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About the image: Generated and used with permission from Craiyon.com, formerly 
DALL·E mini, an artificial intelligence (AI) text-to-image generator. The resulting 
image was returned when the AI was prompted to generate the image of an optimal 
waveform for serotonin detection.  
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Abstract 

Voltammetry is widely used to detect and quantify oxidizable or reducible 

species in complex environments. The neurotransmitter serotonin epitomizes an 

analyte that is challenging to detect in situ due to low concentrations and co-existing 

similarly structured analytes and interferents. We developed rapid-pulse 

voltammetry for brain neurotransmitter monitoring due to the high information 

content elicited from voltage pulses. Generally, the design of voltammetry waveforms 

remains challenging due to prohibitively large combinatorial search spaces and a lack 

of design principles. Here, we illustrate how Bayesian optimization can be used to 

hone searches for optimized rapid pulse waveforms. Our machine-learning-guided 

workflow (SeroOpt) outperformed random and human-guided waveform designs and 

is tunable a priori to enable selective analyte detection. We interpreted the black box 

optimizer and found that the logic of machine-learning-guided waveform design 

reflected domain knowledge. Our approach is straightforward and generalizable for 

all single and multi-analyte problems requiring optimized electrochemical waveform 

solutions. Overall, SeroOpt enables data-driven exploration of the waveform design 

space and a new paradigm in electroanalytical method development.  
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Introduction 

Voltammetry is widely employed across fields, including energy storage,1,2 

catalysis,3 materials,4 organic synthesis,5 protein engineering,6,7 and electroanalysis 

(i.e., neuroscience,8-12 diagnostics,13 environmental applications,14 and food and 

beverage analysis15). Despite the many types of analytes suitable for voltammetry, 

few design principles exist to enable voltammetry waveforms to be identified and 

optimized systematically. This lack of objectively guided waveform design and 

optimization imposes significant limitations on the accuracy, selectivity, and 

robustness of voltammetry applications for single- or multi-analyte detection and 

monitoring.  

A grand challenge in chemical neuroscience is to uncover the functional and 

dysfunctional interplay between neurotransmitters in the brain.16 Voltammetry is 

broadly used to characterize and quantify electroactive neurotransmitter release and 

reuptake using brain-implanted electrodes during biological perturbation,17-19 

including in humans.10 Recent progress has focused on developing novel electrode 

materials, coatings, or data analysis procedures to improve the selectivity and 

sensitivity of real-time neurochemical monitoring in behaving subjects.17,20-27 

Meanwhile, voltammetry waveform development (i.e., selecting optimal waveform 

parameters for detecting a particular analyte) has remained essentially unchanged 

for decades. It relies principally upon historic performers (e.g., pre-patterned 

waveforms), heuristics, and grid searches.28-33  
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For neurochemistry applications, historic performers include fast-scan cyclic 

voltammetry (FSCV) triangle or N-shape waveforms for detecting evoked dopamine12 

or serotonin,34 respectively, in vivo. Modifying these waveforms impacts sensitivity, 

selectivity, and temporal resolution.28,35-37 For example, the development of fast-cyclic 

square-wave voltammetry has improved the sensitivity and selectivity of dopamine38 

and serotonin39 detection by superimposing triangle and N-shape waveforms, 

respectively, on pre-patterned staircase waveforms. Other waveform modifications 

have led to fast-scan controlled absorption voltammetry and multiple cyclic square-

wave voltammetry to determine basal dopamine40 or serotonin levels.41,42 These 

approaches required separate waveforms to measure different analytes and 

timescales and were derived from the prior triangle and N-shape waveforms in a 

guess-and-check manner (Fig. 1, top).  

To enable multi-analyte monitoring (e.g., simultaneous serotonin and 

dopamine detection) across timescales (i.e., quantification of basal and stimulated 

neurotransmitter levels using the same waveform in the same recording session), we 

developed rapid pulse voltammetry (RPV).43 The latter utilizes background-inclusive 

(i.e., non-background subtracted) data, requiring novel waveform design to produce 

informative background currents.44 This custom design is opposed to other popular 

pulse voltammetry approaches (e.g., normal, differential, staircase), which use pre-

patterned approaches over longer time courses (s to min).45 While also based on 

characteristic oxidation and reduction potentials derived from the triangle and N-

shape waveforms, rapid pulses (i.e., 2 ms), rather than fast linear sweeps, reduced 
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fouling and produced informative faradaic and non-faradaic currents. The resulting 

current-time fingerprints from our original generation (OG) RPV waveform43 yielded 

analyte-specific information that can be used by partial least squares regression 

(PLSR) or other supervised regression models (e.g., artificial neural networks, elastic 

net) to distinguish analytes and predict their concentrations. Because the OG 

waveform was inspired by heuristics from the voltammetric electronic tongue (VET) 

field for ‘soft’ sensing (e.g., intermediate and counter pulses),46-48 we refer to this as 

VET-inspired design (Fig. 1, middle).  

Having shown that our VET-inspired OG waveform outperformed conventional 

waveforms,43 we sought a generalizable and expandable approach to designing and 

optimizing rapid pulse (and other types of) waveforms. Because tuning specific 

waveform parameters improves analyte-specific currents,17,28,49 we hypothesized that 

enhanced RPV waveforms for serotonin and dopamine co-detection (and many more 

analytes) exist but remain undiscovered due to the lack of design principles needed 

to explore intractable large waveform search spaces.  

We focused first on detecting serotonin to address this waveform space problem 

(vide infra). Serotonin is involved in modulating mood, anxiety, and reward-related 

behavior via interconnecting brain circuits.50-54 Serotonin is also an essential gut 

hormone and it plays a role in spinal pain transmission and immune function.55-58 

Serotonin is a challenging target to detect using voltammetry due to its relatively low 

physiological concentrations (high pM to low nM),51 colocalization with other 

neurotransmitters having similar redox profiles (e.g., dopamine), and irreversible 
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oxidation byproducts59 that can foul electrodes. We further hypothesized that a 

waveform development paradigm to discover optimized serotonin waveforms would 

generalize to other neurochemicals and other types of analytes. 

 When developing RPV or other complex waveforms, a prohibitively large 

number of waveform step or segment combinations impedes exhaustive empirical 

investigation, even for a few steps or segments. Step/segment potentials, lengths, 

order, and hold times are all variables for investigation when exploring and 

improving waveforms; minor modifications of each variable can have complex effects 

on electrochemical signals.35 While a ‘guess and check’ approach has yielded the 

handful of useful conventional and VET-inspired waveforms mentioned above, one-

parameter-at-a-time or randomized60,61 optimization approaches do not take 

advantage of the rich information diversity encoded in complex waveforms, leaving 

the overall waveform search space relatively unexplored.  

Recently, Bayesian optimization has been used to navigate intractable 

physiochemical search spaces when combined with experimental training data.4,7,62 

This type of adaptive experimental approach presents an opportunity to pair machine 

learning with electroanalysis to create a new waveform development paradigm 

Figure 1. Approaches to voltammetry waveform design. Funnels denote likely bottlenecks. 
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(Fig. 1, bottom). Here, we present a Bayesian optimization workflow (SeroOpt) that 

generates fit-for-purpose voltammetry waveforms for selective serotonin detection. 

To our knowledge, a systematic machine-learning-based approach to designing, 

testing, and optimizing analyte-specific waveforms has not yet been reported. We 

show that analyte-specific waveform information depends on specific potentials 

occurring in a particular order and timing, confirming the need for a parsimonious 

search approach across parameter dimensions. Our active learning approach 

outperformed randomly designed and domain expert-designed waveforms after only 

a handful of iterations. Our methods can be straightforwardly extended to designing 

any voltammetry waveform for any electroactive analyte to discover new and perhaps 

non-intuitive waveforms optimized for application-specific metrics. To encourage 

widespread adoption, we provide data, tutorial code notebooks, and videos at 

https://github.com/csmova/SeroOpt, as well as our corresponding open-source 

voltammetry acquisition and analysis software at 

https://github.com/csmova/SeroWare. 
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Results  

The SeroOpt workflow casts waveform development as black-box optimization. 

 We designed the following Bayesian optimization workflow for robust, 

iterative, and adaptive voltammetry waveform development (SeroOpt; Fig. 2). 

Representative i-t curves (i.e., voltammograms) are provided (Fig. S1). We sought to 

identify an input (a rapid pulse waveform) related to an optimal output objective 

(sensor performance metric; e.g., serotonin detection accuracy) by an unknown, 

ground-truth objective function (the black box). This function can only be accessed by 

obtaining experimental training data on various waveform-metric combinations, 

Figure 2. Bayesian optimization workflow (SeroOpt) for machine learning-guided RPV waveform 
design for serotonin (5-HT) and dopamine (DA). An example visualization of optimization landscapes is 
shown (bottom). GP = Gaussian process, M = metric, W = Waveform, S = String, a.c. = altered cation; ∙ ̂

represents estimation of true value 
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approximating the black-box function using a surrogate model, and then querying the 

model to generate an input (waveform) corresponding to a predicted objective 

optimum. The generated (new) waveform is then tested experimentally, and the true 

objective value for that waveform is provided as subsequent training data for the next 

round of optimization. When a probabilistic surrogate model is used, both the model 

predictions (mean) and associated uncertainty (variance) can be updated using 

Bayesian inference as new data (evidence) becomes available in each iteration. This 

optimize-update process repeats sequentially, referred to herein as Bayesian 

optimization. Each of the workflow steps is described in detail below. 

Search space constraints & initialization by embedding domain knowledge. 

Each training waveform W was embedded as a vector in 8-dimensional space 

such that W ≔ [E1, τ1, E2, τ2, E3, τ3, E4, τ4] (Fig. 2, step 1). Here, Ei is each potential 

step (V) and τi is each step hold time (ms). In this initial design, for eventual 

comparison with our original generation (OG) human-designed four-step waveform43 

(Fig. 3a), we constrained the search space to four steps per waveform, with E1 and E2 

constrained to 0-1.3 V and E3 and E4 constrained to -0.5-0 V. These constraints 

ensured that waveforms remained inside the solvent window35 and encoded a 

‘pulse/counter-pulse’ concept (i.e., anodic steps followed by cathodic steps)  from VET 

theory.63 We constrained τ to 0.5-2.0 ms based on our preliminary results showing 

that capacitive current completely decays after ~2 ms, yet critical features are 

contained in as little as the first ~0.5 ms of each pulse.43 Pulses do not result in 

voltage cross-talk (i.e., residual capacitive current from successive voltage steps).39,40 
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The hold time was defined as (100 − ∑ 𝜏𝜏𝑖𝑖4
𝑖𝑖=1 ) ms to limit the number of parameters. 

Each pulse was applied at 10 Hz; the holding potential was defined as E4. 

To initialize a model of the relationship between waveform and objective (i.e., 

the optimization metric), six waveforms were randomly generated using the 

constraints above (Fig. 2, step 1). The choice of six waveforms was arbitrary and 

within the number of waveforms that could be experimentally evaluated in a single-

day experiment. We refer to this collection of random initialization waveforms as 

string 1 (S1).  

Model calibration & optimization metrics allow for relevant objective functions. 

We obtained experimental calibration curves (Table 1) for each S1 waveform 

(gray boxes, Fig. 2) to train a partial-least squares regression (PLSR) model as 

demonstrated previously.43 The PLSR model predicted the test and challenge set 

sample concentrations of serotonin and dopamine (Fig. 2, steps 2-3; see Methods for 

definitions of training, testing, and challenge samples). These predictions were used 

to calculate the eight optimization metrics listed (Fig. 2, step 4; defined in Table S1). 

All metrics were calculated on all waveforms in each string, unless otherwise noted 

(Fig. 2, steps 2-4). We focus on the results for the second waveform (W2) of each 

string, which is optimized across strings for the serotonin test set prediction accuracy 

metric. The latter is the mean absolute error in the PLSR model predictions of test 

samples T1-4 (including a blank; Table S1), thus creating a minimization task 

(maximum accuracy implies minimal error). We chose mean absolute error rather 

than relative error due to the presence of the blank (null true concentration).  
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The choice of test set accuracy as an optimization metric was motivated by 

several factors. First, we pursued single-objective optimization for simplicity and (at 

the time of analysis) a lack of user-friendly open-source software to perform multi-

objective human-in-the-loop optimization. Having to choose only a single metric to 

focus on, test set accuracy is an attractive choice as it is a direct measure of waveform 

performance instead of alternatives, such as PLSR model-specific metrics (e.g., scores 

clustering). The use of model-specific metrics is less physically meaningful and would 

limit the extendibility of our method. Using physically meaningful parameters such 

as test set accuracy, our workflow remains model-agnostic (i.e., any model that 

performs supervised regression prediction can be used). For similar reasons of 

retaining metrics in raw form, we chose not to combine multiple metrics into a single 

objective task (e.g., scalarization64). 

