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ABSTRACT 

Voltammetry is widely used for fast, data-dense measurements of redox-active analytes in versatile 

environments, including the brain. Voltammetry requires minimal hardware beyond a potentiostat, a front-

end amplifier, and a computer. Nonetheless, researchers must often develop or modify software packages 

for application-specific uses. Of the voltammetry software available, significant issues exist with source 

code inaccessible for updating or customization, non-configurable data processing procedures, and 

hardware incompatibilities. These limitations, coupled with the recent proliferation of waveform types and 

increased demands for high bandwidth data acquisition and efficient data processing, create the need for 

sophisticated, powerful, and flexible voltammetry software. We report developing ‘SeroWare’, an open-

source, end-to-end voltammetry acquisition and analysis software designed to handle a wide variety of use 

cases encountered by voltammetry users. Although inspired by neurochemical analyses, this software is 

flexible, customizable, and compatible with open-source toolkits. The modular software architecture 

enables users to generate, acquire, and analyze voltammetry data of different types, ranging from pulse and 

sweep waveforms to fast and slow scans via easily accessible and exportable file formats. Template code 

is provided for communicating with a variety of standard external devices. We report several novel features 

for waveform applications and data flow. In-depth documentation in a User Guide and video tutorials are 

provided to enable new research directions, particularly regarding shareability and lowering the barriers to 

entry for new investigators. 
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1. INTRODUCTION 

Fast voltammetry for neurochemical monitoring is in its fifth decade.1 Advances in the field have 

focused on developing and implementing faster and longer measurements,2,3 novel waveforms,4-9 electrode 

materials and arrays,10-12 and data processing techniques.13-22 Over 12,000 publications on fast-scan cyclic 

voltammetry for neurotransmitter detection have been published in the last decade alone. The data 

acquisition and analysis software that measurements rely on supports these developments. Yet only a few 

published software packages provide the acquisition capabilities required for performing voltammetry for 

neurochemical analyses.23-26  

Rapid increases in data acquisition speeds and storage capacities have enabled new voltammetry 

techniques and data analysis tools to extract maximal chemical information from 

voltammograms.9,13,14,19,22,27-39 Yet, no single platform allows users to use these advances widely. Current 

open-source and commercial electroanalytical software focus on mechanistic simulations,40 amenable only 

to slow scan methods or other niche applications,41 or they aid in analyzing post-acquisition data.42 Most 

existing voltammetry software is costly, no longer maintained, poorly documented, or not freely available, 

forcing research groups to write time-consuming custom code solutions unavailable to others.  

Meanwhile, neuroscience,43 genetics,44 bioinformatics,45 and chemometrics46 have benefited from a 

community-involved open-source software approach to data acquisition and analysis, including open-
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source data sets. Voltammetry would benefit similarly from readily available, easy-to-use, well-

documented, and well-maintained software with end-to-end acquisition and analysis capabilities. This 

software would include everything needed to run a voltammetry experiment on the software side, from 

waveform generation to configuring and acquiring devices to processing and extracting data and performing 

machine learning for data analysis. 

To fill these needs and move towards a community approach for voltammetry software, we wrote and 

released SeroWare (available at https://github.com/csmova/SeroWare), an acquisition and analysis 

software geared towards neurochemical analyses yet completely flexible for general use. While some of 

the most used voltammetry acquisition software is written in LabVIEW, we wrote the initial SeroWare 

version in MATLAB. MATLAB is one of the most commonly used academic and scientific software 

development languages.47 It offers access to built-in graphical user interface (GUI) building, as well as data 

acquisition and analysis tools. Moreover, MATLAB is compatible with open-source domain-specific signal 

processing and data analysis scripts.48-52 While LabVIEW is maintained by National Instruments (NI) and 

has facile NI card communication, MATLAB contains the built-in data acquisition (DAQ) toolbox as a 

powerful alternative. Further, MATLAB is optimized for vectorized data analyses, lending itself naturally 

to electrochemical data processing.  

