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Abstract 

Molecular electrocatalysis campaigns often require tuning multiple experimental 
parameters to obtain kinetically insightful electrochemical measurements, a prohibitively 
time-consuming task when performing comprehensive studies across multiple catalysts 
and substrates. In this work, we present an autonomous workflow that combines 
Bayesian optimization and automated electrochemistry to perform fully unsupervised 
cyclic voltammetry (CV) studies of molecular electrocatalysis. We developed CV 
descriptors that leveraged the conceptual framework of the EC’ kinetic zone diagram to 
enable efficient Bayesian optimization. The CV descriptor’s effect on optimization 
performance was evaluated using a digital twin of our autonomous experimental platform, 
quantifying the accuracy of obtained kinetic values against the known ground truth. We 
demonstrated our platform experimentally by performing autonomous studies of TEMPO-
catalyzed ethanol and isopropanol electro-oxidation, demonstrating rapid identification of 
kinetically insightful conditions in 10 or less iterations through the closed-loop workflow. 
Overall, this work highlights the application of autonomous electrochemical platforms to 
accelerate mechanistic studies in molecular electrocatalysis and beyond. 
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Introduction 

Electrochemistry provides a pathway to green and sustainable chemistry, enabling 
precise molecular transformations while minimizing environmental impact. However, 
many electrochemical processes require electrocatalysts to overcome large 
overpotentials that result from sluggish kinetics of breaking and forming bonds.1 
Molecular electrocatalysis, employing freely diffusing redox-active catalysts, provides 
synthetic handles to tune catalysts selectivity and activity.2–7 Mechanistic studies of 
molecular electrocatalysis require extensive screening across a broad parameter space, 
consisting of both solution conditions and electrochemical parameters that directly impact 
the profile of cyclic voltammetry (CV) measurements.8 Traditionally, this parameter space 
is visualized using a conceptual framework known as a kinetic zone diagram.1,9,10 Only a 
subset of possible parameter combinations within such diagrams yield current-potential 
profiles that can be directly evaluated to obtain kinetic and mechanistic information using 
analytical expressions. During a comprehensive experimental campaign, where many 
different catalysts and substrates are evaluated, it becomes prohibitively time intensive to 
manually identify kinetically insightful CVs.  

Autonomous experimentation with self-driving laboratories has shown the ability to 
accelerate lengthy experimental campaigns, reducing the time that researchers spend on 
tedious manual experiments.11–13 Self-driving laboratories combine automation and 
machine learning (ML) to perform experiments, evaluate acquired data, and decide 
subsequent experimental conditions. This paradigm has been applied to a myriad of 
problems in fields such as organic synthesis14–18, materials development19–23, drug 
discovery24,25, and more. Recently, autonomous experimentation in electrochemistry has 
begun to emerge, with self-driving labs being used for mechanistic investigations26 and 
materials discovery.27–29 This recent emergence of autonomous experiments in 
electrochemistry has been driven by mainstream acceptance of ML30–35 and 
automation36–43 across the community as tools that complement chemical intuition. 
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Figure 1. Schematic of the closed-loop autonomous workflow. The workflow can be 
carried out with an automated electrochemistry platform or a simulated digital twin. 

In this work, we present an autonomous workflow (Figure 1) for unsupervised 
kinetic measurements of molecular electrocatalysis. The workflow optimizes solution 
conditions and electrochemical parameters to obtain kinetically insightful CVs. To achieve 
this, we combine our previously developed platform for automated electrocatalysis 
studies, the eLab44, with a Bayesian optimization (BO) algorithm to enable fully 
autonomous and close-loop investigations of molecular electrocatalysis. To facilitate this, 
we took inspiration from traditional conceptual frameworks in molecular electrocatalysis 
theory to develop effective CV descriptors. We use a simulated replica of our autonomous 
platform—a "digital twin"—to assess the performance of our CV descriptors in the BO-
driven autonomous workflow.  We experimentally demonstrated our autonomous 
workflow for TEMPO catalyzed alcohol electro-oxidation, comparing the BO guided 
experiments to a random sampling strategy and evaluating the effects that reaction 
kinetics have on BO performance. 