Second, we encoded selectivity in our test and challenge set design. Our 

calibration curve varies the concentrations of all analytes and interferents across the 

training, test, and challenge sets used to build and evaluate the PLSR models 

(Table 1). If the PLSR model for a given waveform confuses any interferent for 

serotonin, this will be represented in the test or challenge set accuracy metric for 

serotonin as it will contribute to the mean absolute error. Thus, serotonin test and 

challenge set accuracy is a proxy for selectivity in varying dopamine, 5-HIAA, 

ascorbate, DOPAC, pH, and K+/Na+ concentrations (see Methods). 

Lastly, other analytical figures of merit that could be used as optimization 

metrics (sensitivity, limit of detection (LOD), linear range, etc.) are irrelevant if model 
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accuracy and selectivity are not first established. For example, we included LOD as 

an alternative optimization metric (Fig. 2). The selectivity performance of LOD-

optimized waveforms (inferred via test and challenge set accuracy) was poor. Thus, 

we did not continue to optimize for LOD in subsequent campaigns but were still able 

to utilize these waveforms as training data by calculating their other metrics. For 

these reasons, we focused on test set accuracy. Specifically, we focused on serotonin 

(5-HT) because it is historically a more difficult analyte to detect by voltammetry. Its 

concentrations are approximately 10-fold lower than dopamine in striatum51 and 

serotonin has complex redox mechanisms and fouling processes.34  

Regardless, we included other optimization metrics in our workflow rather 

than solely serotonin test set accuracy to explore which metrics have an objective 

landscape that is ‘optimizable’. As this was a first attempt, we had no guarantee that 

the serotonin test set accuracy was a viable choice of metric. We also wanted to 

investigate other analytes and metrics for future use with multi-objective 

optimization. For example, we included dopamine-specific metrics in the scheme for 

comparison with our original RPV work43 because serotonin/dopamine co-detection is 

a long-term goal for multi-objective optimization.65  

To maximize the training data produced in an experimental day, we calculated 

the performance of all waveforms on all metrics in each string, regardless of which 

metric a waveform was designed to optimize. For example, the optimal serotonin test 

set accuracy waveform (W2) in each string was used to calculate the serotonin test 

set accuracy metric. Still, the performance of this waveform on the dopamine, pH, 
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and altered cation (a.c.) accuracy metrics was also recorded. This approach allows 

additional waveforms (albeit waveforms not optimized specifically for that metric) to 

be tested per string rather than solely the one ‘optimized’ waveform for each metric. 

Performing single objective optimization in this parallel manner explores 

‘optimizable’ metrics while obtaining additional training data per string in a simple 

yet sample-efficient manner. For example, if test set accuracy failed as an optimizable 

metric for serotonin, we could pivot to an alternative metric exhibiting promising 

optimization progress (e.g., serotonin pH or a.c. accuracy, or serotonin LOD), with 

training data already aggregated across all waveforms for that metric. 

Parallel single objective optimization of multiple metrics. 

The waveform embeddings and corresponding experimentally determined 

metrics were used to train the surrogate models (i.e., Gaussian processes)66 of the 

unknown objective functions (Fig. 2, step 5). As mentioned, only single-objective 

optimization was performed on each metric. Separate Gaussian processes were 
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trained (one for each metric; eight total) in parallel on the aggregated data after 

evaluating each string. An acquisition function (i.e., expected improvement)66 finds 

the optima of each surrogate function and outputs the next most likely waveform that 

Figure 3. a) Bayesian optimization waveform (R1S4W2; bottom) outperforms the original generation (OG) 
human-designed RPV waveform (top) after four iterations. Error bars represent standard deviation. b) 

Convergence plot of the minima of 5-HT test set accuracy per string. The waveforms optimized specifically for 
5-HT test set accuracy (W2) are shown on the inset. c) Varied interferents encountered in the test and 

challenge set samples (a.c. = altered cationic salt concentrations). d) Test and challenge set results for the 
OG waveform in triplicate across two electrodes. Error bars represent minimum and maximum values 

predicted. e) Test and challenge set results for the optimized serotonin waveform (R1S4W2) in triplicate 
across two electrodes. Error bars represent minimum and maximum values predicted. f) Average of d,e. Error 

bars represent standard deviation. 
 

a. b. 

c. 

d. e. f. 

 4 Bayesian 
optimization 

strings 

R1S4W2 
(designed by machine learning) 

Original Generation (OG) 
(designed by chemist) 
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will improve each respective metric (Fig. 2, step 6). The process then repeats (Fig. 2, 

steps 7-9). The overall workflow is illustrated in Figures 2 and S2.  

The eight waveforms (each corresponding to optimization for one of the eight 

metrics) output from the first optimization loop of this workflow are shown as string 2 

(S2). The eight new waveforms were generated with each new waveform optimized 

on a single metric (i.e., using the training data generated from S1 (Fig. 2, steps 4-6)). 

Because S1 was randomly generated to initialize the surrogate model, S2 represented 

the first iteration of optimized waveforms produced by the workflow.  

We repeated the optimization loop by obtaining experimental calibration curve 

data using each new S2 waveform. We then calculated the individual optimization 

metrics, aggregated the data with the previous string(s) (e.g., all S3 waveforms were 

predicted using all S1 and S2 data, one metric at a time), and predicted the next set 

of optimal S3 waveforms for each metric (Fig. 2, steps 7-8). This process was repeated 

again to generate four waveform strings in total (Fig. 2, step 9). We refer to the group 

of strings as S1-4. Each string had eight waveforms (W1-8) corresponding to the eight 

separate metrics, except the initial string (S1), which had only six randomly 

generated waveforms (arbitrary). All four strings and their associated waveforms 

were collectively referred to as run 1 (R1).  

 

Machine learning outperforms human-guided waveform design. 

Across R1, three new waveforms were generated optimized for serotonin test 

set accuracy (S1W2 was random; the three successive waveforms (S2W2, S3W2, 
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S4W2) were each more highly optimized than the last. The evolution of the serotonin 

accuracy waveform across three successive strings was compared to our initial RPV 

OG waveform (Fig. 3a). Similarities were noted between the OG waveform and the 

final optimized waveform, R1S4W2 (Fig. 3a, top right and bottom right, respectively). 

In the first run, the final waveform generated by our Bayesian optimization scheme 

nearly perfectly mimicked our chemically intuitive choices for the potentials of the 

waveform design; the step potentials differed only by ~100 mV or less. The more 

remarkable differences were in the individually optimized step lengths (τ) for 

R1S4W2. Values of τ are rarely optimized individually and instead are set to a global 

value decided by one-factor-at-a-time optimization under single experimental 

conditions (e.g., 2 ms for all steps in the OG design).38-41,43  

Even though R1S4W2 was only 5.5 ms long, it outperformed the OG which was 

8 ms. Given the similarity in pulse potentials, the increase in data fidelity was 

attributed partially to changes in the hold times of each step; that is, Bayesian 

optimization was able to generate better-performing choices of τ.  

While a 2.5 ms difference in overall pulse length was ostensibly negligible at 

data rates of 1 MHz, this equates to a reduction of 2500 data points per scan. This 

reduction can easily save gigabytes of data that otherwise would have to be stored 

and save computation time wasted during multi-hour experiments. Decreasing the 

overall length of the rapid pulse sequence also opens opportunities to increase the 

temporal resolution to >10 Hz or design more complex pulses with additional steps 

while retaining 10 Hz sampling.  
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We did not simply ‘get lucky’ or stumble across a similar waveform randomly, 

as the convergence plot (Fig. 3b) shows that for each optimization string (S2-S4), the 

waveform optimized for serotonin test set accuracy (W2) found a new minimum for 

serotonin prediction error during each iteration. This improvement across strings 

suggests that the surrogate model is learning a reasonable representation of the 

optimization landscape for serotonin accuracy. Convergence plots for all metrics and 

runs are provided (Fig. S3). 

Explicit and implicit discovery of interferent-agnostic waveforms.  

Next, we compared the results for the test and challenge set samples from the 

OG waveform to R1S4W2 (which should be the best-yet waveform for test set 

serotonin performance). Indeed, R1S4W2 outperformed the OG waveform for 

serotonin detection in the test and challenge set samples (see Methods). The train 

and test sets contain samples with varying levels of three physiologically relevant 

metabolites (DOPAC, 5-HIAA, ascorbate). Meanwhile, the challenge set samples 

have physiologically relevant pH, Na+, and K+ levels held constant in the training set 

(Fig. 3a,c, samples denoted pH 7.1, pH 7.2, and altered cations or “a.c.”). The 

optimized serotonin waveform R1S4W2 outperformed the OG waveform for 

interferents it was explicitly (DOPAC, 5-HIAA, ascorbate) and not expressly (pH, 

Na+/K+) trained on.  

While the OG waveform confounded changes in pH and Na+/K+ occurring in 

the challenge set, the R1S4W2 waveform did not suffer similar pitfalls (see samples 

T2 pH 7.2, T3 a.c., blank a.c. for each waveform in Fig. 3a). We further discuss the 
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performance of test and challenge set samples in Fig. S4a,b.  This result was not due 

to the waveform not sensing a change in current for varying cation concentrations or 

being ‘electrochemically silent’.67 Increases in current (hundreds of nA) were evident 

when aCSF a.c. blanks were injected compared to normal aCSF blanks (Fig. S4c. 

Similar responses were noted for pH blanks.  

To investigate whether the initial results for R1S4W2 outperforming the OG 

waveform were precise and robust, the waveforms and training/test/challenge sets 

were run in triplicate using two different electrodes (Fig. 3d-f). We determined that 

the R1S4W2 waveform increased prediction accuracy for test samples 1-4 by ~20% 

compared to the OG waveform. We found that the agnostic behavior towards pH was 

reproducible for R1S4W2 and not the OG. However, we did notice that the T3 a.c. 

challenge sample accuracy was not reproducible across electrodes for either 

waveform. We attribute this to variations in electrode fabrication. Standardizing the 

fabrication of fast voltammetry electrodes, along with multi-objective optimization 

with reproducibility as a metric, will help alleviate this issue. Regardless, the 

performance of R1S4W2 as an early optimization candidate showing enhanced test 

and challenge set accuracy demonstrates the success and future promise of the 

SeroOpt workflow.  

The SeroOpt workflow is reproducible and outperforms random search. 

 To investigate whether Bayesian optimization was “getting lucky” and not 

gleaning chemically relevant information, this process was repeated, starting with a 

new set of six random waveforms and carried out for four strings as described above 
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(Fig. 4). We refer to this as run 2 (R2). Note that data are aggregated across strings 

in each run; data between runs are not aggregated. The runs are kept separate to 

compare, from a new randomized initialization, whether four rounds of Bayesian 

optimization can repeatedly produce improved waveforms. We do not expect the 

convergence of R2 on the same waveform as R1. The search space is vast and given 

only the small subset of waveforms tested, converging on the same optima is unlikely. 

Instead, if R1 and R2 both find improved waveforms faster than the randomized 

waveforms, we can examine the black box models to see what makes the optimizer 

decide on ‘good’ waveforms (vide infra). 

In all cases, except for the first run of pH and a.c. challenge samples, the 

average serotonin test/challenge set error was lower when using the optimized 

serotonin waveforms (W2,4,6,8 for S2,3,4 of R1 and R2), when compared to the 

average for the randomly generated S1 waveforms of R1 and R2 (Fig. 4). The error 

minima were lower in all cases for the optimized waveforms; random search never 

produced a better waveform than Bayesian optimization. For example, while each W2 

in R1 improved across strings, R2S2W2 immediately found a 5-fold lower minimum 

than the starting initialization. Thus, new random initialization can cause the 

discovery of new waveforms in local minima.  