The shareability of new software is paramount. To compete with LabVIEW, which is free, we provide 

compiled versions of SeroWare that run in standalone mode where no MATLAB installation or license is 

required. A MATLAB license is needed to make custom edits to the codebase. This is commonly provided 

to researchers at academic institutions free of charge. The software is compatible with field-standard 

multifunction input/output (PCI) devices for potentiostat connections. We offer an ‘out of the box’ compiled 

version and a developer/advanced user version for those who want to customize and incorporate their scripts 

into the codebase. All software versions are publicly available (https://github.com/csmova/SeroWare) with 

extensive documentation and tutorials on typical example use cases and information for users who want to 
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customize the software for specialized needs. We encourage further testing, feature and issue requests, and 

code contributions through GitHub.  

We named the software package SeroWare in honor of the fact that it was initially developed for brain 

serotonin monitoring via voltammetry. Nonetheless, SeroWare applies to the analysis of any electroactive 

analyte or any mode of voltammetry (e.g., chronoamperometry, sweep voltammetry, pulse voltammetry, 

etc.), including a wide variety of applications in the voltammetric electronic tongue field (e.g., wastewater, 

food, beverage analyses).53-56 We introduce several new features and unique data workflows not reported 

in previous software publications. These include a separate module for waveform generation that intuitively 

allows users to design, edit, and share a variety of waveforms and acquisition methods (FSCV, FSCAV, 

etc.), limited only by their choice of hardware. SeroWare enables real-time waveform modification, manual 

and automated external event labeling, and fully customizable data filtering, processing, and exporting 

modes. We also include working code to connect to and control standard auxiliary hardware devices (e.g., 

injectors, stimulators, micromanipulators) over standard serial connections. 

We previously published an in vitro and in vivo validation study using a pilot version of SeroWare that 

enabled data acquisition and analysis.29 Here, we provide a quick-start guide for users familiar with 

voltammetry and looking for an intuitive software solution with specific yet customizable capabilities. We 

envision the SeroWare package advancing acquisition techniques and data analysis tools across the 

voltammetry field. Future releases will incorporate streamlined chemometric processing (i.e., supervised 

machine learning regression for neurochemical concentration predictions) and community-accessible 

databases for voltammetry training data. To this end, we include tutorial coding notebooks on the import 

and machine learning analysis of SeroWare data in Python (SeroML), available at 

https://github.com/csmova/SeroML.    
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2. RESULTS & DISCUSSION 

SeroWare is organized into three MATLAB modules that interact seamlessly and logically in a manner 

understandable by voltammetry users of different experience levels. The modules include SeroSignalGen, 

SeroAcq, and SeroDataProcess (Fig. 1). Together, these modules handle waveform generation, data 

acquisition, and initial processing of raw data, respectively, along with external event control, filtering, 

analysis, and visualization tools. 

 

2.1 SeroSignalGen:  

Figure 1. Overview of the SeroWare software suite. 

Figure 2. The SeroSignalGen user interface, in which a triangle waveform was built  
in a segment-wise manner. 
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The SeroSignalGen module enables the creation 

and visualization of any voltammetry waveform in a 

versatile yet simple and user-friendly manner. The user can 

load a previously generated waveform as a .sig file or 

generate a new waveform to be saved (and shared) as a .sig 

file. The signal generation user interface and a fast-scan 

waveform commonly used for dopamine monitoring are 

shown in Figure 2.57 

To generate a custom waveform, a user selects 

parameters such as waveform frequency, potential steps or 

scan rates, and hold times. Default waveform frequency 

values are provided as buttons for ease of use (e.g., 10 Hz 

for in vivo measurements,58 60 Hz for in vitro pre-

conditioning31). The user can also set custom frequencies 

within the limits of the hardware used. The sampling 

frequency (the frequency at which the data acquisition card 

samples measured data) can be set to common values (100 

kHz or 250 kHz) or custom values using the text box. Faster 

sampling frequencies up to and exceeding 1 MHz are 

becoming more commonplace. They can be used with SeroSignalGen provided the hardware, including the 

acquisition card, supports these frequencies. Data files are generated in SeroAcq (vide infra), where users 

set the number of sampled points they want to retain in the data files (e.g., data need not be retained during 

hold times for smaller data file sizes).  

