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Abstract

Development of meta-generalized gradient approximations (meta-GGAs) has generally led to more
accurate density-functional approximations, albeit ones that have more stringent requirements for
the quadrature grids that are used to evaluate the exchange-correlation energy. Here, we demon-
strate that grid-induced errors are amplified when meta-GGAs are used in conjunction with a
many-body expansion, which is a popular means to parameterize classical force fields using electronic
structure calculations. At the same time, delocalization errors are exacerbated by the many-body
expansion, leading to exaggerated estimates of nonadditive n-body interactions, as illustrated here
for anion–water clusters using the meta-GGA functionals SCAN and ωB97X-V. Standard grids that
are typically accurate for noncovalent interactions with meta-GGA functionals result in runaway
error accumulation when used with the many-body expansion. Denser grids eliminate this problem
and expose the inherent self-interaction error, which must be mitigated using other strategies that
are discussed herein.

Fragment-based approximations, anchored in the
many-body expansion (MBE), are an appealing means to
sidestep the steep nonlinear scaling of ab initio quantum
chemistry.1 There is also growing interest in using the
MBE to systematically decompose interaction energies
in molecular liquids,2–5 biomolecules,6–8 and other com-
plex systems,9,10 as a means to generate training data for
machine learning applications. A growing body of work,
however, demonstrates that care must be taken to avoid
error accumulation in MBE-based methods.11–16

The enormity of the resource requirements for data-
hungry machine learning applications places a premium
on low-cost electronic structure models such as density
functional theory (DFT), yet we have recently demon-
strated that self-interaction error (SIE) causes catas-
trophic failure of the DFT-based MBE.16 In the present
work, we illustrate how SIE is intermingled with quadra-
ture grid errors, in a manner that is unique to DFT cal-
culations based on the MBE and does not manifest in
conventional electronic structure calculations. The func-
tionals most strongly affected are meta-generalized gradi-
ent approximations (meta-GGAs), which represent many
of the most accurate contemporary exchange-correlation
functionals.17 Using calculations on F−(H2O)15 clusters,
we demonstrate herein that grid-based error dominates
higher-order MBE calculations that employ meta-GGAs.
This obfuscates other sources of error, such as SIE, which
must be addressed for accurate DFT-MBE calculations.
Improving the grid quality brings SIE-based delocaliza-
tion error to the fore.

The MBE may be written as

E =

N∑
I=1

[
EI +

∑
J>I

(
∆EIJ +

∑
K>J

∆EIJK + · · ·

)]
(1)
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where the EI are single-fragment (monomer) energies,

∆EIJ = EIJ − EI − EJ (2)

is a two-body correction, etc.1 If eq. 1 is truncated at
n-body interactions, then we call the resulting method
MBE(n). In conjunction with high-quality basis sets
and correlated wave function models, MBE(4) affords
good accuracy for neat liquid water and monovalent ion–
water interactions,14,18–20 yet requires electronic struc-
ture calculations on systems no larger than (H2O)4 or
X±(H2O)3. However, four-body calculations manifest a
crippling O(N4) combinatorial prefactor, resulting in er-
ror accumulation for large systems.12–15

Replacing wave function methods with DFT reduces
the cost but SIE becomes catastrophic, with fluctuations
as large as ±200 kcal/mol in low-order MBE(n) calcula-
tions in clusters such as F−(H2O)15.16 This effect is only
marginally reduced by a combination of standard hybrid
functionals (such as PBE0 or B3LYP) and/or aggressive
energy screening.16 For meta-GGA functionals including
SCAN21 and ωB97X-V,22 these error mitigation strate-
gies are only moderately effective. Because meta-GGAs
are known to have more stringent grid requirements,23–25

we decided to revisit the quadrature grids used in the
DFT-based MBE, even though previous MBE(4) calcu-
lations at the B3LYP/cc-pVDZ level suggested that the
quality of the integration grid had a negligible effect on
accuracy, in applications to (H2O)40.13