Background  

CV is a widely used experimental technique for determining reaction kinetics in 
molecular electrocatalysis.45–48 Here we consider the simplest case of a molecular 
electrocatalysis reaction, the EC’ mechanism, where E is an electron transfer step at the 
electrode surface and C’ is a catalytic reaction in solution. In the oxidative EC’ mechanism 
shown in Scheme 1, the redox-active catalyst (R) is oxidized to its active form (O), which 
reacts with a substrate (S) to form the product (P). The catalyst, R, is regenerated during 
the reaction defined by the bimolecular rate constant kc.  

S + O P + R

O + e
-

kc

R

 
Scheme 1. Reaction scheme of a single electron oxidative EC’ mechanism. 

Regeneration of the catalyst during an EC’ reaction produces CVs with enhanced 
catalytic currents, with the magnitude and profile of the resulting current-potential curve 
reflecting the rate of the catalytic reaction. However, directly determining the reaction rate 
constant from the catalytic current requires that the reaction is under kinetic control and 
with negligible consumption of the substrate (i.e., pseudo first-order conditions).49 CVs 
under kinetic control can be visually identified by their distinctive sigmoidal current-
potential profiles. Experimentally, obtaining the desired CV profile requires exploring a 
parameter space of various catalyst concentrations, substrate concentrations, and scan 
rates. Manual optimization of experimental parameters can be simplified through use of 
the kinetic zone diagram for the EC’ mechanism, shown in Figure 2. 
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Figure 2. Kinetic zone diagram for an EC’ reaction,50 with corresponding CV profiles 
for the different kinetic regimes. Ccat is the bulk catalyst concentration, Csub is the bulk 
substrate concentration, kc is the catalytic rate constant, and ν is the scan rate. 
Expressions for dimensionless parameters λ and γ are built using these variables. The 
KS zone is highlighted, showing the typical sigmoidal CV from which direct 
quantification of kinetic parameters using Equation 5 can be achieved.  

The kinetic zone diagram in Figure 2 acts as a ‘map’, providing an intuitive visual 
description of how parameter changes affect the CV profile. It serves as a guide for 
parameter selection, allowing researchers to perform experiments in kinetically relevant 
regimes (e.g., the KS zone) where catalytic rate constants can be reliably determined. 
The dimensionless parameters λ (equation 1) and γ (equation 2) are the kinetic and 
substrate excess factors, respectively: 

(1)  𝜆𝜆 = �𝑅𝑅𝑅𝑅
𝐹𝐹
� �𝑘𝑘𝑐𝑐𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐

0

𝑣𝑣
� 

 
(2)  𝛾𝛾 = 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠

0

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐0  

where F is Faraday’s constant, R is the ideal gas constant, T is temperature, Ccat is the 
bulk catalyst concentration, Csub is the bulk substrate concentration, kc is the catalytic rate 
constant, and ν is the scan rate. The KS zone complies with requirements of kinetic 
control and negligible substrate consumption. The catalytic current, ipl, is taken at the 
plateau region of the current-potential curve and can be used to determine the catalytic 
rate constant using equation 3: 

(3)  𝑖𝑖𝑝𝑝𝑝𝑝 = 𝑛𝑛𝑛𝑛𝑛𝑛𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐0 �𝐷𝐷𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠0   

where n is the number of electrons transferred in the catalytic cycle, A is the electrode 
surface area, D is the diffusion coefficient of the catalyst (typically assumed to be equal 
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to the diffusion coefficient of the substrate), and kobs is the observed rate constant (kobs = 
kcCsub). The need for the values of D, A, and Ccat can be removed by dividing equation 3 
by the Randles-Ševčík equation (equation 4): 

(4)  𝑖𝑖𝑝𝑝 = 0.4463𝑛𝑛′𝐹𝐹𝐹𝐹𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐0 �𝑛𝑛′𝐹𝐹𝐹𝐹𝐹𝐹
𝑅𝑅𝑅𝑅

  

Where ip is the peak current of the catalyst CV in the absence of substrate and n’ is the 
number of electrons transferred to the catalyst. Dividing the ipl by ip gives equation 5: 

(5)  𝑖𝑖𝑝𝑝𝑝𝑝
𝑖𝑖𝑝𝑝

= 𝑛𝑛
0.4463𝑛𝑛′

�𝑅𝑅𝑅𝑅𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜
𝑛𝑛′𝐹𝐹𝐹𝐹

 