SeroWare can be used to build custom waveforms. The waveform file is built by vectorizing user-

defined waveform ‘segments’. These segments can be cathodic or anodic scans at user-defined scan rates, 
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Figure 3. Examples of waveforms 
designed in SeroSignalGen. A) Continuous 

hold waveform for static oxidation pre-
conditioning, amperometric experiments, 

accumulation waveforms, etc. B) Randomly 
generated pulse waveform without hold 

times, based on reference 59; custom tau, 
step, and hold times can be implemented. 
C) Multiple-scan rate waveform, based on 

reference 7. D) A dual alternating rapid pulse 
and fast scan waveform from reference 29.  
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hold potentials, or pulse steps defined by hold times and the numbers of sampled points. Figure 3 shows 

four waveforms used in previous studies,7,29,59 which can be quickly built, shared, and edited in the .sig file 

format using SeroSignalGen.  

The characteristics of each waveform segment are displayed and automatically calculated. A 

segmented approach has several benefits: 1) segments can be easily reordered using the up/down/delete/add 

buttons in the segment table, and 2) users can build segments across any potential range by entering the 

desired amount of time or number of points to sample (for example, if a specific scan rate or a minimum 

number of sampled points is desired). Parameters are automatically updated as needed, and segments are 

visualized in real-time plots. Waveforms are named and saved. This feature allows the sharing and editing 

of waveforms across users, which is helpful given the increasing numbers and complexity of recently 

published waveforms.4,5,7,8,19,20,60 Multiple waveforms can be concatenated to facilitate comparing 

waveform performance.29 Unique data handling procedures for combined waveforms are also available (see 

Methods). Users can load and edit a previously generated .sig file using the load signal button. Table 1 

summarizes SeroWare features described throughout the manuscript and compares them to previous 

voltammetry software reports. 
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Demon HDCV SeroWare 

Open source     

User Guide, tutorials, and videos freely available     

Waveform generation interface with shareable file 
format    

Real time data visualization    
Event labeling (e.g., timestamps) 

Manual (user editable) 
Automated (device-controlled) 

   
 
 

 
 

 
 

Digital filters    
Pre-set filters    

Custom digital filter builder interface    
Kinetic analyses    

Auxiliary equipment control(s)    
Electrical stimulation     

Micromanipulator control    
Injector valve control    

Real-time waveform modification    
Single file format  

(i.e., events and voltammograms stored together)    
Figure generation & data reporting    
Optimized data and error handling    

Artifact removal    
Chemometric analyses   * 
Automated peak finding   * 

Multi-channel electrodes/electrophysiology   * 

Table 1. Comparison of published fast voltammetry software for neurochemical 
analyses. An asterisk (*) denotes partial functionality, and/or upcoming or future 

releases. Note that due to multiple releases and/or the unavailability of other listed 
software, information for Demon, HDCV, or SeroWare may be out of date and rely only 

on reports at the time of writing and/or correspondence with the maintainers of the 
packages. 
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2.2 SeroAcq 

Users acquire voltammetry data by launching the SeroAcq module. A .sig file is loaded in SeroAcq. 

Global experiment parameters are set, including the preamplifier gain and data storage options. (See the 

User Guide in the Supporting Information for more information on establishing hardware communication). 

Once the acquisition has started, real-time data are visualized in a temporal plot of current vs. time at a user-

defined voltage (e.g., the oxidation potential of dopamine; Fig. 4, top plot). This voltage can be set 

interactively during the acquisition, such that users can select various waveform voltages to monitor the 

current and the plot will update in real-time. Noise, drift, and other experimental factors at specific regions 

of interest can be straightforwardly monitored. Experimental events such as stimulations and injections can 

be labeled and time-stamped through the GUI. The visualization strategy includes cyclic voltammogram 

false-color plots (Fig. 4). Additional data visualization options are available in a separate post-acquisition 

module (see SeroDataProcess below).  