These results suggest the following. On average, Bayesian optimization 

produces better waveforms than randomly generated or chemist-enabled waveforms. 

Bayesian optimization finds waveforms corresponding to error minima better than 

random chance. The Bayesian optimization surrogate model (i.e., Gaussian process) 
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effectively models the relationship between voltammetry waveforms and 

performance, as the minima only occurred for waveforms optimized specifically for 

serotonin detection. In addition to outperforming random waveforms, waveforms 

optimized solely for dopamine did not outperform those optimized for serotonin when 

assessing serotonin output metric accuracy. For example, the average serotonin 

accuracy was ~45 nM using the randomly generated waveforms. By optimizing for 

any serotonin parameter (test set accuracy, a.c. accuracy, pH accuracy, detection 

limit), serotonin accuracy was improved to 34 nM (24% improvement). While an 

ostensibly small return on investment, this is only the first iteration of this protocol, 

and the results consistently outperformed the few standard alternatives to waveform 

design. 
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Fine-grained waveform parameter tuning improves predictive performance.  

In total, 55 waveforms were tested experimentally (the OG waveform, 12 

randomly generated waveforms from R1S1 and R2S2, and 42 Bayesian optimized 

waveforms from R1 and R2 S2-4) with their corresponding metrics given as 

optimization training data. The generated waveforms covered a wide search space 

across all the waveform parameters. In Figure 5, clusters of points are interpreted as 

exploitation, while isolated points are interpreted as exploration. A key advantage of 

Bayesian optimization is that the acquisition function parsimoniously explores a 

search space with the exploration-exploitation trade-off in mind.66 Bayesian 

a. b. c. 

Figure 4. Bayesian optimization outperforms random search. Average mean absolute error for run 
1, run 2 and the aggregate of both runs are shown for serotonin test set accuracy (a), pH 

robustness (b), and ion robustness (c). Error bars represent standard deviation. Sample size is 
shown atop the bars. The minima of error is for each group of waveforms is denoted by a red star. 

Random refers to string 1 waveforms only. Optimized refers to waveforms optimized for 5-HT 
performance (i.e., W2,4,6,8). (d-f) Convergence plots corresponding to a-c, respectively, showing 
current minimum mean absolute error at each waveform iteration. Gray boxes represent random 

initialization waveform regions.  

Ideal value  

Random  
 

e. f. d. 
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optimization judiciously explored the search space over 55 waveforms. At the time of 

writing and to our knowledge, this is the largest optimization scheme covered in 

neurochemical voltammetry waveform development. 
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Figure 5. Search space of all waveforms tested experimentally from runs 1 and 2. Red star 
represents optimum parameters. Histograms represent the frequency of that parameter value in 

the waveforms tested. (inset) Evolution of the predicted Bayesian optimization waveforms across 
two separate Bayesian optimization runs, 1 and 2, for serotonin accuracy metric in blue (W2). 

String 1 not shown as they were randomly generated. 

E2 

τ2 

τ3 

τ4 

E1 

τ1 

τ3 

E4 

E4 E3 τ2 E2 τ1 E1 

E3 

τ 1
 

E 2
 

τ 2
 

E 3
 

τ 3
 

E 4
 

Acquisition order 

Best-found parameter 

OG 

τ 4
 

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/


 25 

Data for all waveforms and metrics are provided (Tables S2, S3). We noticed 

that for serotonin accuracy (W2), the predicted waveforms between R1 and R2 looked 

similar, especially for S3 and S4 (Fig. 5, inset). The serotonin accuracy waveforms 

share characteristics with the OG waveform across R1 and R2. They exhibit low to 

high potential steps for the oxidative potential steps, and high to low potential steps 

for the reductive potential steps. By S4, all waveforms prefer the ‘intermediate’ 

anodic pulse step concept described in the VET literature, in which a relatively low 

amplitude E1 step before a higher amplitude E2 step prevents signal saturation and 

enhances concentration discrimination.47 Further, most waveforms exhibited a large 

amplitude counter-pulse (e.g., a large difference between E2 and E3 to complete the 

redox cycle).63 The fact that the model is learning these domain knowledge heuristics 

across the four iterations suggests it can also learn more complex, higher-order 

interactions. 

Waveform optimizations occurred with relatively small changes in E and τ, 

even for waveforms as simple as four steps, as shown here. Tuning these waveforms 

can result in dramatic improvements in the predictive performance differences of the 

resulting models. The effect of varying and reorganizing pulse parameters is 

relatively unexplored in a systematic, multi-variate manner, as done here. For 

example, R1S4W6 and R1S3W8 differed by ≤0.04 V and ≤0.9 ms in E and τ (Table S2). 

Yet, R1S3W8 outperformed R1S4W6 for serotonin test set, pH, and ion accuracy, with 

up to nearly a 50% reduction in error (Table S3).  
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To test whether this effect was due to differences in electrodes across strings 

(separate electrodes were used across strings to encourage generalizability across 

electrodes), we compared two similar waveforms tested on the same electrode: 

R2S1W2 and R2S1W3. These waveforms differed only by ≤0.15 V and ≤ 1.2 ms, yet 

R2S1W2 outperformed R2S1W3 in all serotonin metrics (Table S2, S3). Thus, small 

and otherwise “insignificant” changes in step potentials and holding times can 

produce significant accuracy differences. These findings support the importance of a 

technique like Bayesian optimization to tune parameters with fine-grained 

adjustments.  

The order of the steps in the rapid pulse also matters. For example, R1S1W1 

and R1S4W3 are nearly identical, except for the order of their pulses. Yet, R1S1W1 

outperformed R1S4W3 in all categories up to five-fold (Tables S2, S3).  

 

Interpretable machine learning reveals waveform parameter interactions and 

learnable heuristics  

Aside from the qualitative explanations above, interpretable machine learning 

methods68 can be applied to ‘open the black box’ and assess how Bayesian 

optimization decides on improved waveforms. Thus, we investigated if the optimizer 

was learning the heuristics that electrochemists use to optimize waveforms, if it was 

learning novel relationships from the data, or both. We used a global, model-agnostic 

technique known as partial dependence plots (PDPs) to visualize how varying 

waveform parameters affect the surrogate model predictions.68 The PDPs are useful 
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for non-parametric models, such as Gaussian processes, that are not directly 

interpretable.68 Essentially, PDPs average the predictions from the model over 

samples where all parameters, except the ones of interest, are held constant. The 

effect of changing only the parameter(s) of interest can then be inferred (i.e., the 

partial dependence of a feature).  

The PDPs for the aggregated runs (R1 and R2 combined) and the individual 

runs are shown for the serotonin test set accuracy metric (Figs. 6a, S5, S6, 

respectively). We focus on the aggregated models because these have more total 

samples and, thus, are more likely to uncover meaningful relationships. The 2D plots 

on the diagonal represent the average effect of a metric while varying that parameter. 

Generally, the more a PDP plot for a particular feature varies, the more important 

that feature. Conversely, flat lines indicate either unimportant or interacting 

features.  

The aggregated data PDPs (Fig. 6a) confirm a complex and interacting 

optimization landscape. For example, E3 oscillates, E4 is parabolic, and E1 and τ1 are 

monotonically decreasing or increasing, respectively. The 3D contour plots below the 

diagonal represent the average effects on each metric while varying two waveform 

parameters. Because we minimize error, the purple shading represents the optimal 

(minima) regions, while the yellow regions represent maxima.  

The PDPs have some weaknesses. First, PDPs represent averages, meaning 

heterogenous interactions can be obfuscated (e.g., an effect on one-half of the data 

may be averaged out by an opposite effect on the other half). Thus, non-varying 
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parameters in PDPs could be misinterpreted. To confirm this, we examined 

individual conditional expectation (ICE) plots. The ICE plots show the individual 

contributions that make up the averages in the PDP plots.68 Thus, the 2D PDPs (blue 

lines, Fig. 6a) have matching structure with the average ICE plots (blue lines, 

Fig. 6b). The individual instances (gray lines, Fig. 6b) show that there are 

heterogeneous effects hidden by the PDP averages for some parameters. For example, 

τ1, E3, and E4 have traces that do not all follow the same general trends. Thus, varying 

these parameters depends on heterogeneous interactions between the other 

waveform parameters. Meanwhile, the remaining parameters, E1, E2, τ2, τ3, and τ4, 

follow the same general trends (flat lines suggesting non-interacting waveform 

parameters). 

As an alternative to PDP and ICE plots, we used Shapley additive explanations 

(SHAP) plots.68 The SHAP values enable interpretations of how features contribute 

to individual model predictions. The SHAP plots confirmed that E3, E4, τ1, and E1 

were the most important features. Figure 6c shows the spread of the SHAP value per 

feature. Further, the heterogeneous effects, particularly in E3 and E4, are confirmed 

by the different colors of the feature values that do not cluster on a single side.  
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Figure 6. a) Partial dependence plot. b) Individual conditional expectation plots. Ticks represent 
deciles of the feature values. c) Shapley additive explanations summary plot. 

a. b. 

c. 
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Discussion  

Bayesian optimization enables global optima in high-dimensional search 

spaces to be identified by data-driven experimental designs across complex 

interaction parameters.69 Bayesian optimization has been widely applied to diverse 

fields, including automated machine learning,70 robotics,71 sensor design,72 materials 

discovery,73,74 and chemical reaction optimization.75,76 Despite its advantages and 

versatility, Bayesian optimization has rarely been applied to analytical chemistry, 

and specifically electrochemistry.77-80 

Other approaches can be used to design waveforms (e.g., first principles, 

chemometric screening, design of experiments). However, these approaches suffer 

from limited computational complexity, an exponential number of experiments 

required to optimize each parameter, resource intensity (labor, time, materials, etc.), 

and the inability to account for confounding waveform parameter interactions.81 Our 

attempts to use feature selection to identify critical waveform step potentials and 

lengths were confounded by the magnitude of the current response and the pulse 

pattern (Fig. S7). The difficulty in electrochemical waveform design arises partly 

because each pulse (voltage and step length) affects the state of the interface between 

the solution and the working electrode. This interface evolves during and between 

each pulse. The effect of an individual pulse depends not only on its characteristics 

(E and τ) but also on prior pulses. 

We introduced an experimental design framework to embed voltammetry 

waveforms and their corresponding electroanalytical performance into a Bayesian 
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optimization workflow. Rather than optimizing for an electrochemical response, the 

accuracy of the supervised regression models was optimized directly by including 

model accuracy metrics as the objectives. We explored which model metrics were 

optimizable by simultaneously performing parallel single-objective optimization 

loops across eight metrics (Fig. 2). We found that serotonin test set accuracy 

optimization was sample-efficient, reproducible, and outperformed domain-guided 

and randomly designed waveforms across multiple metrics (Fig. 3).  

We showed that in two separately initialized optimization campaigns 

consisting of four strings or ‘rounds’, we generated waveforms selective for serotonin 

in the presence of interferents (Fig. 4). Previous applications of Bayesian 

optimization in other fields achieved improvement in as few as three or four string-

like iterations (i.e., low data regimes). Thus, the behavior we observed was 

expected.73,75,82,83 Notably, our selectivity challenges were more arduous and efficient 

than many standard waveform validation schemes that test only a single interferent 

or interferent concentration after a waveform is developed for an analyte of interest. 

Selectivity is a significant barrier to effective waveform design, especially for 

background-inclusive and multi-analyte waveforms. Most voltammetry approaches 

achieve selectivity by either training a machine-learning model, modifying the 

waveform, or changing the electrode material. Rather than independently adopting 

one of the latter approaches, our data-driven waveform design uses the predictive 

performance of a machine learning model as feedback to modify waveform 
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parameters–the black box model decides what waveform would generate accurate 

PLSR predictions.  

In addition to 5-HIAA, DOPAC, and ascorbate, monovalent cation 

concentrations (i.e., Na+, K+, H+) fluctuate in the brain extracellular space with neural 

stimulation due to the biophysics of membrane polarization and repolarization, 

transporter dynamics, and elevated O2 consumption (and CO2/carbonic acid/H+ 

production) associated with synchronized action potentials.84 Thus, these species 

represent key interferents to test in the presence of analytes, as electrodes will likely 

encounter changes in interferent concentrations under real-world (in vivo) conditions. 