For water or ion–water clusters, MBE(n) should
converge to same interaction energy (∆Eint) as a
supramolecular calculation at the same level of theory,
as n increases. (We use single-monomer fragments so
that no covalent bonds are severed.) As such, it makes
sense to define the error in the MBE(n) approximation
as

error = EMBE(n) − Esupersystem , (3)

where both calculations are performed using the same
density functional and basis set. As a control experi-
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Figure 1: MBE(n) errors (as defined in eq. 3) for 11 differ-
ent configurations of F−(H2O)15 computed at the HF/aug-
cc-pVDZ level. The solid line connects mean errors at each
value of n and the shaded region highlights the span of the
data.

ment, we demonstrate in Fig. 1 that convergence is in-
deed achieved for a set of F−(H2O)15 clusters, using cal-
culations at the Hartree-Fock (HF)/aug-cc-pVDZ level
of theory. Residual errors spanning ≈ 2.5 kcal/mol, ob-
served at the five-body level in Fig. 1, have elsewhere
been shown to be artifacts of basis-set superposition er-
ror (BSSE).18–20,26 For Cl−(H2O)9, five body terms com-
puted at the level of second-order Møller-Plesset pertur-
bation theory (MP2)/aug-cc-pV5Z are negligibly small.19

HF-based MBE(n) calculations, for which there is no
grid and no SIE, will serve as a baseline in the remain-
ing discussion. For example, the analogous PBE/aug-
cc-pVDZ data for (H2O)15 are shown in Fig. 2, super-
imposed on the span of the corresponding HF-MBE(n)
errors. As demonstrated in previous work,16 the PBE-
MBE(n) errors diverge as n increases, with errors ap-
proaching ∼ 150 kcal/mol at the five-body level.

In order to analyze the PBE-MBE(n) data in Fig. 2,
we first review some nomenclature for DFT quadra-
ture grids. Euler-Maclaurin-Lebedev (EML) quadrature
grids have been used since the earliest days of molec-
ular DFT,27 and these indicated in Fig. 2 using the
notation EML(Nr, NΩ) where Nr is the number of ra-
dial shells on interval [0,∞), using an Euler-Maclaurin
quadrature, and NΩ is the number of angular points
per shell (Lebedev quadrature). The choices (Nr, NΩ)
= (50,194), (75,302), and (99,590) that are examined in
Fig. 2 are standard choices for a low-, medium-, and,
high-quality grid, respectively.23 The “standard grids”
(SG-k) are pruned grids that reduce the number of
Lebedev grid points near the nuclei (where the den-
sity is nearly spherically symmetric) and far away from
the nuclei (where the density is slowly varying).23,28

The SG-1 grid,28 for example, starts from Nr = 50
and NΩ = 194 and applies a pruning procedure; this
grid is typically adequate for GGA functionals.17,23 Im-
portantly, SG-1 uses a Gaussian quadrature,28 and is
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Figure 2: MBE(n) errors (circles) for 11 configurations of
F−(H2O)15, computed at the PBE/aug-cc-pVDZ level using
various quadrature grids: (a) SG-1, (b) SG-2, (c) SG-3, (d)
EML(50,194), (e) EML(75,302), (f) EML(99,590). The or-
ange shaded region and solid line connect the range of the
MBE(n) errors and their mean, for each value of n. In blue
are the mean errors and their range, computed for the same
set of clusters at the HF/aug-cc-pVDZ level. (The latter are
the same data as in Fig. 1 but without the data points them-
selves.)

not a pruned version of EML(50,194). Similarly, SG-2
and SG-3 are pruned versions of (75,302) and (99,590)
grids but both use a double-exponential quadrature,29,30

so are not simply pruned versions of EML(75,302)
and EML(99,590).23 The SG-2 grid is adequate for
many meta-GGA functionals,23 whereas EML(75,302)
had been recommended for meta-GGAs,17 prior to the
development of SG-2 and SG-3.