This approach has been extended to complex multi-electron and multi-step 
reactions.51–53 The original report on the kinetic zone diagram by Su and Savéant50 was 
formulated for single-electron EC’ mechanisms, however the concepts and trends are 
generalizable to other systems. For example, an ECEC’ system was experimentally tuned 
to navigate across all kinetic regimes of the kinetic zone diagram.54 The generalizability 
and intuitive encoding of the complex relationship between CV profiles and experimental 
conditions has made the kinetic zone diagram an indispensable tool for electrochemists. 
Because of the usefulness of kinetic zone diagrams in manual electrochemistry 
experiments, we sought to rethink the concept in the context of autonomous 
electrochemistry. 

Results and discussion 

Rethinking the Kinetic Zone Diagram for Autonomous Experiments 

The conventional framework of the kinetic zone diagram revolves around the 
discretization of all possible CV profiles into a small number of zones, with the boundary 
lines judiciously chosen based on key features of the dimensionless CV, such as peak 
widths, peak heights, and half-wave potentials.50 However, the discrete nature of the 
kinetic zone diagram fails to reflect the continuous change in the CV profile across the 
parameter space.55 Because of this, CV profiles at zone boundaries are difficult to classify 
due to mixed identifying features. To this end, we sought to develop CV descriptors that 
would capture the continuous nature of the zone diagram, enabling optimization for 
kinetically insightful CVs in the KS zone. 
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Figure 3. Proposed descriptors and their corresponding responses over the kinetic zone 
diagram. (a) An error-based descriptor that uses a neural network trained on simulated 
CVs to predict the deviation between the calculated and real reaction rate constant. (b) A 
hysteresis-based descriptor calculated from the mean squared error of the forward and 
reverse scans of the CV. 

We developed two descriptors that seek to describe the identifying features of 
kinetically insightful CVs as quantifiable values. The error-based descriptor (Figure 3a) 
quantifies the accuracy of rate constants calculated using equation 5. The hysteresis-
based descriptor (Figure 3b) measures differences between forward and reverse scans, 
owing to the negligible CV hysteresis seen when under pure kinetically controlled 
conditions (KS zone). The error-based descriptor is calculated from equation 6 as: 

(6)  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = � log �𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� � 

where kcalc is the rate constant calculated using equation 5, and kreal is the true rate 
constant. The values of kreal are only known precisely through simulations however, 
necessitating a predictive model to attain the error-based descriptor for experimental 
data. We trained a neural-network regressor on simulated CVs to predict the error values 
described in equation 6 for cases where the catalytic rate constant is not known (i.e., 
experimental measurements). The neural network employed a multi-layer perceptron 
architecture with a single hidden layer containing 192 units. This lightweight architecture 
was chosen for its balance between model complexity and training efficiency. A dropout 
layer (10% probability) additionally mitigated overfitting. Further details on the simulated 
training data, model architecture, training, and performance are provided in the Methods 
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section. Mapping the response of the error-based descriptor across the kinetic zone 
diagram (Figure 3a) revealed unexpected behavior. KS and KD zones are traditionally 
thought to be the only kinetic regimes where equation 5 is applicable, however there is 
a thin region passing through the KG and D zones where the rate constant can be 
calculated within ± 10% error. This region is not practically useful for kinetic analysis 
however, as it is an artifact of measuring catalytic current at the switching potential for 
CVs that do not possess plateau-like behavior (Figure S1). This unanticipated region of 
low error presents complications for autonomous experiments, as optimization becomes 
more difficult if more local minima exist.  

The second descriptor is a hysteresis-based measure that quantifies the difference 
between the forward and reverse scan, shown in Figure 3b. This descriptor is inspired 
by the minimal hysteresis and characteristic shape of the KS zone voltammograms. 
Unlike the error-based descriptor, this approach does not require any pre-training of a 
model and can be calculated directly from experimental data using equation 7: 

(7)  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑙𝑙𝑙𝑙𝑙𝑙 �1
𝑁𝑁
∑(𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟)2� 

where N represents the number of data points in each CV sweep segment, and ifwd and 
irev represent current on the forward and reverse sweep, respectively. Mapping hysteresis 
across the kinetic zone diagram reveals a well-defined minimum in the KS zone. This 
well-defined response surface should improve optimization performance, allowing the BO 
algorithm to home in on the desired CV profile. Additionally, optimizing for minimal 
hysteresis helps avoid CVs with substantial non-faradaic backgrounds, which can 
contribute to errors in determining kinetic parameters. We hypothesized that the 
hysteresis-based descriptor, with its simplified operation and clearly defined minima will 
enable faster and more consistent convergence to the desired CV profile than the error-
based descriptor, allowing for more efficient autonomous experiments. We now turn to 
evaluate the performance of both CV descriptors using a simulated version of our 
autonomous workflow. 