Figure 4. The SeroAcq graphical user interface. 
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2.2.1 Acquisition modes: SeroAcq offers several features not previously available in other software. 

These include ‘Accumulation mode’ and ‘Resting voltage mode’, which can apply impromptu 

changes to a waveform during acquisition in real-time without requiring the experiment to be 

stopped or a new waveform to be loaded. For example, the accumulation mode interrupts the 

applied analytical waveform and holds the electrode at a constant potential to accumulate charged 

analytes at the surface for sensitivity enhancements. The Resting voltage mode allows the analytical 

waveform hold potential or ‘non-sampled’ region to be modified. The software applies these 

changes in real time through design patterns such as event listeners, callback functions, and refresh 

cycles discussed in the Methods and Supporting Information. These modes are particularly 

interesting for advanced users developing new waveforms that want to test multiple waveforms or 

different hold potentials/times rapidly or otherwise perform adsorption-based experiments.4,6-8,29,60 

More information, tutorial videos, and example data are found in the Supporting Information.  

Experiments can be run in ‘Discard mode’ if data need not be saved (e.g., conditioning or 

equilibration experiments).61 Further, using ‘Ignore mode’, any range of points can be ignored (not 

saved). Herein, “points” refers to sampled points, which are dictated by the sampling frequency 

and used to convert sampled points to time. For example, at a data density of 125 kHz, a sampled 

point is acquired every 8 µs. Thus, an 8-ms waveform contains 1,000 points. As another example, 

using dual alternating rapid pulse and fast scan waveforms (Fig. 3d), points 1,001-11,500 can be 

discarded (this is the region of constant hold voltage, which is unnecessary for analysis).29 In this 

scenario, of 12,500 total sampled points, only the first and last 1,000 points were needed for 

analysis. Thus, data acquisition was run in Ignore mode, with the ignore start point at 1,001 and the 

number of sampled points to ignore as 10,500. This practice can considerably reduce file size and 

data overhead, particularly for long (hours) in vivo experiments.  

Other acquisition modes include ‘Injection mode’ and ‘Stimulation mode’. The injection 

mode is commonly used during in vitro experiments where calibration/training data are collected 

using a multi-port valve and a flow cell. The Stimulation mode refers most widely to an ex vivo or 
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in vivo experiment involving evoked release (e.g., pharmacologic, optogenetic, electrical, or 

behavioral/environmental stimulation). SeroWare offers several controls to administer pulse trains 

for electrical stimulation. Stimulation waveforms can be built in real-time during data acquisition 

(Fig. 4). To ensure maximal flexibility, users can run the Stimulation mode to apply event markers 

manually for devices that do not communicate directly with SeroWare. Event markers are time 

stamps generated automatically by the software to indicate when an experimental event of interest 

has occurred.  

Thus, SeroWare includes exemplary code and tutorials for those wishing to establish 

communication with auxiliary devices for direct control, such as injectors and stimulating 

electrodes. Manual event marking enables an ‘out of the box’ workaround for users wanting to use 

the acquisition and analysis capabilities of SeroWare immediately. External events can be 

generated without forcing communication with auxiliary hardware/software. Timestamps are 

automatically labeled and preserved when the data are analyzed and exported (see below). 