Regardless of quadrature grid, PBE-MBE(n) calcula-
tions for F−(H2O)15 exhibit oscillations > 200 kcal/mol
between n = 4 and n = 5. As such, we conclude
that these oscillations are driven by SIE, as reported
previously.16

Meta-GGA functionals depend on the Laplacian of the
electron density and/or the kinetic energy density, both
of which are more oscillatory than the density gradi-
ents, and thus more challenging for numerical integra-
tion. Oscillations in potential energy surfaces for nonco-
valent dimers have been noted for low-quality integration
grids.23,31,32 The SCAN functional21 is especially sen-
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Figure 3: MBE(n) errors (circles) for 11 configurations of
F−(H2O)15, computed at the SCAN/aug-cc-pVDZ level us-
ing various quadrature grids: (a) SG-1, (b) SG-2, (c) SG-3,
(d) EML(50,194), (e) EML(75,302), (f) EML(99,590). The
orange shaded region and solid line connect the range of the
errors and their mean, for each value of n. Quantities in blue
indicate the HF/aug-cc-pVDZ error distribution from Fig. 1.

sitive to the choice of quadrature grid,24,25 with direct
consequences for SCAN-MBE(n) calculations that are on
display for F−(H2O)15 clusters in Fig. 3. Although the
SG-2 grid works well for many meta-GGA functionals,23

including SCAN in some instances,33 in the present con-
text it affords MBE(n) errors that fluctuate over a range
of 75 kcal/mol at the n = 5 level.

Error distributions for SCAN-MBE(n) calculations are
qualitatively different than those computed using PBE-
MBE(n), for the same set of F−(H2O)15 clusters, even
when the basis set and quadrature grid are the same. In
particular, the PBE-MBE(n) errors have strictly alter-
nating signs as a function of n, regardless of the choice
of quadrature grid (Fig. 2), which is not true for SCAN
calculations using SG-2 (Fig. 3a). The difference lies in
the fact that the PBE errors are relatively tightly clus-
tered across the ensemble of structures that we consider,
whereas SCAN errors for the same ensemble are more
spread out at a given n, to the point where the errors
span both sides of zero for n = 5. The SCAN errors be-
come much more tightly clustered, and alternating signs
are recovered for SCAN-MBE(n) calculations, when the
SG-2 grid is replaced by the EML(75,302); see Fig. 3b.
This behavior is not unique to the SCAN functional and
is seen also for ωB97X-V; see Fig. S1.

For both SCAN and ωB97X-V, tight clustering and
alternating signs for the errors persist in higher-quality
grids including SG-3 and EML(99,590). In contrast,
when SG-2 is used errors at the MBE(5) level appear
to be almost random for different cluster geometries, sug-

gesting MBE(n) results computed using meta-GGA func-
tionals are dominated by grid error when SG-2 is used.
Notably, grid-dependent of this magnitude are not ob-
served in conventional supramolecular calculations. For
example, noncovalent interaction energies (∆Eint) for the
S66 data set,34 computed at the ωB97X-V/aug-cc-pVTZ
level, differ by an average of only 0.03 kcal/mol for SG-2
as compared to its unpruned (Nr = 75, NΩ = 302)
counterpart.23 Thus, SG-2 may be considered effectively
converged to the grid limit for conventional, monolithic
DFT calculations but the same grid is insufficient for
DFT-MBE(n), where ∼ 104 subsystem calculations (or
more) might be required to evaluate a single-point en-
ergy.

These noncovalent benchmarks help to explain why the
error patterns for PBE (Fig. 2) and SCAN (Fig. 3) are
qualitatively different. SIE drives delocalization that sta-
bilizes clusters relative to their constituent monomers,
and stabilizes larger clusters relative to smaller ones. The
lack of SIE in the smaller fragments is overrepresented
in the MBE(n) as system size and expansion order in-
creases, which is more readily seen if the n-body correc-
tions are written in closed form,13

EMBE(n) =

n∑
k=1

(−1)n−k
(
N − k − 1

n− k

) (N
k)∑

α=1

E(k)
α (4)

where α indexes the subsystems consisting of k frag-

ments, whose individual energies are E
(k)
α . In this form,

each fragment energy is scaled by a signed combinatoric
coefficient. These coefficients are listed in Table S1 for
N = 16, as in F−(H2O)15.

For k = n, the coefficient in eq. 4 is unity regardless
of N . For k < n, the signs alternate with n for fixed k
and increase in magnitude with n (see Table S1). Be-

cause the SIE inherent in E
(k)
α is consistently stabilizing,

the alternating signs of the lower order terms will over-
whelm the always-positive n = k terms, leading to the
pattern of errors that is observed in the PBE-MBE(n)
calculations. Note that these errors need not result in a
divergent MBE(n), as demonstrated by the HF/aug-cc-
pVDZ data, where BSSE is strictly stabilizing for larger
subsystems, yet the errors grow smaller as n increases.
This suggests that there exists some expansion-depended
error threshold, related to the combinatorial coefficients
in eq. 4, beyond which MBE(n) calculations will diverge.

