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ABSTRACT: Accurately predicting the diverse bound-state conformations of small molecules is 

crucial for successful drug discovery and design, particularly when detailed protein-ligand 

interactions are unknown. Established tools exist, but efficiently exploring the vast conformational 

space remains challenging. This work introduces Moltiverse, a novel protocol using enhanced 

sampling molecular dynamics (MD) simulations for conformer generation. The extended adaptive 

biasing force (eABF) algorithm combined with metadynamics, guided by a single collective 

variable (radius of gyration, RDGYR), efficiently samples the conformational landscape of a small 

molecule. Moltiverse demonstrates comparable accuracy and, in some cases, superior quality when 

benchmarked against established software like RDKit, CONFORGE, ConfGenX, Torsional 

diffusion, and Conformator. We present an exhaustive ranking based on eight quantitative metrics 

and statistical analysis for robust conformer generation algorithms comparison and provide 

recommendations for their improvement based on our findings. We introduce the Cofactorv1 

dataset, a complementary resource for conformer generator evaluation. Unlike traditional datasets 

with thousands of single-conformer molecules, the Cofactorv1 dataset features only seven small 

molecule cofactors but with hundreds to thousands of experimental conformers per molecule 

(sourced from the PDB). This diversity, encompassing 15-29 rotatable bonds, poses a significant 

challenge for conformer generation benchmarks. Cofactorv1 is a complementary dataset that serves 

as a valuable resource for developing and evaluating conformer generation methods like 

Moltiverse, pushing the boundaries of accuracy and diversity in this relevant field.  
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INTRODUCTION 

The accurate prediction of the bound-like conformations of small molecules is crucial for many 

computational methods in drug development, including virtual screening1–3, structure-based drug 

design4–7, molecular docking8,9, and pharmacophore modeling10,11. Exploring the vast 

conformational space of flexible molecules efficiently is still challenging, especially when the 

bioactive conformation is unknown or differs significantly from low-energy states. While 

numerous conformer generation tools exist, there is a pressing need for methods that can balance 

accuracy, precision, diversity, geometrical correctness, and computational efficiency. The 

landscape of conformer generation is diverse, encompassing traditional software tools and, more 

recently, artificial intelligence models designed explicitly for this task. Traditional open-source 

conformer generators such as Balloon12, Confab13, Conforge14, FROG215, OpenBabel16, and 

RDKit17,18 have long been staples in many computational chemistry workflows, offering flexibility 

and transparency in their methodologies. Commercial tools like CAESAR19, ConfGen20, 

Conformator21, COSMOS22, ForceGen23 and OMEGA24, often provide highly optimized 

algorithms25. In recent years, this field has seen a surge of innovation with the emergence of 

artificial intelligence models specifically designed for conformer generation. Approaches such as 

ConfGF26, DMCG27, GeoDiff28, GeoMol29, and Torsional diffusion30,31 have employed advanced 

machine learning techniques to predict molecular conformations. These AI-driven methods 

promise to combine the speed of knowledge-based approaches with the accuracy of physics-based 

methods, potentially revolutionizing the field. Conformer generation algorithms encompass 

diverse approaches, including systematic and stochastic searches, molecular simulations, distance 

geometry, knowledge-based methods, AI techniques, and combinations thereof. Systematic search 

methods such as Conformator21, which employs a knowledge-based algorithm, systematically 

https://doi.org/10.26434/chemrxiv-2024-qs0pc-v2 ORCID: https://orcid.org/0000-0002-3542-7528 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-qs0pc-v2
https://orcid.org/0000-0002-3542-7528
https://creativecommons.org/licenses/by/4.0/


 4 

explore the torsional space of molecules, proving effective for compounds with a moderate number 

of rotatable bonds. However, stochastic sampling techniques often prove more suitable for highly 

flexible molecules, such as macrocycles14,21,32, employing random sampling to handle a broader 

range of molecular flexibilities and ring template libraries33,34. The distance geometry (DG) 

approach implemented in RDKit defines upper and lower distance bounds between all pairs of 

atoms in a molecule32,35. These bounds are typically derived from chemical knowledge, 

experimental data, and structural constraints. DG approach generates conformations by randomly 

selecting distances within these bounds for each atom pair, followed by an embedding process that 

mathematically transforms the interatomic distance matrices into three-dimensional Cartesian 

coordinates, thereby generating the final molecular conformations. Knowledge-based approaches 

have emerged as a fast and often accurate alternative to sample every rotatable bond, incorporating 

libraries of pre-computed torsion angles and fragment conformations derived from experimental 

data14,21,36. For applications demanding high accuracy, force field-based methods23 offer a physics-

based approach using molecular mechanics, while quantum chemical approaches like the 