 

2.2.2 Auxiliary equipment control: SeroAcq offers optional control for positioning recording electrodes. 

This type of device will automatically be recognized and listed as a configuration option for users 

having COM port communication with a micromanipulator controller. Users select the step size at 

which to (re)position electrode(s) and the direction(s) in which to move. We tested the software 

control with a Sutter Instruments MPC/ROE 200 micromanipulator controller. We provide the 

control code within the source code (see User Guide in Supporting Information). Due to the various 

types of instrumentation used in combination with potentiostats, users may need to configure 

additional devices (see User Guide in Supporting Information). Requests for or issues with 

connecting devices can be submitted via GitHub for community feedback. 
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2.3 SeroDataProcess 

Once data acquisition is complete, saved .dat files can be visualized and analyzed in the 

SeroDataProcess module, which has a main module and two sub-modules (Fig. 5). The main module is 

SeroProcessData. Current vs. time data are automatically plotted in the ‘Quantification’ panel at voltage 

and point frequencies specified during acquisition. Events (i.e., injections, stimulations) are automatically 

labeled and time-stamped (Fig. 6, top). Users can define areas of the data to extract for further analysis 

based on event markers. Alternatively, they can add and label such regions manually. Another temporal 

current plot is autopopulated in the ‘Confirmation’ panel at a second user-defined voltage (Fig. 6, bottom). 

We have found that visualizing two current-time traces at different voltages is helpful during waveform 

development or in vivo analyses to identify data regions to extract for subsequent analysis (e.g., areas 

defined by anodic and cathodic peaks).  

Users can individually extract identified peaks using the Peak Extraction panel. Extracting peaks 

enables users to run kinetic analyses of stimulation and uptake data (see StimulationDataProcess). Data 

can be plotted in new windows, sliced, and saved in various ways. Artifact removal can be performed using 

the select and delete interval buttons. In addition to moving and constantly updated color plots generated 

in SeroAcq, static color plots can be automatically generated in SeroDataProcess at user-defined intervals 

for post-acquisition analysis or to produce figures (see SignalAnalyzer below).  

Figure 5. The SeroDataProcess module and submodules. 
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Users can save analysis files (extracted data) at any point to avoid losing progress or data on peak 

identification when work needs to be interrupted. For example, users analyzing long experiments (i.e., 

hours) can stop and return to a data file as needed. They can also save and share analyzed files with others 

in a reproducible and documented manner. Unlike previous software packages, SeroWare can acquire, 

timestamp, and examine the entirety of multiple hours-long experiments in a single session.24  

Several pre-set digital filtering options are available, including a moving average filter, a published 

infinite impulse response (IIR) filter developed for voltammetry baseline detrending16, and a new finite 

impulse response (FIR) filter we created. Further, SeroWare is fully incorporated with the MATLAB Filter 

Builder GUI. Users can choose the custom filter option in SeroDataProcess from over a dozen digital filter 

design options and specifications to visualize frequency responses (see Supporting Information). When 

users are satisfied with the data filter choice, standard or custom filters are immediately applied to the 

voltammetry data loaded by the user and visualized in the plots. Together with the signal processing tools 

in MATLAB, SeroWare enables the incorporation of new, custom filters regardless of whether a user has 

a filter already programmed in MATLAB. Users can save and share their filters for reproducibility. 

Incorporating powerful MATLAB analysis toolboxes with the SeroWare environment seamlessly provides 

Figure 6. SeroDataProcess interface.  
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a key advantage over LabVIEW software. Data can be extracted in filtered or raw formats using the 

SignalAnalyzer sub-module, accessible by clicking a single button.  

 

 

2.3.1 SignalAnalyzer: The ease, speed, and versatility at which SeroWare offers data extraction is a 

significant advantage, especially as data wrangling (i.e., the process of transforming data into another 

format for a specified task) for various analysis pipelines can be cumbersome.62 To begin extracting 

processed data, a separate tab is opened via SignalAnalyzer (Fig. 7). A single button click loads the selected 

data from SeroDataProcess. It allows users to visualize their voltammograms in unraveled, averaged, 

background subtracted, and color-plotted formats.  