Evaluating CV Descriptor via a Digital Twin 

We created a digital twin of our autonomous workflow by coupling BO to COMSOL, 
enabling autonomous finite element simulations (Figure 4a).  The finite element 
simulations incorporating parameters Ccat, Csub, and ν were coupled with BO, with nearly 
identical parameter constraints as our automated electrochemistry platform used further 
on. We used the digital twin to evaluate the performance of our CV descriptors, where we 
compared kc values calculated from equation 5 to the ground truth kc values that were 
input into the simulation. Additionally, we incorporated simulated measurement artifacts 
to ensure our descriptors were robust to practical experimental conditions. In this fully 
autonomous workflow, simulated experiments are automatically run, analyzed, and the 
next parameters to sample are suggested by the BO algorithm.  
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Figure 4. Evaluating CV descriptors with a digital twin of the autonomous workflow. Data 
shown is from simulations where kreal = 10 M-1s-1. (a) Schematic of the digital twin closed-
loop workflow. (b) Normalized CVs collected during BO using the error-based descriptor 
as the optimization target. (c) Normalized CVs collected during BO using the hysteresis-
based descriptor as the optimization target. (d) Average rate constants calculated using 
equation 5 for the most optimal CV at each iteration. The shaded error bars represent ± 
1 standard deviation from the mean (N=5). (e) Dimensionless simulation parameters for 
each iteration of (c) plotted across the kinetic zone diagram. 

 We tested both the error-based and hysteresis-based descriptors by performing 15-
iteration autonomous experiments, with kreal spanning seven orders of magnitude 
(Supplementary Note SNB and Figure S2). Parameters were constrained based on 
practical experimental values, with Csub ranging from 1 to 300 mM, Ccat ranging from 1 to 
6 mM, and ν ranging from 1 mV/s to 5 V/s. A single point in the constrained parameter 
space was chosen randomly as the starting point of the autonomous experiment, and all 
subsequently sampled parameters were suggested by the BO algorithm. This initial seed 
point was the same for both descriptors characterized here, to ensure a fair comparison 
between methods. Figures 4b and Figure 4c show the digital twin results of two BO 
campaigns with true kc = 10 M-1s-1 using the error-based and hysteresis-based 
descriptors, respectively. We observed that the error-based descriptor led to poor 
convergence and displayed unpredictable behavior as the optimization proceeded. In 
contrast, optimization with the hysteresis-based descriptor estimated the correct kc value 
within 5% error after only 8 iterations on average (Figure 4d). We chose to use the 
hysteresis-based descriptor for all following autonomous experiments. Figure 4e shows 
the BO trajectory across the kinetic zone diagram converging onto the KS zone.  Figure 
S3 also shows the improved accuracy and precision of the BO method vs. a random 
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sampling approach for various values of kc. These results highlight the superior 
performance of the hysteresis-based descriptor, supporting its use in subsequent 
autonomous experiments. 

Applying the Autonomous Workflow to TEMPO-catalyzed Alcohol Electro-oxidation  

We applied the hysteresis-based descriptor to closed-loop autonomous kinetic 
investigations of the TEMPO-catalyzed alcohol electro-oxidation reaction shown in 
Scheme 2. Here, TEMPO (precursor R) is oxidized at the electrode to generate TEMPO+ 
which acts as catalyst (O), reacting with a primary or secondary alcohol (S) to convert 
them to the corresponding aldehydes or ketones.56,57 This catalytic reaction regenerates 
TEMPO by either an additional electron transfer step or a comproportionation step which 
are fast. Overall, the reaction in Scheme 2 is of practical interest for organic 
electrosynthesis58,59 and biomass valorization.60,61  

 
Scheme 2. Mechanism of TEMPO-catalyzed alcohol electro-oxidation. Ethanol and 
isopropanol were studied as substrates in this work. 