Conformer-Rotamer Ensemble Sampling Tool (CREST) method37 employ semiempirical 

calculations to guide conformer generation. CREST combines metadynamics simulations with 

semiempirical calculations employing a history-dependent biasing potential based on atomic 

RMSD as a collective variable to explore the potential energy surface. Through iterative sampling 

and geometry optimization, CREST generates conformational ensembles that account for 

electronic effects. This approach has proven effective for complex molecular systems such as 

macrocycles37,38 and metal-containing compounds39, where conventional force field methods show 

limitations. However, despite using relatively efficient semiempirical methods, CREST 

calculations remain computationally demanding and require significantly longer processing times 
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compared to traditional approaches. In this work, we introduce Moltiverse, a novel approach for 

conformer generation using enhanced sampling molecular dynamics (MD) simulations to explore 

the conformational landscape of small molecules. At its core, Moltiverse combines the extended 

adaptive biasing force algorithm with metadynamics (M-eABF), guided by a single collective 

variable – the radius of gyration (RDGYR). This unique combination enables efficient and 

exhaustive generation of conformer ensembles in a short simulation time, overcoming energy 

barriers that often trap traditional MD simulations in local minimum. Unlike systematic and 

stochastic approaches, Moltiverse’s MD-based method uses a physics-based potential for the 

exploration of conformational space, which avoids generating potentially fictitious geometries. 

This approach is particularly advantageous for molecules with complex energy landscapes or those 

with a high number of rotatable bonds, where traditional methods might struggle to sample relevant 

conformations efficiently. 

MATERIALS AND METHODS.  

Dataset Compilation. A search was carried out in the Binding MOAD40 database, which is 

enriched for ligand-protein complexes with resolutions less than 2.5 Å extracted from the Protein 

Data Bank (PDB)41. The cofactors with the highest frequency and a number of rotatable bonds 

greater than or equal to 15 were selected. Then, for each distinct number of rotatable bonds, the 

cofactor with the largest number of experimental structures was selected. This resulted in 7 

different cofactors: Acetyl coenzyme A (ACO), Coenzyme A (COA), Flavin adenine dinucleotide 

(FAD), Nicotinamide adenine dinucleotide phosphate (NAP), Nicotinamide adenine dinucleotide 

(NAD), Guanosine 5'-triphosphate (GTP) and Adenosine 5'-triphosphate (ATP). The entries in 

the PDB for these cofactors were downloaded on November 27, 2023, where the number of entries 

per cofactor ranged from 190 (ACO) to 1956 (FAD). These entries were further filtered down by 
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the following quality conditions: (i) PDB file with validation XML file available, (ii) a resolution 

of 2.5 Å or less, (iii) an average occupancy value of 1.0, (iv) all heavy atoms resolved, and (v) a 

real space correlation coefficient (RSCC) greater than or equal to 0.95. Multiple copies of a 

cofactor from the same PDB entry were included if they matched the above criteria. Covalent 

molecules were also included. 

Post-processing of experimental conformers. 

Each selected copy (conformer) of the cofactors was extracted from the original PDB file using 

the chem.cr library, an open-source programming package implemented in the modern Crystal 

language42 for manipulating and analyzing molecular structures from computational chemistry 

files43. The maximum common substructure (MCS) algorithm implemented in the RDKit 

library25,44 was used to rearrange the order of the atoms of each conformer to facilitate the Root 

Mean Square Deviation (RMSD) calculation in subsequent analyses. Both the original and 

rearranged structures are available for download (refer to the Data and Software Availability 

section). Structures not recognized by the MCS algorithm were discarded for practical reasons, 

even if they met the quality criteria defined above. 