The literature suggests that specific voltage pulses can deconvolute 

monoamine neurotransmitter responses from cation changes.85-87 Thus, we 

hypothesized our search space would contain interferent agnostic waveforms. We 

expected to find waveforms whose voltammograms, modeled in low-dimensional 

space by PLSR, are selective for features specific only to the analytes of interest 

(dopamine and serotonin) and not those affected by interferents. Training across such 

interferents is unnecessary if a waveform-model combination can ignore cation 

interferent effects (i.e., is cation agnostic). Thus, we implicitly built the search for 

agnostic waveforms into our Bayesian workflow by introducing the concept of a 

challenge set. 

 Challenge set samples illustrated that SeroOpt can identify implicitly (i.e., 

requiring no explicit training samples) interferent agnostic waveforms (Fig. 3a). 

While the literature has demonstrated cationic interferent agnostic waveforms,67,85-
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87 our approach required no manual or additional data processing, and instead 

automatically acquired agnostic waveforms. Combining the information content of an 

optimized waveform with a powerful machine learning model (PLSR) enabled this 

agnostic behavior. 

Because step potential,47,63 step order,46 and hold time88 or hold potential86 can 

impact waveform performance, other pulse techniques that layer steps at constant 

potentials and times could maximize their performance by tuning these parameters 

similarly to the manner presented here.48 Adding more pulses could deteriorate model 

performance, as useless steps add noise to the data.48 Thus, careful selection of the 

number of steps is paramount. We confirmed this by noting performance differences 

across waveforms with only slight parameter differences. We attribute this behavior 

to the unique faradaic and non-faradaic processes occurring at sub-ms 

timescales.67,85,87,89  

Optimization of individual pulse step lengths results in different transient 

redox responses from the preceding pulses to become the starting state for the 

succeeding pulses, as opposed to letting the current decay to steady-state. A non-

steady-state approach has been shown to discriminate compounds more efficiently 

using VETs. Yet, a lack of methods for optimizing individual step lengths has 

prevented wide adoption of this practice. Differentiating dopamine from 

norepinephrine has been accomplished using pulses with differences as small as 

0.1 V, though without systematic design patterns.90 
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Potential mechanisms underlying interferent agnostic waveforms include 

diffusion layer depletion of the interfering species by the onset pulse (E1/τ1),91 and 

other differentiating information provided by unique pulse sequences and transient 

responses of the rapid pulses to the model.85,87,88 More optimization campaigns, 

interpretability techniques, and the use of numerical simulation of species at 

electrode surfaces could uncover the phenomena at play.  

Regardless, the finding that interferent agnostic waveforms can be identified 

and optimized, especially when forgoing background subtraction, shows the utility of 

historically categorized “nonspecific” capacitive currents. These findings show that 

analyte-specific information from appropriately designed waveforms occurs in the 

background current. This information is captured by our model without explicit 

training, even in the presence of interferents that affect the double layer. Previous 

reports have shown that pH and Na+/K+ fluxes can cause hundreds to thousands of 

nM prediction errors in vitro.85,92 For the same fluxes, our waveform-model 

combinations show only tens of nM error or less, and do not require explicit training, 

specialized waveform augmentation, or data analysis. 

 We noticed that across runs and interpretability methods, E1 or τ1 (onset 

pulse/time), E2 and E3 (pulse/counter pulse63), and E4 (holding potential) were 

repeatedly ranked as the most important features for the surrogate models of 

serotonin test set accuracy. These parameters represent four known heuristics: 

counter pulse potential (E3, useful for analyte confirmation),63 holding potential (E4, 

for analyte accumulation, sensitivity, and reduced serotonin fouling),35 and τ1 and E1 
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(onset time/intermediate potential; useful for selectivity and diffusion layer 

depletion).91 Further meta-analyses of these behaviors will provide essential insights 

into unexpected electrochemical optimization design patterns.  

Small amplitude onset pulses have been shown to improve the deconvolution 

and differentiation of ions such as H+,87 Na+, and K+,85 along with small amplitude 

onset sweeps for drift and pH.67,93 Again, carefully designed waveform tuning can 

result in explicit and implicit interferent agnostic waveforms. Other waveform 

parameters deemed unimportant in this study might be associated with the imposed 

constraints affecting the full exploration of parameter space or our relatively small 

sample size. Further, the interpretability methods are also estimates of the surrogate 

model, which itself is an estimate. Thus, our interpretations must be taken lightly as 

correlations, not causation. 

The SeroOpt paradigm is immediately extendable to more than four steps 

(eight parameters) to create more complex waveforms. Future research into other 

optimization metrics, supervised regression and surrogate models/kernels, and 

additional analytes is underway.94,95 For example, pulses have been shown to 

differentiate norepinephrine from dopamine.90  

We note the extendibility of our waveform embedding approach. This 

embedding can be used for any waveform type, such as sweeps, where the parameter 

values represent the slope (scan rate) of each segment, along with parameters for 

start and stop potentials. Pulse and sweep designs can also be combined.91 Similar 

approaches could also extend to embedding AC voltammetry parameters (e.g., 
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amplitude, phase).96 Thus, rather than starting from a historic performer and 

exploring new waveforms one factor at a time, entirely new waveforms can be 

discovered de novo. Our approach will help accelerate waveform development for new 

single- and multi-analyte panels in environments that hinder selectivity or other 

difficult-to-optimize metrics. Further exploration of waveforms with agnostic 

behavior and multi-objective optimization is underway for co-detection waveforms. 

To aid other investigators in this pursuit, we provide data, tutorial code notebooks, 

and videos at https://github.com/csmova/SeroOpt, as well as our corresponding open-

source voltammetry acquisition and analysis software at 

https://github.com/csmova/SeroWare.   

To our knowledge, we report the first application of active learning to 

electrochemical waveform design. Our study represents one of the largest-scale 

investigations of neurochemical detection waveforms. Using a data-driven approach, 

we generated a waveform for serotonin detection that outperformed our expert-

designed waveform and randomly generated waveforms across various metrics. We 

demonstrated the ability to search for interferent-agnostic waveforms using a priori 

design of ‘challenge’ samples. We attributed the success of SeroOpt to the efficient 

fine-grained tuning of voltage and temporal waveform parameters by Bayesian 

optimization, each having complex interaction effects. Lastly, we interpreted our 

model with three separate techniques to confirm our model was learning a 

representation of the waveform optimization landscape that aligned with heuristics 

and domain knowledge.   
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Methods 

Chemicals 

Serotonin (5-HT) hydrochloride (#H9523), dopamine (DA) hydrochloride (#H8502), 

5-hydroxyindoleacetic acid (5-HIAA) (#H8876), 3,4-dihydroxyphenylacetic acid 

(DOPAC) (#850217), and ascorbic acid (#A92902) were purchased from Sigma-Aldrich 

(St. Louis, MO). Artificial cerebrospinal fluid (aCSF) solutions were prepared as 

previously described.43,97 The aCSF solution was adjusted on the day of each 

experiment to pH 7.1, 7.2, or 7.3 ± 0.03 using HCl (Fluka, #84415). Altered cation 

(a.c.) aCSF buffer contained the following ion composition: 31 mM NaCl (#73575), 120 

mM KCl (#05257), 1.0 mM NaH2PO4 (#17844), 2.5 mM NaHCO3 (#88208) purchased 

from Honeywell Fluka (Charlotte, NC), and 1.0 mM CaCl2 (#499609) and 1.2 mM 

MgCl2 (#449172) purchased from Sigma-Aldrich. All aqueous solutions were prepared 

using Milli-Q grade or higher water (Sigma-Aldrich).  

Electrode fabrication and polymerization 

Carbon fiber microelectrodes were fabricated by vacuum-aspirating 7-μm diameter 

carbon fibers (T650/35, Cytec Carbon Fiber) into O.D. 1.2 mm x I.D. 0.69 mm, 10 cm 

length borosilicate glass capillaries (Sutter Instrument Company, Novato, CA, B120-

69-10). A micropipette puller (P-1000, Sutter Instrument Company, Novato, CA) was 

used to pull each capillary into two electrodes tapering and sealing the glass around 

the carbon fiber. Four-part epoxy (Sigma Aldrich, Spurr Low Viscosity Embedding 
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Kit- EM0300) was backfilled into the tip of each electrode. Epoxied electrodes were 

dried at 70 °C for 8-12 h. Electrode tips were cut to ~100 µm using micro-scissors 

under an inverted microscope. For electrical conduction, the electrodes were 

backfilled with a non-toxic metal alloy of gallium-indium-tin, Galinstan (Alfa Aesar, 

14634-18). Bare copper wire (0.0253-in. diameter, Archor B22) was polished using a 

600-grit polishing disc and inserted into working electrode capillaries to serve as the 

electrical connection to the potentiostat. Epoxy (Loctite EA 1C) was then placed 

around the top of each electrode to secure the Cu wire in place. The epoxy was cured 

for 24 h at room temperature. 

Electrode tips were cleaned with HPLC-grade isopropanol (Sigma Aldrich 

#34863) for 10 min. Electrodes were then overoxidized by applying a static 1.4 V 

potential for 20 min.98 Low-density EDOT:Nafion solution was made by first 

preparing a 40 mM EDOT stock; 100 µL of this stock was added to 200 µL of Nafion 

and diluted with 20 mL of acetonitrile.20 A triangle waveform (1.5 V to -0.8 V to 1.5 

V) was applied using a CHI Instruments Electrochemical Analyzer 15x at 100 mV/s 

to generate a PEDOT:Nafion coating on each electrode.  

In vitro experiments 

Reference electrodes were made by placing 0.025-inch silver wire (A-M Systems, 

783500) into bleach (5-10% sodium hypochlorite, Clorox, Oakland CA) for 10 minutes. 

Each reference electrode was rinsed with distilled water before being used in 

experiments. A flow cell (NEC-FLOW-1, Pine Research Instrumentation Inc.) was 

used to make measurements with a VICI air-actuated injector (220-0302H; VICI 
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Valco Instruments, Houston, TX). An HPLC pump by Dionex (Sunnyvale, California) 

pumped aCSF through the flow cell at a constant flow rate of 1.0 mL/min (Fig. 7). 

 

Standard concentrations were selected using a fractional factorial box design 

(Table 1). This is a chemometric approach that designs a multi-dimensional ‘box’ 

spanning analytes, their concentrations, and experimental conditions of interest.81,99 

We selected a fractional approach to bias towards low analyte concentrations and 

small relative changes. High accuracy and precision in the nM range are important 

for monitoring basal and stimulated neurotransmitter levels using a single technique.  

Figure 7. Workflow for parallel Bayesian optimization of voltammetric waveforms with intrinsic 
interferent selectivity. 
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The fractional approach avoids a full factorial design, which would require orders of 

magnitude (and prohibitively) more calibration samples. In contrast, traditional 

calibration sets are information-poor and can lead to spurious correlations when 

Set Sample DA 
(nM) 

5-HT 
(nM) 

5-HIAA 
(µM) 

DOPAC 
(µM) 

Ascorbate 
(µM) 

pH 
(units) 

KCl 
(mM) 

NaCl 
(mM) 

Training 

Blank 0 0 0 0 0 7.3 3.5 147 
A 300 0 6 80 200 7.3 3.5 147 
B 1000 20 10 70 110 7.3 3.5 147 
C 0 120 6 90 190 7.3 3.5 147 
D 450 350 4 0 130 7.3 3.5 147 
E 600 500 1 10 170 7.3 3.5 147 

Blank 0 0 0 0 0 7.3 3.5 147 
F 160 250 2 20 180 7.3 3.5 147 
G 700 300 0 0 100 7.3 3.5 147 
H 80 160 10 60 100 7.3 3.5 147 
I 20 60 0 50 160 7.3 3.5 147 
J 40 40 2 100 120 7.3 3.5 147 

Blank 0 0 0 0 0 7.3 3.5 147 
K 800 10 8 30 150 7.3 3.5 147 
L 500 0 0 0 100 7.3 3.5 147 
M 0 250 0 0 100 7.3 3.5 147 
N 0 0 10 0 100 7.3 3.5 147 
O 0 0 0 50 100 7.3 3.5 147 
P 0 0 0 0 100 7.3 3.5 147 

Blank 0 0 0 0 0 7.3 3.5 147 

Test 

T1 750 50 1 85 200 7.3 3.5 147 
T2 100 400 5 9 200 7.3 3.5 147 
T3 400 200 5 85 190 7.3 3.5 147 
T4 70 30 5 35 200 7.3 3.5 147 

Blank 0 0 0 0 0 7.3 3.5 147 

Challenge 
(pH) 

T1 pH 750 50 1 85 200 7.1 3.5 147 
Blank pH 0 0 0 0 0 7.1 3.5 147 

T2 pH 100 400 5 9 200 7.2 3.5 147 
Blank pH 0 0 0 0 0 7.2 3.5 147 

Challenge 
(a.c.) 