Autonomous experiments were conducted using our previously developed eLab 
platform in combination with BO.44 In brief, eLab uses opensource software to modularly 
interconnect a potentiostat to solution handling hardware and other peripheral 
instruments, enabling users to chain together multiple operations to carry out complex 
electrochemical experiments. A carbonate/bicarbonate buffer (pH 9.8) was selected to 
maintain optimal conditions for TEMPO catalysis, and a glassy carbon electrode, which 
is inactive towards the direct oxidation of alcohols, was used as the working electrode. 
Experimental parameters, including Ccat (1–6 mM), Csub (1–300 mM), and ν (5 mV/s–5 
V/s), were constrained based on practical considerations. CVs were measured by 
sweeping from 0 V to 0.9 V vs. Ag/AgCl and back. 
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Figures 5a and 5b show the normalized CVs for TEMPO-catalyzed ethanol 
oxidation obtained from BO-guided and random sampling autonomous experiments, 
respectively. BO rapidly converged onto a sigmoidal profile within only a few iterations, 
minimizing hysteresis and yielding CVs suitable for kinetic analysis. In contrast, random 
sampling produced a wide variety of profiles, failing to consistently identify kinetically 
insightful conditions. Looking at Figure 5c, we see that BO is more effective at minimizing 
CV hysteresis in fewer iterations. Notably, BO not only outperforms random sampling, but 
also provides a greater fraction of CVs that would be useful for kinetic analysis.  

We explored the role of reaction kinetics on BO performance by substituting 
ethanol with isopropanol, a secondary alcohol with slower reaction rates.44 The 
normalized CVs for BO and random sampling are shown in Figure 5d and 5e, 
respectively. The CVs for the isopropanol experiments exhibit similar behavior as 
observed for ethanol, however BO campaigns with isopropanol more gradually adjusted 
towards the optimal sigmoidal shape, likely due to the slower kinetics of this system. 
When we look at the average hysteresis value at each iteration for isopropanol (Figure 
5f), we see that BO clearly outperforms random sampling. When comparing BO 
performance for both alcohols, we see that it takes ~10 iterations for the isopropanol trials 
to begin converging, as opposed to ~5 for ethanol. We attribute this to the accessible 

 
Figure 5. Comparison of Bayesian optimization (BO) and random sampling in 
autonomous experiments.  Ethanol (a–c) and isopropanol (d–f) were used as 
substrates. (a, d) Normalized CVs for BO over 15 iterations. (b, e) Normalized CVs for 
random sampling over 15 iterations. (c, f) Best hysteresis-based descriptor values at 
each iteration, averaged (N=5) with error bars showing ±1 standard deviation. 
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parameter space of isopropanol having less overlap with the KS zone than ethanol, 
decreasing the likelihood of quickly locating a region that yields minimized hysteresis. 
This is evident in the random sampling experiments for isopropanol, which failed to 
identify CVs suitable for kinetic analysis compared to the ethanol experiments. Instead, 
the isopropanol random sampling experiments predominantly yield CVs in the D zone 
(Figure S4). 

Using equation 5 (n=4 for ethanol, n=2 for isopropanol, n’=1), we determined a 
mean kc value of 4.2 ± 0.4 M-1s-1 and 0.243 ± 0.009 M-1s-1 for ethanol and isopropanol, 
respectively (N=5). These values are reasonable in comparison to prior literature for 
TEMPO catalyzed alcohol electro-oxidation.57,62 We note the increased relative error 
observed for ethanol is likely caused by small Csub values (Figure S5), which require 
dispensing low ethanol volumes (sub 200 µL), approaching the limits of the solution 
handling hardware's precision. Each autonomous campaign consisted of 30 CVs each 
(15 in the presence of substrate to determine ipl, and 15 in its absence to determine ip)  
and took around 3-4 hours, depending on the chosen parameters. In between each 
measurement the solution was removed from the cell, flushed with water, primed with 
measurement solution, rinsed, and refilled. We estimate such cumbersome cleaning and 
dispensing regime would involve 300 unique solution dispensing and mixing operations, 
thus taking several experimental sessions to complete. Based on our experience, we 
further posit it would be more prone to dispensing and other human errors.  