Moltiverse protocol 

Moltiverse is a ligand conformer generator available as an open-source command line application 

written in the Crystal language42 based on the chem.cr library43. Moltiverse uses the robust 

ecosystem of open-source applications to process the molecules and perform conformational 

sampling, using the chem.cr library as its foundation for file conversion, input creation, calculation 

execution, geometric analysis, and clustering. The conformer generation protocol consists of seven 

main steps: (i) molecular pre-processing which includes conversion of the SMILES (Simplified 
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Molecular Input Line Entry System) code into three-dimensional coordinates using Open Babel 

software16, (ii) initial conformer stretching, (iii) parameterization of the molecule with the 

GAFF245 force field using AmberTools46, (iv) energetic minimization, (v) sampling of the 

molecule conformations with the M-eABF47 method in vacuum using the NAMD48 molecular 

dynamics engine, (vi) structure clustering, and (vii) conformer ensemble refinement using 

electronic structure optimization calculations with XTB software49. Each step of the protocol is 

described in detail in the following subsections. 

Molecular preprocessing. Conformer generators typically use the SMILES code as the input 

format for molecules of interest. This approach has the advantage of avoiding bias in the initial 

structure under study. Moltiverse exclusively accepts an SMI file which contains the SMILES 

code and name of one or more molecules. The conversion into three-dimensional coordinates is 

done by the Open Babel16 software. The chem.cr library is used for reading the converted files and 

their properties, which are useful for the following steps. 

Molecular conformation stretching. An initial geometry of the given molecule is generated 

using Open Babel16 and the gen3d50 command in the default "medium" mode, which performs a 

fast conformer search and geometry optimization with the MMFF94 force field51. About 1000 

conformations are randomly generated and the most extended (largest radius of gyration) 

conformation is selected. Starting from an extended conformation helps to achieve greater 

reproducibility in the conformational sampling step. 

Ligand parameterization. The parameters of the molecule for the GAFF245 v2.20 force field 

are automatically generated using the antechamber52 program from the AmberTools 2346 suite, 

where partial charges are obtained with the AM1-BCC charge model. 
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Energy minimization. Energy minimization of the molecule in vacuum is performed with the 

NAMD48,53 molecular simulation engine using the conjugate gradient method54 up to 5000 cycles. 

Non-bonding interactions are excluded for bonded atoms 1-3 and electrostatic interactions are 

modified by the constant factor of 0.83 for bonded atoms 1-4. The van der Waals interactions for 

bonded atoms 1-4 are divided by 2.0 (scnb=2.0). The cut-off for van der Waals and electrostatic 

interactions is set to 50 Å to avoid instabilities in large molecules.  

Conformational sampling. The eABF method55 combined with Metadynamics sampling56 with 

a single collective variable; the radius of gyration (RDGYR) as implemented in the Colvars 

module57 is used to drive the exploration of the conformational landscape of the molecules in 

vacuum. All ligand atoms are included in the RDGYR collective variable. The calculation is 

divided into 12 windows (0.5 Å width), spanning from 3 to 9 Å. A M-eABF simulation is run for 

2 ns, and 2500 frames equally spaced in time are stored per window, yielding a total of 24 ns of 

simulation and a maximum of 30000 structures for further analysis. Harmonic walls with a force 

constant of 10 kcal/mol are used to softly restrain the exploration of the molecule within each 

window. Both the bin width and the standard deviation between the collective variable and the 

extended degree of freedom (extendedFluctuation parameter), are set to 0.05 Å, and at least 250 

samples must be reached in a bin prior to fully applying the bias (FullSamples parameter) in the 

ABF calculation. The Gaussian hill´s weight is set to 3.0 kcal/mol and the Gaussian hill width is 

set to 3.0 Å, while a new Gaussian hill is added every 50 steps to the metadynamics potential. Note 

that these settings have not been tuned for accurate energy estimation, but to force extensive 

exploration of the conformational space of the studied molecules in a short simulation time. The 

integration time for each step of the simulation is 1 femtosecond. Template files for minimization 
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and sampling are available at GitHub: https://github.com/ucm-lbqc/moltiverse (refer to the Data 

and Software Availability section). 

Structure clustering. All molecular structures generated in the conformational sampling are 

clustered down to the specified value of the number of output conformers based on the all-atom 

root mean squared deviation (RMSD) using hierarchical clustering with the single linkage rule. 