T3 a.c. 400 200 5 85 190 7.3 120 31 
Blank a.c. 0 0 0 0 0 7.3 120 31 

Table 1. Training, test and challenge set concentrations, in order of injection. All 
solutions prepared in artificial cerebrospinal fluid; a.c. = altered cations. 
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training a multiplexed method with overlapping signals from analytes and 

interferents.81 The training and test sets effectively spanned the concentrations and 

combinations of analytes of interest without correlation (Fig. S8). Ascorbate was 

included in all samples (except blanks) for antioxidant properties. The concentrations 

of dopamine, serotonin, 5-HIAA, DOPAC, and ascorbate were altered over 

physiologically relevant changes in concentration throughout so the model could be 

trained and tested across all analytes.  

Solutions of aCSF were purged with nitrogen for at least ten minutes before 

sample preparation. All training and test samples were prepared from stocks stored 

at -80 ˚C on the day of experiments. All solutions were adjusted to the corresponding 

pH each day prior to aliquoting. All solutions were kept covered from light and on ice 

during the experiments.  

We define a training set (i.e., calibration set) as known concentration analyte 

mixtures, i.e., “standards”, used to train a PLSR model. A test set is defined as known 

concentration analyte mixtures that were not used during training but instead held 

out and used to measure model performance. Test set samples only include samples 

with conditions occurring in the training set (i.e., the same buffer conditions). We 

define “challenge” samples as additional test set samples prepared under conditions 

not included or varied in the training set, such as varied pH and cationic buffer salt 

concentrations (Table 1; see Data Analysis). We define an injection blank or zero (0) 

as an injected solution containing only aCSF.  
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Training, test, and challenge sets were injected (~1 mL into a 500-μL loop) into 

a flow cell using a six-port valve (Fig. 7). The valve was switched to the inject position 

for ~20 s per injection. The time between injections was ≥ 200 s, depending on the 

waveform and time for the current to return to baseline. Samples were injected in a 

pseudo-randomized but consistent order. Within each string, the waveform 

calibration curves were completed across consecutive days. All waveforms within a 

string were acquired with the same electrode. A different electrode was used for each 

string to ensure the robustness of the waveform optimization. All waveforms were 

conditioned for ≥10 min in aCSF before acquiring data.  

Voltammetry hardware and software 

A two-electrode configuration via an Ag/AgCl reference electrode and a carbon fiber 

microelectrode working electrode was used. A PC with a PCIe-6363 data acquisition 

card (National Instruments (NI), Austin, TX) was used to control a WaveNeuro One 

FSCV Potentiostat System (NEC-WN-BASIC, Pine Research Instrumentation Inc.) 

with a 1,000 nA/V headstage amplifier (AC01HS2, Pine Research Instrumentation 

Inc.). The copper wire of the working electrode and the silver wire reference electrode 

were inserted into a microelectrode-headstage coupler (AC01HC0315-5, Pine 

Research Instrumentation Inc.) that connected the electrodes to the potentiostat.  

In-house software was developed for RPV as described in a previous 

publication.43 The software has since been updated and named SeroWare. Details 

regarding Seroware and open-source access to this software are found in a different 
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manuscript, titled ‘SeroWare: An open source, end-to-end software suite for 

voltammetric acquisition and analysis of neurotransmitters’ currently under review. 

 

Bayesian optimization  

Bayesian optimization was carried out using the open-source Python package 

scikit-optimize.100 This software uses an ‘ask and tell’ interface. First, the search 

space was constrained, as described in the Results. The surrogate model (Gaussian 

process regressor with a Matérn and white noise kernel, and uniform prior) was 

initialized through the ‘tell’ interface using vectorized and normalized String 1 

waveform parameters and optimization metrics. A Matérn kernel was chosen because 

of its flexibility and the assumption that the true objective function of the waveform 

parameters is not infinitely differentiable (i.e., the potentials and time applied by the 

potentiostat/data acquisition card are discretized to some degree).  

The acquisition function (expected improvement) was then minimized using 

the ‘ask’ interface to generate a vectorized waveform to be experimentally queried. 

Kernel hyperparameters (i.e., length scale, smoothness) and the acquisition function 

were optimized automatically by the limited-memory Broyden–Fletcher–Goldfarb–

Shanno (L-BFGS) algorithm in the software package. The acquisition function 

returned a vectorized waveform that was then created in SeroWare format for data 

acquisition. After experimental results were obtained with the predicted waveform. 

The metrics of all previous waveforms were aggregated with the newest metrics. The 
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Bayesian optimizer was updated using the ‘tell’ interface to set new query points 

using the ‘ask’ interface.  

In this work, increments of voltage were rounded to the nearest 0.001 V, and 

increments of time were rounded to the nearest 0.1 ms. Built-in partial dependence 

functions to scikit-learn and scikit-optimize were used to interpret the model, along 

with the SHAP Python package. 

Data analysis 

Data were extracted using in-house custom acquisition software written in 

MATLAB 2016a. Models were built as described in previous literature using open-

source Python packages (scikit-learn).43,101 Briefly, roughly 40-100 voltammograms 

were extracted per sample injection. All voltammograms were normalized, and the 

number of components was chosen using 5-fold cross-validation. Optimization 

metrics were then calculated using the final model (Table S1).  

 

Drift training: The PLSR model was trained to account for drift using 

voltammograms collected throughout the experiment while aCSF containing 

interferents flowed and injections were not occurring (~2 h). We define these 

voltammograms as “background blanks”. They are portions of the data when no 

samples are being injected. The injection blanks correct for injection artifacts, while 

the background blanks correct for drift (Fig. S9). Data in which drift was evident were 

extracted from these background epochs and labeled as ‘zero’ analyte concentrations 

to teach the model what drift, as opposed to analyte-containing, voltammograms, 
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looked like. Background blanks were in addition to data from injections of aCSF alone 

(i.e., injection blanks), which accounted for flow cell injection artifacts.  

We found this process increased the accuracy and precision of the PLSR predictions. 

It was generalizable to test set samples. We attribute this to a low-dimensional 

representation of drift learned by the model (Fig. S9). All concentration predictions 

were constrained to be ≥0 (i.e., domain knowledge dictates concentrations cannot be 

negative). Negative concentration predictions were replaced with 0).  

 

Optimization metrics: The eight different optimization metrics were dopamine 

accuracy (mean absolute error of the test set predictions), serotonin accuracy (mean 

absolute error of the test set predictions), variance of the test set blanks (proxy for 

LOD) for zero dopamine or serotonin, mean absolute error for dopamine or serotonin 

in altered cation (a.c.) aCSF (ion robustness challenge samples), and varying pH 

aCSF (pH robustness challenge samples) (Table S1). Due to experimental time 

constraints, the LOD metric was excluded from the optimization panel for the second 

run of Bayesian optimization (R2). This resulted in 30 unique waveforms for the first 

run (six random waveforms in String 1, plus three strings of eight waveforms from 

subsequent rounds of Bayesian optimization) and a total of 24 waveforms for the 

second run (six random waveforms in String 1, plus six waveforms in three rounds of 

optimization). In R1 and R2 combined, 55 unique waveforms were tested (with the 

additional OG RPV waveform also tested; Table S2). 
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Challenge samples: Test samples (T1-T4), prepared at pH 7.3, were used to assess 

dopamine and serotonin accuracy and LOD. Some test samples (T1-T3) were also 

prepared in aCSF at pH 7.1 or pH 7.2, and in aCSF with altered cation concentrations 

(Na+ and K+) to assess the accuracy of dopamine and serotonin predictions in the 

presence of varying H+, Na+, and K+ concentrations expected in vivo. We refer to these 

specially prepared test samples as ‘challenge’ samples (Table 1, Fig. 7). These samples 

enabled sparse training set size. Thus, we could optimize for interferents agnostic 

waveforms without explicitly training on these interferents. Otherwise, training 

across variations in pH or other cations would require partial or up to full-fold 

increases in the samples injected. As an efficient alternative, we optimized for 

accuracy on the challenge set samples without any increase in training set size. Thus, 

the optimization goal of challenge samples was to find a waveform inherently agnostic 

to changes in pH or cations rather than a waveform that was ‘trainable’ across these 

interferents. In this case, the interferents implicitly optimized were pH and 

monovalent cations, which is extendable to any a priori domain knowledge of 

interferents expected. This approach is particularly useful in situations where the 

training data matrix differs from the model's application (i.e., in vitro to in vivo 

generalizability).  

  

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/


 47 

Author Contributions 
AMA, ASM, CL, CSM, KAP, and MAF conceived the work and designed the experiments. ANN, 
CSM, KKN, KAP, MEC, and MEW performed all experiments. CSM and KAP analyzed the data. 
CSM wrote the code for the regression and Bayesian optimization models. KAP performed 
statistical analyses. AMA, ASM, MAF, and CL guided the project. All authors wrote and 
approved the final version of the manuscript.  
 
Acknowledgments: The authors acknowledge Biorender.com and Craiyon.com for figure 
generation.  
 
Funding: This work was supported by the National Science Foundation (CHE-2404470). CSM 
was supported by the National Science Foundation Graduate Research Fellowship Program 
(DGE-1650604 and DGE-2034835). Any opinions, findings, conclusions, or recommendations 
expressed in this material are those of the authors and do not necessarily reflect the views of 
the National Science Foundation.  

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/


 48 

References 
1. Pang, Q.; Meng, J.; Gupta, S.; Hong, X.; Kwok, C. Y.; Zhao, J.; Jin, Y.; Xu, L.; Karahan, O.; 

Wang, Z.; Toll, S.; Mai, L.; Nazar, L. F.; Balasubramanian, M.; Narayanan, B.; Sadoway, D. 
R., Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting. Nature 2022, 
608 (7924), 704-711. https://doi.org/10.1038/s41586-022-04983-9 

2. Dinh Khac, H.; Whang, G.; Iadecola, A.; Makhlouf, H.; Barnabé, A.; Teurtrie, A.; Marinova, M.; 
Huvé, M.; Roch-Jeune, I.; Douard, C.; Brousse, T.; Dunn, B.; Roussel, P.; Lethien, C., 
Nanofeather ruthenium nitride electrodes for electrochemical capacitors. Nat. Mater. 2024. 
https://doi.org/10.1038/s41563-024-01816-0 

3. Garrido-Barros, P.; Derosa, J.; Chalkley, M. J.; Peters, J. C., Tandem electrocatalytic n2 
fixation via proton-coupled electron transfer. Nature 2022, 609 (7925), 71-76. 
https://doi.org/10.1038/s41586-022-05011-6 

4. Patil, J. J.; Wan, C. T.-C.; Gong, S.; Chiang, Y.-M.; Brushett, F. R.; Grossman, J. C., Bayesian-
optimization-assisted laser reduction of poly (acrylonitrile) for electrochemical applications. 
ACS nano 2023, 17 (5), 4999-5013.  

