SF structure,

underscoring the need for effective stabilization.

Generative Prediction

In the second, generative step, the identified target structure is passed to a geometric diffusion model to

predict supramolecular matrices that could stabilize the structural motif. In this example, we employed

the pre-trained DiffLinker diffusion model to predict linking ligands between the monomers that serve to
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Figure 3: a) Distribution of the 1000 DFT-optimized linked dimer structures characterized by the squared
effective SF coupling and the RMSD with respect to the SF structure, colored by the anchoring position of
the generated linker. The dashed line indicates the squared effective SF coupling of the SF structure with
optimal SF activity (T 2

RP = 1.47 ·10−9) determined from the two-dimensional scan. b) The minimum-energy
opt structure of the unlinked cibalackrot dimer shows large conformational changes (RMSD = 2.393 Å)
and low SF coupling (T 2

RP = 2.79 · 10−19) compared to the SF structure (transparent). c) With the
generated linker, the dimer structure is effectively stabilized (RMSD = 0.094 Å) and a high SF coupling of
T 2
RP = 3.21 · 10−9 is obtained.

stabilize the dimer packing motif.33 DiffLinker is a geometric diffusion model that is capable of generating

molecular linkers between two or more fragments by additionally conditioning the learned denoising process

of the geometric DM on the 3D information of the surrounding fragments. In addition, the model is able to

generate linkers between designated anchor atoms, as well as to predict the optimal position of the linkers

themselves. In this process, the optimal number of linker atoms is determined by the model prior to the

start of the generation process, allowing greater flexibility compared to other deep generative linker design

models, such as DeLinker and 3DLinker.80,81 For a detailed discussion of the DiffLinker model, as well

as a comparison with the aforementioned models, please refer to the SI. We followed three strategies for

linker generation: First, we prompted the DiffLinker model to generate linkers between anchor atoms R2

and R5, respectively, as these are described in the literature as the most suitable positions for linkers or

other substituents.82,83 The linker positions are numbered as shown in Fig. 2 c). For this purpose, we

used model parameters from the DiffLinker model pre-trained on the GEOM dataset,84 which contains 3D
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structures of molecular conformations of small to medium-sized organic molecules. We emphasize at this

point that neither the target structure we want to stabilize nor related singlet fission materials are present in

this training dataset, but mainly drug-like organic molecules. In addition to the one-linker strategy, we also

took into account the opposite positions R2’ and R5’, resulting in two stabilizing linkers per dimer. Here,

the two linkers were generated sequentially by the DiffLinker model. Finally, we let the model determine

the most suitable anchor atoms itself, which resulted in arbitrarily positioned linkers (no anchors). For

each of the five cases, we sampled 1000 linker structures from the trained DiffLinker model. All generated

structures and results obtained are available online.85 We found that the average number of heavy atoms

per linker determined by the model was 3.69, with 8 being the highest and 3 being the lowest. Note that

the DiffLinker model produces only heavy atoms and we add hydrogen atoms afterwards to fill the valences.

With 64.9%, carbon was amongst the most frequent atom types, followed by nitrogen (17.8%), sulfur (9.9%)

and oxygen (7.4%). We also note that among these 5000 linkers, many chemically equivalent motifs were

generated multiple times, which is why we present a detailed analysis of the composition and frequency of

the generated structures in the SI.

Evaluation

In the third, evaluation step, the individual quality of the generated structures in stabilizing the initially

identified reactive structural motif is assessed through quantum chemical optimization and subsequent quan-

tification of structural deviation. In this study, the 5000 generated structures underwent preliminary opti-

mization using a low-level quantum chemistry method GFN2-xTB.59,61 We evaluated these structures by

determining their RMSD values relative to the SF structure (linker atoms excluded). For the 1000 struc-

tures with the smallest RMSD values, we performed a more refined optimization using higher-level DFT

optimization at the r2SCAN-3c/def2-mTZVPP level to ensure greater accuracy. We recalculated the RMSD

and effective SF coupling for these structures and identified the best linker-stabilized configurations that

promote improved SF efficiency.

Results and Discussion

In Fig. 3 a) we present the distribution of these structures characterized by their squared effective SF coupling

and the RMSD with respect to the SF structure. This analysis shows that the ”two-linker” strategy yields

more favorable results, with anchoring positions R5 + R5’ in particular lead to the best performing structures.