Conclusions 

In summary, we have successfully demonstrated an autonomous, closed-loop 
workflow for kinetic investigations of molecular electrocatalysis using TEMPO-mediated 
alcohol electro-oxidation as a benchmark system. We leveraged the conceptual 
framework of the EC’ kinetic zone diagram to derive effective CV descriptors, enabling 
the identification of kinetically insightful current-potential profiles. We evaluated the 
performance of the Bayesian optimization algorithm using first a digital twin of our 
autonomous platform built upon finite element method simulations incorporating likely 
experimental artifacts and constraints. We then combined Bayesian optimization and 
automated electrochemistry to perform fully autonomous, closed-loop kinetic studies of 
the TEMPO-alcohol system for ethanol and isopropanol. Our autonomous workflow 
identified conditions yielding kinetically insightful current-potential profiles in 10 iterations 
or less, outperforming random sampling, and reliably performing extensive solution 
handling and electrochemical operations, thus minimizing human involvement and error.  

This work showcases integration of machine learning and automation with 
experimental electrochemistry, paving the way for future high-throughput kinetic studies 
of molecular electrocatalysts across large scopes of catalysts and substrates. In this work 
we demonstrated BO of a hysteresis-based descriptor which dramatically outperformed 
random sampling, as well as BO with an error-based descriptor. We acknowledge there 
could be improvements to the error-based descriptor by improving the underlying neural 
network model. To this end, we provide the community with a ~25,000 simulated CV 
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training data set to do their own explorations. We note that the methodology developed 
in this work can be applied to systems beyond molecular electrocatalysis, providing a 
general workflow to optimize CV experimental parameters for systems in energy 
conversion, electrosynthesis, bio-electrocatalysis, and more. The flexibility of our 
autonomous workflow is complemented by the modularity of our eLab44 and Electrolab37 
platforms, which allows experimental control of temperature, gas sparging, pH, in addition 
to electrochemical functions beyond CV, thus enabling extremely detailed mechanistic 
studies without overbearing the user. Additionally, the small footprint of the solution-
handling hardware (5.6”×5”×1.8”) enables easy incorporation into more complex setups, 
such as those controlling inert environments or coupling with spectroscopic modes of 
analysis.14,49,63  We believe that the integration of machine learning and automation with 
electrochemistry will accelerate the discovery of new molecules and materials for a 
greener and more sustainable future. 

Experimental 

Chemicals and materials 

Isopropanol (ACS grade) was purchased from Macron. TEMPO (2,2,6,6-tetramethyl-1-
piperidinyloxy, 98%) was purchased from Sigma-Aldrich. Ethanol (USP grade) was 
purchased from Decon Labs. Sodium bicarbonate (ACS grade) was purchased from 
Avantor. Anhydrous sodium carbonate (ACS grade) was purchased from VWR. DI water 
was obtained from a Milli-Q purification system. 

Software 

Python 3.10.2 was used to write and execute all underlying code. A variety of Python 
libraries were employed to implement the autonomous workflow and support data 
analysis, visualization, and machine learning tasks. Key libraries include NumPy (1.26.4), 
pandas (1.4.3), Pytables (3.9.2), and matplotlib (3.5.1) for visualizing results. MPh (1.1.5) 
was employed to interface with COMSOL Multiphysics for simulating electrochemical 
reactions and generating training data. Machine learning components, including neural 
network training, were implemented using Keras/TensorFlow (2.15.0) and scikit-learn 
(1.1.1). For Bayesian optimization, the GPyOpt (1.2.6) library was used alongside its 
dependency GPy (1.13.1) for Gaussian process modeling. We note that at the time of 
writing, support for GPyOpt has been discontinued, and alternative libraries may be 
considered in future work. Custom libraries developed for this study, hardpotato (1.3.13) 
and elabAPI (1.1.0), were used to control the potentiostat64 and manage solution 
handling44, respectively. These custom libraries are publicly available on our GitHub 
repository: https://github.com/jrlLAB. 