5. Zhang, W.; Lu, L.; Zhang, W.; Wang, Y.; Ware, S. D.; Mondragon, J.; Rein, J.; Strotman, N.; 
Lehnherr, D.; See, K. A.; Lin, S., Electrochemically driven cross-electrophile coupling of alkyl 
halides. Nature 2022, 604 (7905), 292-297. https://doi.org/10.1038/s41586-022-04540-4 

6. Greenhalgh, J. C.; Fahlberg, S. A.; Pfleger, B. F.; Romero, P. A., Machine learning-guided 
acyl-acp reductase engineering for improved in vivo fatty alcohol production. Nat. Commun. 
2021, 12 (1), 5825. 10.1038/s41467-021-25831-w 

7. Romero, P. A.; Krause, A.; Arnold, F. H., Navigating the protein fitness landscape with 
Gaussian processes. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (3), E193-E201. 
doi:10.1073/pnas.1215251110 

8. Li, J.; Liu, Y.; Yuan, L.; Zhang, B.; Bishop, E. S.; Wang, K.; Tang, J.; Zheng, Y.-Q.; Xu, W.; 
Niu, S.; Beker, L.; Li, T. L.; Chen, G.; Diyaolu, M.; Thomas, A.-L.; Mottini, V.; Tok, J. B. H.; 
Dunn, J. C. Y.; Cui, B.; Pașca, S. P.; Cui, Y.; Habtezion, A.; Chen, X.; Bao, Z., A tissue-like 
neurotransmitter sensor for the brain and gut. Nature 2022, 606 (7912), 94-101. 
https://doi.org/10.1038/s41586-022-04615-2 

9. Willmore, L.; Cameron, C.; Yang, J.; Witten, I. B.; Falkner, A. L., Behavioural and dopaminergic 
signatures of resilience. Nature 2022, 611 (7934), 124-132. https://doi.org/10.1038/s41586-
022-05328-2 

10. Batten, S. R.; Bang, D.; Kopell, B. H.; Davis, A. N.; Heflin, M.; Fu, Q.; Perl, O.; Ziafat, K.; 
Hashemi, A.; Saez, I.; Barbosa, L. S.; Twomey, T.; Lohrenz, T.; White, J. P.; Dayan, P.; 
Charney, A. W.; Figee, M.; Mayberg, H. S.; Kishida, K. T.; Gu, X.; Montague, P. R., Dopamine 
and serotonin in human substantia nigra track social context and value signals during 
economic exchange. Nat. Hum. Behav. 2024. https://doi.org/10.1038/s41562-024-01831-w 

11. Flagel, S. B.; Clark, J. J.; Robinson, T. E.; Mayo, L.; Czuj, A.; Willuhn, I.; Akers, C. A.; 
Clinton, S. M.; Phillips, P. E. M.; Akil, H., A selective role for dopamine in stimulus–reward 
learning. Nature 2011, 469 (7328), 53-57. https://doi.org/10.1038/nature09588 

12. Phillips, P. E. M.; Stuber, G. D.; Heien, M. L. A. V.; Wightman, R. M.; Carelli, R. M., 
Subsecond dopamine release promotes cocaine seeking. Nature 2003, 422 (6932), 614-618. 
https://doi.org/10.1038/nature01476 

13. Pipita, M. E.; Santonico, M.; Pennazza, G.; Zompanti, A.; Fazzina, S.; Cavalieri, D.; Bruno, 
F.; Angeletti, S.; Pedone, C.; Incalzi, R. A., Integration of voltammetric analysis, protein 
electrophoresis and pH measurement for diagnosis of pleural effusions: A non-conventional 
diagnostic approach. Sci. Rep. 2020, 10 (1), 15222. https://doi.org/10.1038/s41598-020-
71542-5 

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.1038/s41586-022-04983-9
https://doi.org/10.1038/s41563-024-01816-0
https://doi.org/10.1038/s41586-022-05011-6
https://doi.org/10.1038/s41586-022-04540-4
https://doi.org/10.1038/s41586-022-04615-2
https://doi.org/10.1038/s41586-022-05328-2
https://doi.org/10.1038/s41586-022-05328-2
https://doi.org/10.1038/s41562-024-01831-w
https://doi.org/10.1038/nature09588
https://doi.org/10.1038/nature01476
https://doi.org/10.1038/s41598-020-71542-5
https://doi.org/10.1038/s41598-020-71542-5
https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/


 49 

14. Zhao, S.; Li, H.; Dai, J.; Jiang, Y.; Zhan, G.; Liao, M.; Sun, H.; Shi, Y.; Ling, C.; Yao, Y.; 
Zhang, L., Selective electrosynthesis of chlorine disinfectants from seawater. Nat. Sustain. 
2024, 7 (2), 148-157. https://doi.org/10.1038/s41893-023-01265-8 

15. Mutz, Y. S.; do Rosario, D.; Silva, L. R. G.; Galvan, D.; Janegitz, B. C.; de Q. Ferreira, R.; 
Conte-Junior, C. A., A single screen-printed electrode in tandem with chemometric tools for 
the forensic differentiation of Brazilian beers. Sci. Rep. 2022, 12 (1), 5630. 
https://doi.org/10.1038/s41598-022-09632-9 

16. Andrews, A. M., The BRAIN Initiative: Toward a chemical connectome. ACS Chem. 
Neurosci. 2013, 4 (5), 645. https://doi.org/10.1021/cn4001044 

17. Puthongkham, P.; Venton, B. J., Recent advances in fast-scan cyclic voltammetry. Analyst 
2020, 145 (4), 1087-1102. https://doi.org/10.1039/c9an01925a 

18. Rodeberg, N. T.; Sandberg, S. G.; Johnson, J. A.; Phillips, P. E. M.; Wightman, R. M., 
Hitchhiker’s guide to voltammetry: Acute and chronic electrodes for in vivo fast-scan cyclic 
voltammetry. ACS Chem. Neurosci. 2017, 8 (2), 221-234. 
https://doi.org/10.1021/acschemneuro.6b00393 

19. Daws, L.; Andrews, A.; Gerhardt, G., Electrochemical techniques and advances in 
psychopharmacology. In Encyclopedia of psychopharmacology, IP, S.; LH, P., Eds. Springer 
Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 1-6. 

20. Vreeland, R. F.; Atcherley, C. W.; Russell, W. S.; Xie, J. Y.; Lu, D.; Laude, N. D.; Porreca, 
F.; Heien, M. L., Biocompatible PEDOT:Nafion composite electrode coatings for selective 
detection of neurotransmitters in vivo. Anal. Chem. 2015, 87 (5), 2600-2607. 
https://doi.org/10.1021/ac502165f 

21. Shao, Z.; Chang, Y.; Venton, B. J., Carbon microelectrodes with customized shapes for 
neurotransmitter detection: A review. Anal. Chim. Acta 2022, 1223, 340165. 
https://doi.org/10.1016/j.aca.2022.340165 

22. Castagnola, E.; Robbins, E. M.; Krahe, D. D.; Wu, B.; Pwint, M. Y.; Cao, Q.; Cui, X. T., 
Stable in-vivo electrochemical sensing of tonic serotonin levels using PEDOT/CNT-coated 
glassy carbon flexible microelectrode arrays. Biosens. Bioelectron. 2023, 230, 115242. 
https://doi.org/10.1016/j.bios.2023.115242 

23. Rafi, H.; Zestos, A. G., Multiplexing neurochemical detection with carbon fiber 
multielectrode arrays using fast-scan cyclic voltammetry. Anal. Bioanal. Chem. 2021, 413 (27), 
6715-6726.  

24. Swamy, B. E. K.; Venton, B. J., Carbon nanotube-modified microelectrodes for 
simultaneous detection of dopamine and serotoninin vivo. Analyst 2007, 132 (9), 876-884. 
https://doi.org/10.1039/B705552H 

25. Mena, S.; Visentin, M.; Witt, C. E.; Honan, L. E.; Robins, N.; Hashemi, P., Novel, user-
friendly experimental and analysis strategies for fast voltammetry: Next generation FSCAV 
with artificial neural networks. ACS Meas. Sci. Au 2022, 2 (3), 241-250. 
https://doi.org/10.1021/acsmeasuresciau.1c00060 

26. Twomey, T.; Barbosa, L.; Lohrenz, T.; Montague, P. R., Deep learning architectures for 
FSCV, a comparison. arXiv (Medical Physics) 2022,  (posted 2022-12-05). 
https://doi.org/10.48550/arXiv.2212.01960 (accessed 2023-12-12) 

27. Montague, P. R.; Kishida, K. T., Computational underpinnings of neuromodulation in 
humans. Cold Spring Harbor Symp. Quant. Biol. 2018, 83, 71-82. 
https://doi.org/10.1101/sqb.2018.83.038166 

28. Dunham, K. E.; Venton, B. J., Improving serotonin fast-scan cyclic voltammetry detection: 
New waveforms to reduce electrode fouling. Analyst 2020, 145 (22), 7437-7446. 
https://doi.org/10.1039/D0AN01406K 

29. Rafi, H.; Zestos, A. G., Recent advances in FSCV detection of neurochemicals via 
waveform and carbon microelectrode modification. J. Electrochem. Soc. 2021, 168 (5), 
057520.  

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.1038/s41893-023-01265-8
https://doi.org/10.1038/s41598-022-09632-9
https://doi.org/10.1021/cn4001044
https://doi.org/10.1039/c9an01925a
https://doi.org/10.1021/acschemneuro.6b00393
https://doi.org/10.1021/ac502165f
https://doi.org/10.1016/j.aca.2022.340165
https://doi.org/10.1016/j.bios.2023.115242
https://doi.org/10.1039/B705552H
https://doi.org/10.1021/acsmeasuresciau.1c00060
https://doi.org/10.48550/arXiv.2212.01960
https://doi.org/10.1101/sqb.2018.83.038166
https://doi.org/10.1039/D0AN01406K
https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/


 50 

30. Fedorowski, J.; LaCourse, W. R., A review of pulsed electrochemical detection following 
liquid chromatography and capillary electrophoresis. Anal. Chim. Acta 2015, 861, 1-11. 
https://doi.org/10.1016/j.aca.2014.08.035 

31. Wei, Z.; Yang, Y.; Wang, J.; Zhang, W.; Ren, Q., The measurement principles, working 
parameters and configurations of voltammetric electronic tongues and its applications for 
foodstuff analysis. J. Food Eng. 2018, 217, 75-92. 
https://doi.org/10.1016/j.jfoodeng.2017.08.005 

32. Moro, G.; Silvestri, A.; Ulrici, A.; Conzuelo, F.; Zanardi, C., How to optimize the analytical 
performance of differential pulse voltammetry: One variable at time versus design of 
experiments. J Solid State Electrochem. 2024, 28 (3), 1403-1415. 10.1007/s10008-023-
05753-x 

33. Jaworski, A.; Rapecki, T.; Wikiel, K., Consolidated designer waveform for maximizing 
analytical output of voltammetric measurements for complex chemical matrices. J. Electroanal. 
Chem. 2023, 936, 117332. https://doi.org/10.1016/j.jelechem.2023.117332 

34. Hashemi, P.; Dankoski, E. C.; Petrovic, J.; Keithley, R. B.; Wightman, R. M., Voltammetric 
detection of 5-hydroxytryptamine release in the rat brain. Anal. Chem. 2009, 81 (22), 9462-71. 
https://doi.org/10.1021/ac9018846 

35. Venton, B. J.; Cao, Q., Fundamentals of fast-scan cyclic voltammetry for dopamine 
detection. Analyst 2020, 145 (4), 1158-1168. https://doi.org/10.1039/C9AN01586H 

36. Heien, M. L. A. V.; Phillips, P. E. M.; Stuber, G. D.; Seipel, A. T.; Wightman, R. M., 
Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases 
sensitivity. Analyst 2003, 128 (12), 1413-1419. https://doi.org/10.1039/B307024G 

37. Kim, S. Y.; Oh, Y. B.; Shin, H. J.; Kim, D. H.; Kim, I. Y.; Bennet, K.; Lee, K. H.; Jang, D. 
P., 5-hydroxytryptamine measurement using paired pulse voltammetry. Biomed. Eng. Lett 
2013, 3 (2), 102-108. https://doi.org/10.1007/s13534-013-0093-z 

38. Park, C.; Oh, Y.; Shin, H.; Kim, J.; Kang, Y.; Sim, J.; Cho, H. U.; Lee, H. K.; Jung, S. J.; 
Blaha, C. D.; Bennet, K. E.; Heien, M. L.; Lee, K. H.; Kim, I. Y.; Jang, D. P., Fast cyclic square-
wave voltammetry to enhance neurotransmitter selectivity and sensitivity. Anal. Chem. 2018, 
90 (22), 13348-13355. https://doi.org/10.1021/acs.analchem.8b02920 

39. Shin, H.; Oh, Y.; Park, C.; Kang, Y.; Cho, H. U.; Blaha, C. D.; Bennet, K. E.; Heien, M. L.; 
Kim, I. Y.; Lee, K. H.; Jang, D. P., Sensitive and selective measurement of serotonin in vivo 
using fast cyclic square-wave voltammetry. Anal. Chem. 2020, 92 (1), 774-781. 
https://doi.org/10.1021/acs.analchem.9b03164 