Structures are first aligned (best fit) to only account for internal degrees of freedom (no translation 

and rotation) in the distance metric. The representative of each cluster is defined as the structure 

with the lowest average RMSD to all the structures in the cluster (centroid). Clustering was 

performed with the open source hclust library58 written in the Crystal language. 

Conformer ensemble refinement. Due to the applied potential to force extensive sampling, 

geometric anomalies such as long bonds were observed in the selected structures during 

development. To avoid this issue, a two-step post-processing refinement was implemented. First, 

energy minimization using the GAFF2 force field in NAMD is performed (MM), limited to 500 

steps to preserve the initial conformations. This is followed by quantum mechanical (QM) 

optimization using the semi-empirical GFN2-xTB49,59 method with XTB software, employing the 

"crude" optimization level with convergence criteria of 5×10-4 Eh for energy and 1×10-2 Eh·α-1 for 

gradient, and a maximum of 1500 iterations. If QM optimization fails to converge, the MM 

conformation is retained to avoid excessive computational time. This refinement process 

effectively corrects geometric issues while maintaining the diversity of the conformer ensemble. 

The output of this final step is written to an SDF file. 

Conformer generation benchmark. The output of Moltiverse was compared to that of five 

available tools for the seven cofactors collected in the Cofactorv1 dataset. The (isomeric if 
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available) SMILES codes of these molecules were obtained from the PubChem60 database. The 

functionality for conformer generation implemented in RDKit was used with the ETKDGv3 

(RDKitetkdg3), ETKDGv3-mf (RDKitetkdg3-mf) and KDG (RDKitkdg) algorithms36. CONFORGE was 

used with the systematic best (CFGsys-best), systematic default (CFGsys-def) and stochastic 

(CFGstochastic)
14 modes. Torsional Diffusion was used with the “drugs” model using default 

parameters (TDdrugs)
30 and the particle guidance sampling variant (TDdrugs-pg)

31. Conformator was 

used with the fast (CFMfast) and best (CFMbest) modes21. ConfGenX was used in the default mode 

with the OPLS3e force field (CFXdef-opls3e)
20,61. A full compilation of abbreviations and their 

corresponding definitions is available in the Abbreviations section. Moltiverse was used with 

parameters reported in this cofactor-optimized protocol (Moltiversec1, where ‘c1’ denotes this first 

cofactor-specific protocol). Future protocols for other types of molecules (e.g., macrocycles, 

peptides, etc.) may be implemented under different modes. The twelve algorithm/mode 

combinations and their related features are summarized in Table 3. In all cases, the programs were 

requested to generate 250 conformers, and ten replicas were run per calculation. Detailed 

configurations and input scripts for ensemble generation are available at GitHub: 

https://github.com/ucm-lbqc/moltiverse and at DOI: 

https://doi.org/10.6084/m9.figshare.27346974.v3 (refer to the Data and Software Availability 

section). 

Quality and structural diversity measures. Eight descriptors were calculated to evaluate the 

conformational diversity of the ensembles and the ability of the algorithms to reproduce the 

experimental conformations. For every experimental structure collected in the dataset of a given 

molecule, the best-fit RMSD was computed against all conformers generated by an algorithm and 

the minimum RMSD value (RMSDmin) was selected as measure of the accuracy of reproducing 
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the structure. Therefore, the number of RMSDmin values varies from molecule to molecule as they 

have different numbers of collected structures (Table 1). Additionally, the mean of the RMSDmin 

values at and below the 2.5th percentile (RMSDlow) and the mean of the RMSDmin values at and 

above the 97.5th percentile (RMSDhigh) were calculated as well to obtain an estimate of the lower 

and upper bounds of the prediction accuracy, respectively. The precision of an algorithm to 

reproduce experimental structures was defined as the standard deviation of the RMSDmin values 

(RMSDstd). Conformational diversity was assessed using two complementary approaches: (i) the 

RDGYR of all the generated conformers by each algorithm, and (ii) the RMSD between the 

generated conformers. The range of the RDGYR (RDGYRrange), calculated as the difference 

between the mean of the RDGYR values at and below the 2.5th percentile and the mean of the 

RDGYR values at and above the 97.5th percentile values of the generated conformers, determines 

whether an algorithm can generate compact, extended, or both types of conformations across all 

the studied molecules. For the RDGYRrange, a higher value indicates a greater molecular stretching. 