With positions R2 + R2’, the structures have a slightly lower coupling than the SF structure, but still

significantlly larger than the unlinked opt structure. Furthermore, a clear trend between the RMSD and the
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Table 1: Presentation of the top 5 structures obtained by the generative workflow, evaluated on the basis of
their respective RMSD values and the strength of the effective SF coupling. All DFT-optimized structures
exhibit a higher or comparable SF coupling strength relative to the SF structure, in each case several
orders of magnitude larger than the unlinked opt structure.

Structure

Position R5 + R5’ R5 + R5’ R5 + R5’ R5 + R5’ R5 + R5’

T 2
RP · 10−9 3.21 3.17 3.09 2.61 4.04

RMSD (Å) 0.094 0.124 0.133 0.139 0.166

effective SF coupling can be observed, i.e. low RMSD values generally correlate with high couplings, which

supports our hypothesis that high SF activity is achieved by effective stabilization. The five best structures

ranked by their RMSD values relative to the SF structure are presented in Table 1, which range from 0.094

to 0.166 Å, significantly smaller than those for the unlinked, optimized dimer structure. Furthermore, the

calculated SF couplings are notably higher than those for the optimized ”free dimer” and even exceed the SF

structure obtained from the scan. We attribute this to the additional relaxed degrees of freedom, such as

rotation or curvature, during optimization, which remain fixed in the scan. From these findings, we conclude

that the chosen strategy of generating and evaluating linkers from deep generative models such as DMs to

stabilize desired structural motifs has high potential. The fast and effective computational methods used in

this work to evaluate the SF coupling and the energy complement the rapid sampling of the generative model

and allow a large number of structures (≈5000) to be screened quickly and effectively. It was shown that

the generated linkers are able to stabilize the desired conformation, resulting in comparable or even higher

SF activity. In addition, we confirmed the hypothesis that the ability of the linkers to stabilize the desired

structure (measured in RMSD) is a good indicator of SF activity, as both quantities correlate (see Fig. 3

a)). The workflow also holds high potential for incorporating guided DMs, e.g. for assessments of synthetic

accessibility and electronic neutrality into the linker generation process. Synthetic accessibility refers to

the feasibility of synthesizing the proposed structures using established chemical methods, while electronic

neutrality ensures that the electronic properties of the molecules remain unaffected by the generated linkers.
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Conclusion

We therefore believe that deep generative models represent a promising avenue for addressing the challenges

of designing high-performing materials for specific applications such as singlet fission, where the precise 3D

structure of molecular aggregates plays a critical role. Traditional screening methods, which evaluate the

properties of thousands of random samples post hoc from existing molecular libraries, are computationally

intensive and often inefficient. This inefficiency is further compounded by the limited availability of structured

data for specific tasks, such as linker design, where only a small number, or sometimes no candidates, meet

the stringent design criteria. Moreover, adapting known linker structures to entirely new fragments remains a

highly complex and ambiguous task, rendering such approaches either unsuccessful or impractically slow. In

contrast, while generative models require extensive data for training, they possess a key advantage: the ability

to learn the underlying structure and relationships within the data rather than merely evaluating pre-existing

samples. A trained model, such as DiffLinker, can therefore generate novel structures by effectively exploring

a larger, previously unknown portion of the chemical space. This capability allows the discovery of candidates

that lie beyond the reach of traditional screening approaches. Furthermore, the generative process provides

a unique advantage in linker design by accounting for the surrounding molecular context and facilitating

exploration of non-intuitive solutions. This approach has been shown to yield structures with improved SF

coupling, emphasizing the potential of generative models in enabling practical and scalable solutions for

molecular design challenges. In the future, the integration of generative ML methods for the prediction

of molecular matrices will further enhance the practical applicability of these models. However, the main

challenge remains (as is likely the case for the entire field) to obtain a sufficiently large amount of structured

and reliable data with which to train generative models such as DiffLinker and use them for specific purposes.

This means that substantial experimental and computational data, including successful linker examples for

dimer or oligomer stabilization, is required to bridge the gap to experimental implementation. In conclusion,

by embedding synthetic feasibility and electronic neutrality assessments within the generative framework,

alongside robust data integration, we can drive forward the practical utilization of these models in stabilizing

complex molecular structures.
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