In contrast, grid-based errors need not be strictly sta-
bilizing so the error pattern is more scattered in cases
where the errors are dominated by grid artifacts rather
than SIE. This is the case for SCAN-based MBE(5) cal-
culations using SG-2 (Fig. 3a). Only upon saturating the
grid does SIE take over as the dominant source of error,
leading to oscillatory results for MBE(n) with meta-GGA
functionals, as in Fig. 3b. However, fluctuations of al-
most 50 kcal/mol persist between MBE(4) and MBE(5)
results, even when the high-quality EML(99,590) grid is
used.
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Figure 4: MBE(n) errors for 11 different F−(H2O)15 clusters,
computed using (a) SCAN, (b) SCAN + PCM(ε = 4), and
(c) SCAN0 with 25% exact exchange, and (d) DC-SCAN,
starting from a converged HF density. All calculations used
the aug-cc-pVDZ basis set and an unpruned EML(99,590)
grid. Orange lines connect the mean errors at each value of
n and the orange shaded region highlights the span of the
data. The blue line and shaded region represent the HF/aug-
cc-pVDZ data from Fig. 1.

In previous work,16 we tested several strategies to mit-
igate accumulation of SIE, including hybrid function-
als, dielectric boundary conditions, and density-corrected
(DC-)DFT. Although these procedures reduced the er-
rors in DFT-MBE(n) calculations, none was sufficient
to restore convergence, at least not for standard hybrid
functionals with 20–25% exact exchange. (Functionals
with 50% exact exchange did afford convergent results,
indicating that SIE plays a prominent role in divergent
behavior for semilocal functionals and for hybrid func-
tionals such as B3LYP, PBE0, and SCAN0.) Because
the calculations in Ref. 16 used the SG-2 quadrature grid
for meta-GGA functionals, SIE-driven errors were inter-
twined with MBE-induced grid errors. We next revisit
these calculations using the unpruned EML(99,590) grid.

MBE(n) errors for F−(H2O)15 clusters are plotted in
Fig. 4 for several SCAN-based calculations, all using the
EML(99,590) grid. For reference, the SCAN-MBE(n) re-
sults in Fig. 4a are the same as those in Fig. 3d, and
they are compared in Fig. 4 alongside MBE(n) calcula-
tions using SCAN + PCM, SCAN0, and DC-SCAN, all
with the same high-quality grid.

In MBE(n) calculations on proteins,35–37 we demon-
strated that low-dielectric boundary conditions are nec-
essary to obtain converged results in the presence of ionic
residues.35 Dielectric boundaries can be implemented by
means of a polarizable continuum model (PCM),38 using
a dielectric constant ε = 4 as in previous work.35–37 Re-

sults in Fig. 4b show that MBE(n) errors are significantly
reduced for SCAN + PCM(ε = 4). For n ≥ 3, the errors
are comparable to (and in some cases smaller than) the
corresponding HF-MBE(n) errors.

Alternatively, adding 25% exact exchange (to obtain
the SCAN0 functional39) results in convergent behavior
for MBE(n) as shown in Fig. 4c. This was not the case
when SG-2 was used.16 Instead, SCAN0-MBE(5) errors
for this same set of F−(H2O)15 clusters, computed us-
ing the SG-2 grid, span a range of almost 250 kcal/mol
and lack the telltale alternating signs of SIE-dominated
errors.16 Nevertheless, oscillations in SCAN0-MBE(n) er-
rors obtain using the EML(99,590) grid remain larger
than the corresponding HF-MBE(n) values, as shown in
Fig. 4c. We attribute this to residual delocalization error
in SCAN0, since the smaller HF-MBE(5) errors should
provide an estimate of MBE(n) errors due to finite-basis
effects (specifically, mismatch between subsystem and su-
persystem BSSE),14 and the SCAN0-MBE(5) errors are
larger than any such effects.