The average RMSD between all the generated conformers (RMSDmatrix) indicates whether an 

algorithm generates highly similar conformations (smaller value) or more diverse structures (larger 

value). Both RDGYRrange and RMSDmatrix were also calculated for experimental structures. 

The MCS algorithm implemented in RDKit was used to match the common atoms between the 

generated conformers and the post-processed experimental structures44, and then the RMSD was 

calculated using the chem.cr library. The measurements of RDGYR and RMSD considered only 

the heavy atoms of the molecules. 

We also conducted a Spearman’s rank (ρ) correlation analysis between the RMSDmin and 

RDGYR values to determine if the different algorithms predict either compact or extended 
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conformations more accurately. The absolute value of the Spearman correlation |ρ|, denoted as 

RMSD-RDGYRcorr, was analyzed independently for each molecule, mode and replica. 

Energy evaluation was conducted as an additional assessment criterion. Single point calculations 

were performed at the B3LYP+D3/6-31G* level of theory62–66 using the Jaguar software from the 

Schrödinger suite67. Energy values are normalized relative to the lowest energy conformer per 

molecule. This analysis encompassed all conformers generated for the 7 molecules across all 

algorithms, modes, and replicas, totaling 180,298 single point energy calculations. A small fraction 

of conformations failed to converge. Figure S6 and Table S3 summarize the results, including the 

distribution of energy and the number of non-converged structures for each method. 

Statistical analysis. Seven of the eight variables were evaluated to find statistically significant 

differences between the ensembles generated by the tested software, and to evaluate 

reproducibility in the non-deterministic algorithms (Torsional diffusion and Moltiverse). Unless 

otherwise stated, statistical analysis was carried out on the aggregated values of the different 

molecules and replicas for each tested algorithm/mode (Table S1). For RMSDlow and RMSDhigh, 

all values at and below the 2.5th and at and above the 97.5th percentiles, respectively, instead of 

the mean value were considered for this purpose. To assess reproducibility, the conformer 

ensembles of the independent replicas for Torsional Diffusion and Moltiverse were compared by 

the RMSDmin metric for each molecule. Statistical analysis was conducted using the R software 

version 4.3.268. The data were first assessed for normality69 and homogeneity of variances70. Based 

on these assessments a Generalized Linear Model (GLM) with Gamma distribution using identity 

as the link function71 was employed for every variable. To evaluate the effect of the factors on the 

data behavior was performed ANOVA72 in every GLM by type II sum of squares, and according 

to the results, multiple comparisons were performed using a post hoc analysis with the Tukey 
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test73,74. The significance level (α) for all tests was 0.05, and the significance codes are shown as 

follows: ***p < 0.001, **p < 0.01, *p < 0.05, •p < 0.1, nsp < 1. Table S1 provides a summary of 

the sample sizes for each of the seven variables across all studied modes. Figure S9 and Figure 

S10 display matrices of p-values, categorized by significance codes. 

Hardware setup. All the benchmark calculations were performed on a single workstation 

running a Linux-based operating system with the PopOS 22.04.LTS distribution (kernel version 

6.6.6) based on Ubuntu Debian, equipped with an AMD Ryzen 9 - 3950X 16-core processor 3.5 

GHz and 16 GB of RAM. Moltiverse and Torsional Diffusion ran in parallel using the 16 cores, 

while all the other programs used a single thread. The Moltiversec1 implementation requires more 

computational resources because it runs the computations in parallel, but it does not require a 

discrete GPU so it can run on any desktop computer or laptop. 