40. Oh, Y.; Heien, M. L.; Park, C.; Kang, Y. M.; Kim, J.; Boschen, S. L.; Shin, H.; Cho, H. U.; 
Blaha, C. D.; Bennet, K. E.; Lee, H. K.; Jung, S. J.; Kim, I. Y.; Lee, K. H.; Jang, D. P., Tracking 
tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. Biosens. 
Bioelectron. 2018, 121, 174-182. https://doi.org/10.1016/j.bios.2018.08.034 

41. Shin, H.; Goyal, A.; Barnett, J. H.; Rusheen, A. E.; Yuen, J.; Jha, R.; Hwang, S. M.; Kang, 
Y.; Park, C.; Cho, H.-U.; Blaha, C. D.; Bennet, K. E.; Oh, Y.; Heien, M. L.; Jang, D. P.; Lee, K. 
H., Tonic serotonin measurements in vivo using N-shaped multiple cyclic square wave 
voltammetry. Anal. Chem. 2021, 93 (51), 16987-16994. 
https://doi.org/10.1021/acs.analchem.1c02131 

42. Abdalla, A.; Atcherley, C. W.; Pathirathna, P.; Samaranayake, S.; Qiang, B.; Peña, E.; 
Morgan, S. L.; Heien, M. L.; Hashemi, P., In vivo ambient serotonin measurements at carbon-
fiber microelectrodes. Anal. Chem. 2017, 89 (18), 9703-9711. 
https://doi.org/10.1021/acs.analchem.7b01257 

43. Movassaghi, C. S.; Perrotta, K. A.; Yang, H.; Iyer, R.; Cheng, X.; Dagher, M.; Fillol, M. A.; 
Andrews, A. M., Simultaneous serotonin and dopamine monitoring across timescales by rapid 
pulse voltammetry with partial least squares regression. Anal. Bioanal. Chem. 2021, 413 (27), 
6747-6767. https://doi.org/10.1007/s00216-021-03665-1 

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.1016/j.aca.2014.08.035
https://doi.org/10.1016/j.jfoodeng.2017.08.005
https://doi.org/10.1016/j.jelechem.2023.117332
https://doi.org/10.1021/ac9018846
https://doi.org/10.1039/C9AN01586H
https://doi.org/10.1039/B307024G
https://doi.org/10.1007/s13534-013-0093-z
https://doi.org/10.1021/acs.analchem.8b02920
https://doi.org/10.1021/acs.analchem.9b03164
https://doi.org/10.1016/j.bios.2018.08.034
https://doi.org/10.1021/acs.analchem.1c02131
https://doi.org/10.1021/acs.analchem.7b01257
https://doi.org/10.1007/s00216-021-03665-1
https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/


 51 

44. Movassaghi, C. S.; Alcañiz Fillol, M.; Kishida, K. T.; McCarty, G.; Sombers, L. A.; Wassum, 
K. M.; Andrews, A. M., Maximizing electrochemical information: A perspective on background-
inclusive fast voltammetry. Anal. Chem. 2024. https://doi.org/10.1021/acs.analchem.3c04938 

45. Bard, A. J.; Faulkner, L. R.; White, H. S., Electrochemical methods: Fundamentals and 
applications. John Wiley & Sons: 2022. 

46. Campos, I.; Alcañiz, M.; Masot, R.; Soto, J.; Martínez-Máñez, R.; Vivancos, J.-L.; Gil, L., 
A method of pulse array design for voltammetric electronic tongues. Sens. Actuators, B 2012, 
161 (1), 556-563. https://doi.org/10.1016/j.snb.2011.10.075 

47. Fuentes, E.; Alcañiz, M.; Contat, L.; Baldeón, E. O.; Barat, J. M.; Grau, R., Influence of 
potential pulses amplitude sequence in a voltammetric electronic tongue (VET) applied to 
assess antioxidant capacity in aliso. Food Chem. 2017, 224, 233-241. 
https://doi.org/10.1016/j.foodchem.2016.12.076 

48. Ivarsson, P.; Holmin, S.; Höjer, N.-E.; Krantz-Rülcker, C.; Winquist, F., Discrimination of 
tea by means of a voltammetric electronic tongue and different applied waveforms. Sens. 
Actuators, B 2001, 76 (1), 449-454. https://doi.org/10.1016/S0925-4005(01)00583-4 

49. Ross, A. E.; Venton, B. J., Sawhorse waveform voltammetry for selective detection of 
adenosine, ATP, and hydrogen peroxide. Anal. Chem. 2014, 86 (15), 7486-7493. 
https://doi.org/10.1021/ac501229c 

50. Altieri, S. C.; Yang, H.; O'Brien, H. J.; Redwine, H. M.; Senturk, D.; Hensler, J. G.; 
Andrews, A. M., Perinatal vs genetic programming of serotonin states associated with anxiety. 
Neuropsychopharmacology 2015, 40 (6), 1456-70. https://doi.org/10.1038/npp.2014.331 

51. Yang, H.; Thompson, A. B.; McIntosh, B. J.; Altieri, S. C.; Andrews, A. M., Physiologically 
relevant changes in serotonin resolved by fast microdialysis. ACS Chem. Neurosci. 2013, 4 
(5), 790-8. https://doi.org/10.1021/cn400072f 

52. Altieri, S.; Singh, Y.; Sibille, E.; Andrews, A. M., Serotonergic pathways in depression. In 
Neurobiology of Depression, CRC Press: 2011; Vol. 20115633, pp 143-170. 

53. Marcinkiewcz, C. A.; Mazzone, C. M.; D’Agostino, G.; Halladay, L. R.; Hardaway, J. A.; 
DiBerto, J. F.; Navarro, M.; Burnham, N.; Cristiano, C.; Dorrier, C. E.; Tipton, G. J.; 
Ramakrishnan, C.; Kozicz, T.; Deisseroth, K.; Thiele, T. E.; McElligott, Z. A.; Holmes, A.; 
Heisler, L. K.; Kash, T. L., Serotonin engages an anxiety and fear-promoting circuit in the 
extended amygdala. Nature 2016, 537 (7618), 97-101. https://doi.org/10.1038/nature19318 

54. Tye, K. M.; Prakash, R.; Kim, S.-Y.; Fenno, L. E.; Grosenick, L.; Zarabi, H.; Thompson, K. 
R.; Gradinaru, V.; Ramakrishnan, C.; Deisseroth, K., Amygdala circuitry mediating reversible 
and bidirectional control of anxiety. Nature 2011, 471 (7338), 358-362. 
https://doi.org/10.1038/nature09820 

55. Movassaghi, C. S.; Andrews, A. M., Call me serotonin. Nat. Chem. 2024, 16 (4), 670-670. 
https://doi.org/10.1038/s41557-024-01488-y 

56. Gershon, M. D.; Margolis, K. G., The gut, its microbiome, and the brain: Connections and 
communications. The Journal of Clinical Investigation 2021, 131 (18). 
https://doi.org/10.1172/JCI143768 

57. Murphy, D. L.; Fox, M. A.; Timpano, K. R.; Moya, P. R.; Ren-Patterson, R.; Andrews, A. 
M.; Holmes, A.; Lesch, K.-P.; Wendland, J. R., How the serotonin story is being rewritten by 
new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, 
which functions to influence all cellular serotonin systems. Neuropharmacology 2008, 55 (6), 
932-960. https://doi.org/10.1016/j.neuropharm.2008.08.034 

58. Singh, Y. S.; Altieri, S. C.; Gilman, T. L.; Michael, H. M.; Tomlinson, I. D.; Rosenthal, S. 
J.; Swain, G. M.; Murphey-Corb, M. A.; Ferrell, R. E.; Andrews, A. M., Differential serotonin 
transport is linked to the rh5-HTTLPR in peripheral blood cells. Translational Psychiatry 2012, 
2 (2), e77-e77. https://doi.org/10.1038/tp.2012.2 

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.1021/acs.analchem.3c04938
https://doi.org/10.1016/j.snb.2011.10.075
https://doi.org/10.1016/j.foodchem.2016.12.076
https://doi.org/10.1016/S0925-4005(01)00583-4
https://doi.org/10.1021/ac501229c
https://doi.org/10.1038/npp.2014.331
https://doi.org/10.1021/cn400072f
https://doi.org/10.1038/nature19318
https://doi.org/10.1038/nature09820
https://doi.org/10.1038/s41557-024-01488-y
https://doi.org/10.1172/JCI143768
https://doi.org/10.1016/j.neuropharm.2008.08.034
https://doi.org/10.1038/tp.2012.2
https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/


 52 

59. Wrona, M. Z.; Dryhurst, G., Electrochemical oxidation of 5-hydroxytryptamine in aqueous 
solution at physiological pH. Bioorg. Chem. 1990, 18 (3), 291-317. 
https://doi.org/10.1016/0045-2068(90)90005-P 

60. Eltahir, A.; White, J.; Lohrenz, T.; Montague, P. R., Low amplitude burst detection of 
catecholamines. bioRxiv (Neuroscience) 2021,  (posted 2021-08-04). 
https://doi.org/10.1101/2021.08.02.454747 (accessed 2023-12-12) 

61. Montague, P. R.; Lohrenz, T.; White, J.; Moran, R. J.; Kishida, K. T., Random burst 
sensing of neurotransmitters. bioRxiv (Neuroscience) 2019,  (posted 2019-04-13), 607077. 
https://doi.org/10.1101/607077 (accessed 2023-12-12) 

62. Slautin, B. N.; Liu, Y.; Funakubo, H.; Vasudevan, R. K.; Ziatdinov, M.; Kalinin, S. V., 
Bayesian conavigation: Dynamic designing of the material digital twins via active learning. ACS 
Nano 2024, 18 (36), 24898-24908. 10.1021/acsnano.4c05368 

63. Campos, I.; Masot, R.; Alcañiz, M.; Gil, L.; Soto, J.; Vivancos, J. L.; García-Breijo, E.; 
Labrador, R. H.; Barat, J. M.; Martínez-Mañez, R., Accurate concentration determination of 
anions nitrate, nitrite and chloride in minced meat using a voltammetric electronic tongue. 
Sens. Actuators, B 2010, 149 (1), 71-78. https://doi.org/10.1016/j.snb.2010.06.028 

64. Roijers, D. M.; Vamplew, P.; Whiteson, S.; Dazeley, R., A survey of multi-objective 
sequential decision-making. J. Artif. Intell. Res. 2013, 48, 67-113.  

65. Dagher, M.; Perrotta, K. A.; Erwin, S. A.; Hachisuka, A.; Ayer, R.; Masmanidis, S.; Yang, 
H.; Andrews, A. M., Optogenetic stimulation of midbrain dopamine neurons produces striatal 
serotonin release. ACS Chem. Neurosci. 2022, 13 (7), 946-958.  

66. Frazier, P. I., A tutorial on Bayesian optimization. arXiv 2018. 
https://doi.org/10.48550/arXiv.1807.02811 

67. Meunier, C. J.; Mitchell, E. C.; Roberts, J. G.; Toups, J. V.; McCarty, G. S.; Sombers, L. 
A., Electrochemical selectivity achieved using a double voltammetric waveform and partial 
least squares regression: Differentiating endogenous hydrogen peroxide fluctuations from 
shifts in pH. Anal. Chem. 2018, 90 (3), 1767-1776. 
https://doi.org/10.1021/acs.analchem.7b03717 

68. Molnar, C., Interpretable machine learning. Leanpub: 
https://christophm.github.io/interpretable-ml-book/, 2020. 

69. Brochu, E.; Cora, V. M.; Freitas, N. d., A tutorial on Bayesian optimization of expensive 
cost functions, with application to active user modeling and hierarchical reinforcement learning. 
ArXiv 2010, abs/1012.2599. https://doi.org/10.48550/arXiv.1012.2599 

70. Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; Hutter, F., Fast Bayesian optimization of 
machine learning hyperparameters on large datasets. In Proceedings of the 20th International 
Conference on Artificial Intelligence and Statistics, Aarti, S.; Jerry, Z., Eds. PMLR: Proceedings 
of Machine Learning Research, 2017; Vol. 54, pp 528--536. 