Several options exist for data extraction to fit users’ needs and data limits. The ease and versatility 

of SeroWare in automating data exporting are other key software benefits. Data can automatically be parsed 

and labeled as desired before exporting to a .mat or .xlsx file; each peak is referenced to a label for splitting 

into machine learning training and validation sets. Statistical learning techniques continue to be adapted for 

voltammetry.11,13,29,30,63-74 SeroWare was designed with these techniques in mind to streamline data from 

waveform to machine learning model.  

Figure 7. The SignalAnalyzer GUI submodule for SeroDataProcess. 
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2.3.2 StimulationDataProcess: An analysis strategy for in vivo voltammetry involving neurotransmitter 

monitoring is fitting data to kinetic models of release and uptake.75 To fit a kinetic model to an electrical 

stimulation event, SeroWare provides an extraction and analysis procedure (Fig. 8). In this initial release, 

SeroWare fits data to uptake models using exponential decay rather than Michaelis-Menten models 

documented elsewhere.27 Users can incorporate Michaelis-Menten and other kinetic models into future 

releases. Nonetheless, parameters associated with exponential decay models have been shown to correlate 

well with Michaelis-Menten parameters and do not require the saturated uptake conditions needed for 

Michaelis-Menten curve fitting.24 Data can be extracted seamlessly into a separate file and immediately 

opened and analyzed in StimulationDataProcess by hitting the Extract and Process buttons in 

SeroDataProcess. Data shown in Figure 8 are from a potassium stimulation using an externally controlled 

picospritzer and the SeroWare event labeling feature.  

  

Figure 8. The StimulationDataProcess GUI sub-module of SeroDataProcess. BSP and BEP = basal start and end 
points, respectively; IEP = initiation end point; REP = release end poin; USP and UEP = reuptake start and end 

point, respectively.  
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CONCLUSIONS AND PROSPECTS 

We present an open-source, thoroughly documented, customizable, yet user-friendly software for 

controlling, acquiring, and analyzing voltammetry data. The minimal hardware needed includes a 

potentiostat connected to a suitable computer with a National Instruments data acquisition card, a pre-

amplifier, and appropriate electrodes. The software is compiled into a standalone version so that users 

without MATLAB licenses can run SeroWare at no cost. While we have developed SeroWare with 

neurochemistry applications in mind, this software can be used for virtually any type of voltammetry 

experiment. Other examples include electronic tongue55 and amperometric detection76, which detect 

compounds ranging from amino acids and pharmaceuticals to pollutants, explosives, food, and beverages. 

The SeroDataProcess module can analyze and extract other multi-dimensional data types outside of 

voltammetry, provided they are formatted in MATLAB. SeroWare offers new acquisition and analysis 

capabilities, emphasizing reproducible results and community-built features.  

SeroWare was purpose-built for user customization and sharing with the community at large. It is 

licensed under GNU LGPL 3.0 to ensure this remains the case. We wrote SeroWare specifically to be 

intuitive for users with different levels of voltammetry experience. For example, we beta-tested SeroWare 

with novice undergraduate student researchers in our group (see Supporting Information videos). 

Importantly, we also designed SeroWare for advanced users who desire custom solutions. The User Guide 

provides extensive information on editing and adding to the SeroWare codebase. Users can edit the GUI 

using a code-free development environment (GUIDE). More in-depth documentation is provided for users 

wanting more extensive changes to the codebase (see Supporting Information).  

 Currently, SeroWare only supports NI card data acquisition and a handful of external devices. 

SeroWare does not support multichannel or array-based measurements at present. Depending on demand 

and open-source contributions, future releases may extend support to a broader array of vendors, 

multiplexed hardware setups, and additional analysis tools. Work is underway to incorporate further 
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modules into SeroWare for seamless machine learning and database communication. We invite the 

community to contribute issues and pull requests via GitHub.  