 

RESULTS 

Benchmark dataset. The compiled dataset of organic small molecules, referred to as Cofactorv1 

hereinafter, comprises seven biologically significant cofactors chosen for their prevalence and 

structural complexity. Table 1 shows the summary of key properties of the dataset for each 

molecule. The dataset contains hundreds and thousands of high-quality, experimentally 

determined unique conformers per molecule in the bound state. Figure S1 shows the distribution 

of the RSCC values and resolutions of the Cofactorv1 structures, which reveals a relatively 

homogeneous distribution of these properties across the dataset, indicating consistency in the 

quality of the experimental structures. The RSCC is a metric that quantifies the agreement between 

calculated and observed electron density maps75–77. The chosen cofactors exhibit a wide range of 

molecular size and flexibility, where the number of total atoms varies from 47 (ATP) to 89 (ACO), 
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the number of heavy atoms varies from 31 (ATP) to 53 (FAD), and the number of rotatable bonds 

range from 15 (ATP) to 29 (ACO). This dataset offers a complementary approach for evaluating 

conformer generators compared to widely used benchmarks like the Platinum diverse dataset25, 

which contains 2859 different ligand structures with 10 or more heavy atoms and 1 to 16 rotatable 

bonds. The Geometric Ensemble of Molecules (GEOM) dataset78 comprises two subsets: GEOM-

QM9, containing conformers of approximately 133,000 unique molecules, and GEOM-DRUGS, 

with conformers of about 317,000 unique molecules. The Platinum diverse dataset exhibits an 

average of 6.6 ± 3.6 rotatable bonds, while GEOM-QM9 has 2.2 ± 1.6, and GEOM-DRUGS shows 

a similar pattern to the Platinum diverse dataset with 6.5 ± 3.0 rotatable bonds. In contrast, the 

Cofactorv1 dataset contains very few but highly flexible molecules (7) and 8412 structures, 

showing a substantially higher average of 19.9 ± 3.5 rotatable bonds. The Cofactorv1 dataset 

intentionally incorporates molecules with many rotatable bonds as it reflects on the understanding 

that conformer generation becomes increasingly difficult as the number of rotatable bonds 

increases14,79, thus providing a more stringent test of the generation capabilities.  

Table 1. Structural features of the Cofactorv1 dataset. 

Molecule Atomsa 
Heavy 

atoms 

Rotatable 

bondsb 
Entriesc Structuresd 

ACO 89 51 29 190 132 

COA 84 48 28 548 292 

FAD 86 53 23 1956 2782 

NAP 76 48 20 1374 1776 

NAD 71 44 17 1308 2009 

GTP 48 32 16 468 634 

ATP 47 31 15 897 787 

Total/Avg. 74 46 20 6741 8412 
a Total number of atoms including hydrogens. b Rotatable bonds are defined as: single, non-ring 

bonds between heavy atoms, excluding amide C-N and terminal bonds. c Total PDB entries. d Total 

number of experimental conformers per molecule. 
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Ensemble size and accuracy. For all generators, it was requested to generate a maximum of 

250 structures for each replica. Due to the characteristics of each algorithm, the ensemble 

conformations were not of the same size. Table 2. Conformer ensemble sizes generated for each 

cofactor by the algorithms per replica.  shows a summary of the number of conformers generated 

by each algorithm. In the 10 replicates, the algorithms were reproducible in terms of the number 

of conformers generated. RDKit, Conforge, Torsional diffusion and Moltiverse generated the 

maximum requested number of conformations in all modes, however, Conformator and ConfGenX 

generated ensembles with smaller sizes. Although the ensembles are not the same size, the same 

comparisons were made between the algorithms to measure the accuracy of the calculations and 

the conformational diversity. 

Table 2. Conformer ensemble sizes generated for each cofactor by the algorithms per replica. 

Algorithm Mode 
Ensemble size 

ACO COA FAD NAP NAD GTP ATP 

RDKit 

etkdg3 250 250 250 250 250 250 250 

etkdg3-mf 250 250 250 250 250 250 250 

kdg 250 250 250 250 250 250 250 

Conforge 

sys-best 250 250 250 250 250 250 250 

sys-def 250 250 250 250 250 250 250 

stochastic 250 250 250 250 250 250 250 

ConfGenX def-opls3e 250 250 128 53 142 192 250 

Torsional 
Diffusion 

drugs 250 250 250 250 250 250 250 

drugs-pg 250 250 250 250 250 250 250 

Conformator 
fast 188 112 96 117 113 43 36 

best 238 215 185 211 211 231 173 

Moltiverse c1 250 250 250 250 250 250 250 

 

In previous studies, the accuracy of conformer algorithms has been defined as the minimum 