71. Calandra, R.; Seyfarth, A.; Peters, J.; Deisenroth, M. P., Bayesian optimization for learning 
gaits under uncertainty. Ann. Math. Artif. Intell. 2016, 76 (1), 5-23. 10.1007/s10472-015-9463-
9 

72. Garnett, R.; Osborne, M. A.; Roberts, S. J., Bayesian optimization for sensor set selection. 
In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in 
Sensor Networks, Association for Computing Machinery: Stockholm, Sweden, 2010; pp 209–
219. 

73. Wahl, C. B.; Aykol, M.; Swisher, J. H.; Montoya, J. H.; Suram, S. K.; Mirkin, C. A., Machine 
learning-accelerated design and synthesis of polyelemental heterostructures. Sci. Adv. 2021, 
7 (52), eabj5505. https://doi.org/10.1126/sciadv.abj5505 

74. Liang, Q.; Gongora, A. E.; Ren, Z.; Tiihonen, A.; Liu, Z.; Sun, S.; Deneault, J. R.; Bash, 
D.; Mekki-Berrada, F.; Khan, S. A.; Hippalgaonkar, K.; Maruyama, B.; Brown, K. A.; Fisher Iii, 
J.; Buonassisi, T., Benchmarking the performance of Bayesian optimization across multiple 

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.1016/0045-2068(90)90005-P
https://doi.org/10.1101/2021.08.02.454747
https://doi.org/10.1101/607077
https://doi.org/10.1016/j.snb.2010.06.028
https://doi.org/10.48550/arXiv.1807.02811
https://doi.org/10.1021/acs.analchem.7b03717
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.48550/arXiv.1012.2599
https://doi.org/10.1126/sciadv.abj5505
https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/


 53 

experimental materials science domains. Npj Comput. Mater. 2021, 7 (1), 188. 
https://doi.org/10.1038/s41524-021-00656-9 

75. Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J. I. M.; Janey, J. 
M.; Adams, R. P.; Doyle, A. G., Bayesian reaction optimization as a tool for chemical synthesis. 
Nature 2021, 590 (7844), 89-96. https://doi.org/10.1038/s41586-021-03213-y 

76. Griffiths, R.-R.; Hernández-Lobato, J. M., Constrained Bayesian optimization for 
automatic chemical design using variational autoencoders. Chem. Sci. 2020, 11 (2), 577-586. 
10.1039/C9SC04026A 

77. Gundry, L.; Guo, S.-X.; Kennedy, G.; Keith, J.; Robinson, M.; Gavaghan, D.; Bond, A. M.; 
Zhang, J., Recent advances and future perspectives for automated parameterisation, 
Bayesian inference and machine learning in voltammetry. Chem. Comm. 2021, 57 (15), 1855-
1870. https://doi.org/10.1039/D0CC07549C 

78. Bond, A. M., A perceived paucity of quantitative studies in the modern era of voltammetry: 
Prospects for parameterisation of complex reactions in Bayesian and machine learning 
frameworks. J Solid State Electrochem. 2020, 24 (9), 2041-2050. 
https://doi.org/10.1007/s10008-020-04639-6 

79. Puthongkham, P.; Wirojsaengthong, S.; Suea-Ngam, A., Machine learning and 
chemometrics for electrochemical sensors: Moving forward to the future of analytical 
chemistry. Analyst 2021, 146 (21), 6351-6364. https://doi.org/10.1039/D1AN01148K 

80. Fenton Jr, A. M.; Brushett, F. R., Using voltammetry augmented with physics-based 
modeling and Bayesian hypothesis testing to identify analytes in electrolyte solutions. J. 
Electroanal. Chem. 2022, 904, 115751. https://doi.org/10.1016/j.jelechem.2021.115751 

81. Díaz-Cruz, J. M.; Esteban, M.; Ariño, C., Chemometrics in electroanalysis. 1 ed.; Springer: 
Cham, Switzerland, 2019; p 202. 

82. Torres, J. A. G.; Lau, S. H.; Anchuri, P.; Stevens, J. M.; Tabora, J. E.; Li, J.; Borovika, A.; 
Adams, R. P.; Doyle, A. G., A multi-objective active learning platform and web app for reaction 
optimization. J. Am. Chem. Soc. 2022. https://doi.org/10.1021/jacs.2c08592 

83. Pruksawan, S.; Lambard, G.; Samitsu, S.; Sodeyama, K.; Naito, M., Prediction and 
optimization of epoxy adhesive strength from a small dataset through active learning. Sci. 
Technol. Adv. Mate. 2019, 20 (1), 1010-1021. 
https://doi.org/10.1080/14686996.2019.1673670 

84. Chesler, M.; Kaila, K., Modulation of pH by neuronal activity. Trends Neurosci. 1992, 15 
(10), 396-402. https://doi.org/10.1016/0166-2236(92)90191-A 

85. Johnson, J. A.; Hobbs, C. N.; Wightman, R. M., Removal of differential capacitive 
interferences in fast-scan cyclic voltammetry. Anal. Chem. 2017, 89 (11), 6166-6174. 
https://doi.org/10.1021/acs.analchem.7b01005 

86. Johnson, J. A.; Rodeberg, N. T.; Wightman, R. M., Measurement of basal neurotransmitter 
levels using convolution-based nonfaradaic current removal. Anal. Chem. 2018, 90 (12), 7181-
7189. https://doi.org/10.1021/acs.analchem.7b04682 

87. Yoshimi, K.; Weitemier, A., Temporal differentiation of pH-dependent capacitive current 
from dopamine. Anal. Chem. 2014, 86 (17), 8576-8584. https://doi.org/10.1021/ac500706m 

88. Tian, S.-Y.; Deng, S.-P.; Chen, Z.-X., Multifrequency large amplitude pulse voltammetry: 
A novel electrochemical method for electronic tongue. Sens. Actuators, B 2007, 123 (2), 1049-
1056. https://doi.org/10.1016/j.snb.2006.11.011 

89. Takmakov, P.; Zachek, M. K.; Keithley, R. B.; Bucher, E. S.; McCarty, G. S.; Wightman, 
R. M., Characterization of local pH changes in brain using fast-scan cyclic voltammetry with 
carbon microelectrodes. Anal. Chem. 2010, 82 (23), 9892-9900. 
https://doi.org/10.1021/ac102399n 

90. Jo, T.; Yoshimi, K.; Takahashi, T.; Oyama, G.; Hattori, N., Dual use of rectangular and 
triangular waveforms in voltammetry using a carbon fiber microelectrode to differentiate 

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.1038/s41524-021-00656-9
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1039/D0CC07549C
https://doi.org/10.1007/s10008-020-04639-6
https://doi.org/10.1039/D1AN01148K
https://doi.org/10.1016/j.jelechem.2021.115751
https://doi.org/10.1021/jacs.2c08592
https://doi.org/10.1080/14686996.2019.1673670
https://doi.org/10.1016/0166-2236(92)90191-A
https://doi.org/10.1021/acs.analchem.7b01005
https://doi.org/10.1021/acs.analchem.7b04682
https://doi.org/10.1021/ac500706m
https://doi.org/10.1016/j.snb.2006.11.011
https://doi.org/10.1021/ac102399n
https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/


 54 

norepinephrine from dopamine. J. Electroanal. Chem. 2017, 802, 1-7. 
https://doi.org/10.1016/j.jelechem.2017.08.037 

91. Zhu, F.; Yan, J.; Sun, C.; Zhang, X.; Mao, B., An electrochemical method for selective 
detection of dopamine by depleting ascorbic acid in diffusion layer. J. Electroanal. Chem. 2010, 
640 (1), 51-55. https://doi.org/10.1016/j.jelechem.2010.01.006 

92. Kishida, K. T.; Saez, I.; Lohrenz, T.; Witcher, M. R.; Laxton, A. W.; Tatter, S. B.; White, J. 
P.; Ellis, T. L.; Phillips, P. E. M.; Montague, P. R., Subsecond dopamine fluctuations in human 
striatum encode superposed error signals about actual and counterfactual reward. Proc. Natl. 
Acad. Sci. U.S.A. 2016, 113 (1), 200-205. https://doi.org/10.1073/pnas.1513619112 

93. Meunier, C. J.; McCarty, G. S.; Sombers, L. A., Drift subtraction for fast-scan cyclic 
voltammetry using double-waveform partial-least-squares regression. Anal. Chem. 2019, 91 
(11), 7319-7327. https://doi.org/10.1021/acs.analchem.9b01083 

94. Vasudevan, R. K.; Ziatdinov, M.; Vlcek, L.; Kalinin, S. V., Off-the-shelf deep learning is not 
enough, and requires parsimony, Bayesianity, and causality. Npj Comput. Mater. 2021, 7 (1), 
16. https://doi.org/10.1038/s41524-020-00487-0 

95. Ziatdinov, M. A.; Ghosh, A.; Kalinin, S. V., Physics makes the difference: Bayesian 
optimization and active learning via augmented Gaussian process. Mach. Learn.: Sci. Technol. 
2022, 3 (1), 015003. https://doi.org/10.48550/arXiv.2108.10280 

96. Jaworski, A.; Wikiel, H.; Wikiel, K., Benefiting from information-rich multi-frequency AC 
voltammetry coupled with chemometrics on the example of on-line monitoring of leveler 
component of electroplating bath. Electroanalysis 35 (1), e202200478. 
https://doi.org/10.1002/elan.202200478 

97. Zhao, C.; Liu, Q.; Cheung, K. M.; Liu, W.; Yang, Q.; Xu, X.; Man, T.; Weiss, P. S.; Zhou, 
C.; Andrews, A. M., Narrower nanoribbon biosensors fabricated by chemical lift-off lithography 
show higher sensitivity. ACS nano 2021, 15 (1), 904-915. 
https://doi.org/10.1021/acsnano.0c07503 

98. Mitchell, E. C.; Dunaway, L. E.; McCarty, G. S.; Sombers, L. A., Spectroelectrochemical 
characterization of the dynamic carbon-fiber surface in response to electrochemical 
conditioning. Langmuir 2017, 33 (32), 7838-7846. 
https://doi.org/10.1021/acs.langmuir.7b01443 

99. Hibbert, D. B., Experimental design in chromatography: A tutorial review. J. Chrom. B. 
2012, 910, 2-13. https://doi.org/10.1016/j.jchromb.2012.01.020 

100. Https://scikit-optimize.Github.Io/stable/index.Html. 
101. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, 

M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., Scikit-learn: Machine learning in Python. J. Mach. 
Learn. Res. 2011, 12, 2825-2830.  

 
 
 
 
 
 
 

https://doi.org/10.26434/chemrxiv-2024-xq474 ORCID: https://orcid.org/0000-0001-9345-0091 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.1016/j.jelechem.2017.08.037
https://doi.org/10.1016/j.jelechem.2010.01.006
https://doi.org/10.1073/pnas.1513619112
https://doi.org/10.1021/acs.analchem.9b01083
https://doi.org/10.1038/s41524-020-00487-0
https://doi.org/10.48550/arXiv.2108.10280
https://doi.org/10.1002/elan.202200478
https://doi.org/10.1021/acsnano.0c07503
https://doi.org/10.1021/acs.langmuir.7b01443
https://doi.org/10.1016/j.jchromb.2012.01.020
https://scikit-optimize.github.io/stable/index.Html
https://doi.org/10.26434/chemrxiv-2024-xq474
https://orcid.org/0000-0001-9345-0091
https://creativecommons.org/licenses/by-nc/4.0/

	Graphical Abstract/Cover Art Submission
	Abstract
	Introduction
	Results
	The SeroOpt workflow casts waveform development as black-box optimization.
	Search space constraints & initialization by embedding domain knowledge.
	Model calibration & optimization metrics allow for relevant objective functions.
	Parallel single objective optimization of multiple metrics.
	Machine learning outperforms human-guided waveform design.
	Explicit and implicit discovery of interferent-agnostic waveforms.
	The SeroOpt workflow is reproducible and outperforms random search.
	Fine-grained waveform parameter tuning improves predictive performance.
	Interpretable machine learning reveals waveform parameter interactions and learnable heuristics

	Discussion
	Methods
	Chemicals
	Electrode fabrication and polymerization
	In vitro experiments
	Voltammetry hardware and software
	Bayesian optimization
	Data analysis

	References