In the DC-DFT approach,40 also known as
“DFT@HF”,41 an exchange-correlation functional
is evaluated in a one-shot, non-self-consistent fashion
using a converged HF density. This approach can signif-
icantly mitigate SIE-driven errors,40–44 and DC-SCAN
has been suggested as a workhorse for development of
MBE-based force fields.45,46 Results in Fig. 4d show
errors on the order of 5 kcal/mol for MBE(4) and
MBE(5) calculations based on DC-SCAN, which is a bit
larger than the corresponding HF-MBE(n) errors but
slightly smaller than SCAN0-MBE(n) errors. Residual
five-body errors using DC-SCAN are more surprising
than the corresponding SCAN0 errors, since DC-SCAN
uses a SIE-free density and the errors cannot be blamed
on delocalization error. Enhanced fluctuations MBE(n)
errors using DC-SCAN may arise from electron corre-
lation effects and a more appropriate comparison for
DC-DFT might be MP2, which is SIE-free but includes
correlation. Indeed, MP2-MBE(n) fluctuations for
F−(H2O)15 clusters are larger than those observed for
HF-MBE(n) calculations.20

Finally, we comment on how denser quadrature grids
impacts computational cost. The cost to evaluate the
exchange-correlation quadrature is proportional to the
number of grid points and ultimately O(N) with molec-
ular size, although it can be a significant fraction of the
computational time for semilocal functionals.23 The cost
of SCAN-MBE(4) calculations on F−(H2O)15 is listed in
Table 1 for various quadrature grids. The SG-2 grid is de-
ficient for such calculations but is included as a baseline,
since this is a typical grid used for meta-GGAs in con-
ventional quantum chemistry.23 SG-3 is satisfactory for
MBE(n) calculations, and its cost is functionally equiv-
alent to that of EML(75,302), and both exhibit similar
errors. Further testing is required to fully differentiate
the performance of these grids for DFT-MBE(n) appli-
cations, but the present work serves as a cautionary note
that supramolecular tests may not reveal problems en-
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Table 1: Cost of MBE(4) Calculations on F−(H2O)15 at the
SCAN/aug-cc-pVDZ Level.a

Grid Time (sec)b

SG-2 59,176 ± 660

SG-3 96,282 ± 1205

EML(75,302) 99,744 ± 1450

EML(99,590) 202,371 ± 2282

aAveraged over 11 cluster geome-
tries. bUncertainty represents one
standard deviation.

gendered by MBE(n) calculations. This is analogous to
the manner in which MBE(n) is more sensitive to numer-
ical thresholds as compared to supersystem calculations
at the same level of theory.12–14

In summary, while meta-GGA functionals have dis-
tinct advantages compared to functionals situated at
lower rungs on Jacob’s ladder, their more stringent
quadrature grid requirements are significantly amplified
when such functionals are used in conjunction with the
MBE. In particular, the SG-2 grid (which is otherwise
recommended for meta-GGA functionals such as SCAN
and ωB97X-V),23 results in cumulative errors that can
mask other artifacts, including SIE. To eliminate the grid
errors, we recommend the SG-3 grid or (in case of doubt)
an unpruned grid such as EML(75,302).

This does not eliminate SIE-driven delocalization er-
rors, and MBE(n) calculations with meta-GGA function-
als remain divergent even if the order-by-order fluctua-
tions are greatly reduced through the use of high-quality
integration grids. However, by saturating the grid and
removing it as a source of error, other strategies for mit-
igating SIE can help, which were unsuccessful in calcu-
lations based on SG-2.16 These include the use of hybrid
functionals such as SCAN0, low-dielectric boundary con-
ditions (based on a PCM with ε = 4), and DC-DFT
(DFT@HF), based on a self-consistent HF density.

Methods

Cluster structures were taken from Ref. 16 where they
were obtained from a molecular dynamics simulation of
F− in bulk water. All calculations were performed using
the Fragme∩t code,47 interfaced to Q-Chem v. 6.2.48

Timing data were obtained using compute nodes with
two Intel Xeon CPU Max 9470 processors (26 cores each)
with 128 Gb of memory. Each fragment calculation was
provisioned to use 4 cores and 10 Gb of memory.

Supporting Information

Additional calculations and data (PDF)
Coordinates for F−(H2O)15 clusters (TXT)
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