RMSD value between any structure of the generated ensemble, and a single experimental structure 

for every tested molecule7,18,25,79. In general, the mean and median of the minimum RMSD values 

https://doi.org/10.26434/chemrxiv-2024-qs0pc-v2 ORCID: https://orcid.org/0000-0002-3542-7528 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-qs0pc-v2
https://orcid.org/0000-0002-3542-7528
https://creativecommons.org/licenses/by/4.0/


 16 

(often referred to average minimum RMSD, AMR) and the percentage of structures generated with 

RMSD values below various thresholds (thresholds) have been reported for a variety of datasets, 

with the Platinum diverse dataset25 being the most commonly used. Although this approach 

provides a global evaluation of an algorithm to handle different types of molecules, it only 

considers one experimental conformation per molecule. Therefore, previous evaluations have not 

estimated the precision of the prediction and have ignored the ability of the algorithms to generate 

a diverse ensemble of conformers of a molecule. In our approach, it is possible to evaluate how 

accurately and precisely the tested algorithms can reproduce experimentally observed ensembles 

of bound-like conformations. Furthermore, we have assessed the conformational diversity within 

the generated ensembles of conformers as it has not been reported previously. 

Conformer generation tools. Moltiverse was compared against five available tools for 

conformer generation in the Cofactorv1 dataset. Table 3 summarizes the general settings employed 

by each algorithm and mode. Several algorithms use RMSD-based clustering to select final 

conformations. Moltiverse also employs clustering to select a subset of conformations from the 

total generated pool. This approach allows it to return precisely the number of conformations 

requested by the user, as long as this number doesn’t exceed the total conformations generated. 

Moltiverse allows post-sampling re-clustering to create ensembles of various sizes, a feature 

currently exclusive to this algorithm. Most algorithms perform geometry optimization using 

established force fields: UFF80, MMFF94s81,82, OPLS3e61, or GAFF245,46,83. Moltiverse includes 

an additional QM optimization step using the semi-empirical GFN2-xTB method59. Among the 

algorithms evaluated in this study, most are either open-source and/or available for academic use. 

ConfGenX is the only algorithm with an exclusively commercial license. Moltiverse uses open-

https://doi.org/10.26434/chemrxiv-2024-qs0pc-v2 ORCID: https://orcid.org/0000-0002-3542-7528 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-qs0pc-v2
https://orcid.org/0000-0002-3542-7528
https://creativecommons.org/licenses/by/4.0/


 17 

source and academic libraries and operates under a GPL-3.0 license. This license permits free use 

for non-commercial purposes and academic research. 

Table 3. Conformer generation algorithm settings used for Cofactorv1 dataset benchmarking.  

Algorithm Mode Clustering 
Force field 

optimization 

QM 

optimization 

Software 

versión 
License 

RDKit 

Etkdg3 - UFFa - 
RDKit 

2022.09.4 
CC BY-SA 4.0 etkdg3-mf - MMFF94sb - 

kdg - - - 

CONFORGE 

sys-best RMSD 
MMFF94s_RTOR 

NO_ESTATc 
- 

1.0.0 LGPL-2.1 sys-def RMSD 
MMFF94s_RTOR 

NO_ESTATc 
- 

stochastic RMSD MMFF94s_RTORd - 

ConfGenX def-opls3e - OPLS3ee - 
Schrodinger 

suite 2023-4 
Commercial 

Torsional 

Diffusion 

drugs - MMFF94sb - - 
MIT 

Drugs-pg - MMFF94sb - - 

Conformator 
fast RMSD - - 

Unicon 1.4.3 
Academic Use 

and others best RMSD - - 

Moltiverse c1 RMSD GAFF2f 
GFN2-xTB 

(crude) 

Moltiverse 

AmberTools 

23          GAFF2 

v2.20                

NAMD 2.14                        

XTB 6.6.1                      

OpenBabel 

3.1.0 

GPL-3.0 and 

dependencies 

licenses 

aUniversal force field (UFF)80. BMMFF94s parameter set81. cMMFF94s_RTOR excluding 

electrostatic interaction terms82. dMMFF94s using a reparameterization for torsion parameters82. 
eOPLS3e force field. The Cofactorv1 dataset does not have macrocycles. fGAFF2 v2.20 available 

in AmberTools2346 was used. 