Generating simulated training data 

Simulated training data was generated using COMSOL Multiphysics 5.4 with the 
Electrochemistry module (Supplemental Note SN1). All simulations were of the EC’ 
mechanism (Scheme 1), with varied kinetics, potential windows, diffusion-coefficients, n-
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values, and initial species concentrations. Parameters were generated randomly in 
Python (Figure S6). COMSOL simulations were executed through Python, using the MPh 
Python library (1.1.5) to interface with COMSOL. A total of 25,089 simulated CVs were 
generated, along with the corresponding baseline CVs in the absence of substrate. The 
error-based descriptor was calculated for all CVs (equation 6). The data was down 
sampled via interpolation to 400 points, ensuring uniform timesteps. Noise, capacitance, 
and tailing representative of solvent breakdown were added to all simulations using 
Python (Figure S7). The current values of the CVs were normalized and unfolded, and 
the resulting 400-element vector (Figure S8) was used to train the neural network model.  

Creating the neural network regression model 

The simulated data was used to train a neural network to predict the error-based 
descriptor. The 400-element vector of normalized current values were used as input 
features, and the calculated error-based descriptor was used as the label. Training data 
was split into 80% train and 20% test sets with variances in error-based descriptor of 
3.685 and 3.688, respectively. The mean squared error of a validation set (10% split of 
train set) was used as the loss function, which was optimized using Adam’s optimizer. 
The neural network had a multi-layer perceptron architecture with a single hidden layer, 
with a dropout layer prior to the output (10% probability). The hyper-parameters for the 
model consisted of the number of units in the hidden layer, the activation function of the 
hidden layer units, and the learning rate of the Adam’s optimizer. Hyper-parameters were 
tuned with a Bayesian-optimization based tuner for 25 trials, performing up to 10 epochs 
of training for each trial. The best model from the Bayesian-optimization campaign had a 
learning rate of 0.004, a sigmoidal activation functions, and 192 units in the hidden layer 
(Figure S9). The optimized model then trained for additional 817 epochs with early 
stopping (Figure S10, Figure S11, Table ST2).  

Bayesian optimization 

Bayesian optimization (BO) was employed to minimize hysteresis-based and error-based 
descriptor values. A gaussian process was used as the surrogate model. A Lower 
Confidence Bound acquisition function was used with an exploration-exploitation trade-
off parameter (λ) of 1 was selected, unless otherwise noted. Hyperparameters of the 
gaussian process, including kernel type and noise level, were estimated via maximum 
likelihood optimization at each iteration. The parameter domain was sampled on a log 
scale.  

Digital Twin and Automated COMSOL Simulations 

A digital twin, implemented via COMSOL Multiphysics simulations, was used to evaluate 
the Bayesian optimization algorithm. Simulated CVs incorporated realistic noise, non-
faradaic background, and solvent breakdown to mimic experimental artifacts, ensuring 
robust validation of the optimization framework. Possible scan rates ranged from 1 mV/s 
to 5 V/s. Both catalyst and substrate concentrations for both catalyst and substrate had a 
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lower bound of 1 mM and had upper bounds of 6 mM and 300 mM, respectively. They 
were additionally constrained by equation 8: 

(8)  𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

+ 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠
𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

≤ 1 

where Ccat and Csub are the desired concentrations of the catalyst and substrate, Ccat,stock  

and Csub,stock are the stock concentrations of 6 mM and 300 mM respectively.  

 Automated Electrochemical Experiments 

Automated electrochemistry experiments were performed using a modified version of our 
previously reported eLab platform, using a SY01B pump-valve combo to replace the 
separate SY08 pump and SV07 valve. All electrochemical measurements were 
conducted using a CH Instruments 760E bipotentiostat in a three-electrode configuration, 
controlled by the Hard Potato library. The setup used a 3 mm diameter glassy carbon 
working electrode, a graphite rod counter electrode, and an Ag/AgCl reference electrode 
(3 M KCl) with a salt bridge. A buffer consisting of 0.1 M sodium bicarbonate and 0.1 M 
sodium carbonate (pH 9.8) was used as an electrolyte. Prior to performing a set of 
automated experiments electrodes were preconditioned by applying an oxidative 
potential of 1.5 V vs. Ag/AgCl for 30 s, followed by reductive cycling from 0 V vs. Ag/AgCl 
to -1 V s. Ag/AgCl and back (Figure S12). CVs of TEMPO Experiments were performed 
at room temperature without gas purging, and all cyclic voltammograms are presented 
following the IUPAC convention.  Autonomous experiments had the same concentration 
bounds as the digital twin, but possible scan rates were constrained between 5 mV/s and 
5 V/s.  
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