 

METHODS 

Software: All software was written in MATLAB R2016a (MathWorks, Inc., Natick, MA). The compiled 

versions of SeroWare can be run in standalone mode, so no MATLAB installation or license is required. A 

MATLAB license is needed to make custom edits to the code. Users can choose between stand-alone 

versions of each module that launch the ready-to-use program in a single click or the raw MATLAB files, 

which provide straightforward access to implementing code modifications and executing changes in real 

time. Each module is written in an event-driven, function-based manner, such that various functions run 

and accept user inputs through interactions with graphical user interfaces (GUIs) in the form of callbacks, 

handles, and global scope variables (see Supporting Information). 

Data flow and storage: SeroAcq handles continuous acquisition over various lengths of time in a single file 

(i.e., seconds to several hours), even at maximum sampling rates where data files contain several gigabytes 

of data. This is facilitated by a ‘batching’ strategy for reading and writing data to and from the DAQ card 

Figure 9. The SeroAcq data flow. 
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and computer (Fig. 9). Briefly, SeroWare utilizes an object-oriented approach to events and listeners, 

combined with the built-in MATLAB Data Acquisition Toolbox. Once an acquisition session is started, the 

software prepares a ‘batch’ of waveform cycles (i.e., the repeating voltage train to apply). It initializes a 

matrix of the expected size of the voltammogram data to be collected during a batch. As the DAQ card 

nears the end of a batch of waveform cycles and the data matrix is populated, the software sends the next 

round of waveform cycles to the card and reads the data from the DAQ card to computer memory. 

Users can configure how often data acquisition buffers are read or written based on computer 

performance by adjust the plot update time (and thus, number of refresh cycles).. This feature allows users 

to conserve computer processing power as needed by selecting higher values of plot update times. Users 

can define desired measurement times for continual data acquisition before stopping automatically or can 

stop the acquisition manually at any point. Data are saved in a .dat format. The data batching procedure 

allows the software to employ versatile error-handling routines to save data even if acquisition errors occur. 

This waveform batching and queuing procedure also enables ad hoc modification of waveforms in the 

accumulation/resting voltage modes described above.  

 

Hardware: A Pine WaveNeuro Single Channel potentiostat with a 200 nA/V or 1,000 nA/V headstage 

(Pine Research, Durham, NC) and an NI PCIe-6363 card (National Instruments (NI), Austin, TX) was used 

for data acquisition. A 64-bit Dell Precision 3650 Tower with 32 GB RAM and an Intel i7-11700 processor 

were used to run the software and for data acquisition and processing. SeroWare was also tested using an 

EI-400 potentiostat (Cypress System, USA), a custom headstage, and a PCI-6221 card. Because SeroWare 

was not written to be compatible with specific hardware, only a few configuration steps were needed to 

switch between hardware configurations. A DS4 Bi-phasic Stimulus Isolator (Digitimer, Letchworth 

Garden City, UK) was used to test the electrical stimulation capabilities of the hardware. An MPC 200 

controller and ROE-200 system (Sutter Instruments, Novato, CA) were used to test the external control of 
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a micromanipulator. Two E60 and A60 6-port valves (VICI Valco Instruments, Houston, TX) and a flow 

cell (Pine Research) were used to test the control of external in vitro injections. 

We wrote the software to be straightforwardly compatible with standard hardware and other external 

devices used during voltammetry experiments. For each, we provide working and example code that can 

be modified for user needs, regardless of specific hardware or connections. The hardware described above 

can be a starting point for new users. However, SeroWare can be modified to be compatible with other 

hardware as users dictate depending on the density of data acquired and other tasks that must be run by (a) 

computer(s). If specified before data acquisition, working-driven or reference-driven electrode set-up can 

be used with SeroWare; for example, Pine potentiostats offer working-electrode-driven head stage 

amplifiers, but this can vary by manufacturer.  
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ASSOCIATED CONTENT: Supporting Information includes a User Guide. For the most up-to-date user 

information and tutorial videos, readers are referred to GitHub (https://github.com/csmova/SeroWare).  
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Data Availability: All data and code presented in this paper are available on GitHub at 

https://github.com/csmova/SeroWare with corresponding installation instructions and User Guides. 

Linking to GitHub will make users aware of new releases and patches. 
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