 

Accuracy and precision per molecule. The comparison of conformer generation quality metrics 

between the algorithms is visually depicted in Figure 1A. In terms of accuracy, Moltiverse was 

the best performing algorithm (lowest RMSDmin values) for the largest molecule ACO, achieving 

an RMSDmin of 2.20 Å ± 0.2 Å (Figure S2, Table S2). ConfGenX and Conformatorbest are slightly 

worse with RMSDmin of 2.34 ± 0.19 Å and 2.42 ± 0.15 Å, respectively. RDKit showed the worst 

accuracy in any of the three modes tested, where it produced large variability in the RMSDmin (low 

precision). This outcome is more pronounced for larger molecules. The greater number of outliers 
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in the RMSDmin of the ACO molecule evidenced that some experimental structures could not be 

reproduced by RDKit (Figure S2, Table S2). For the second largest molecule, COA, the best 

generators in terms of RMSDmin were Moltiverse, CONFORGEsys-def and ConfGenX with 

RMSDmin of 2.07 ± 0.19 Å, 2.11 ± 0.26 Å and 2.2 ± 0.19 Å respectively. Same as in ACO, RDKit 

gave the worse results: 2.81 ± 0.67 Å, 2.75 +- 0.68 Å, and 2.71 +- 0.64 Å for RDKitkdg, RDKitetkdg3, 

and RDKitetkdg3-mf respectively. FAD is the third largest molecule and the one with the largest 

number of experimental structures (2782). This is a special case where it can be observed that both 

accuracy and precision are complementary and more valuable than accuracy alone. The three 

algorithms with the best accuracy without considering precision are: Conformatorbest, RDKitetkdg3 

and RDKitkdg with RMSDmin of 1.74 ± 0.15 Å, 1.92 ± 0.50 Å and 1.97 ± 0.48 Å respectively. 

Again, RDKit showed the lowest precision, where some structures could not be predicted correctly 

even within an RMSDmin of 4 Å (Figure S2). Considering both accuracy and precision, 

Conformatorbest still is in the first place, followed by Moltiverse and Conformatorfast with RMSDmin 

of 1.99 ± 0.21 Å and 2.04 ± 0.17 Å respectively. Note that for the FAD molecule, the average 

RMSDmin values are beginning to be below 2 Å, which has traditionally been established as the 

cut-off for acceptable prediction84–86. For the NAP molecule, RDKit gives values with higher 

accuracy, 1.71–1.74 Å, but with a lower precision compared to Conformator and Moltiverse, 

exhibiting outlier values up to 3.66 Å. The other best algorithms are ordered as: Conformatorbest, 

Conformatorfast, CONFORGEsys-best, Moltiverse, CONFORGEsys-def, Torsional diffusion and 

ConfGenX. For the NAD molecule, the behavior is similar to NAP, where RDKit has a high 

accuracy but with large outliers, and CONFORGEstochastic has the lowest accuracy (RMSDmin of 

2.81 ± 0.24 Å). The algorithms with the best combination of accuracy and precision are Moltiverse 

and Conformatorbest with RMSDmin of 1.81 ± 0.17 Å, and 1.85 ± 0.17 Å respectively. For the 
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smaller molecules, GTP and ATP, all algorithms reproduced the experimental structures with 

average RMSDmin values below 2 Å, which is expected from how well the algorithms have been 

calibrated for molecules with few rotatable bonds (<15). In contrast, the sampling based on the 

RDGYR done by Moltiverse seem to work equally good for both small and large molecules. 

Global accuracy and precision. Table 4 summarizes the overall values for the chosen quality 

metrics, considering all molecules simultaneously. Conformator showed the highest accuracy and 

precision among the tested algorithms. RDKitetkdg3 presented the lowest global RMSDlow value 

(1.21 Å) which indicates the lower bound of the RMSDmin values, reflecting the highest accuracy 

achieved in the dataset. Conformatorbest and Moltiverse presented the lowest global RMSDhigh 

values: 2.14, and 2.16 Å respectively. The RMSDhigh represents the upper bound of the prediction, 

and indicates the accuracy in the worst cases. A lower global RMSDhigh indicates the algorithm’s 

consistency across diverse molecular structures.  

In addition, the distributions of the number of experimental conformations predicted at various 

RMSD thresholds is illustrated in Figure S8. For smaller molecules, the distributions are steeper 

with 100% of the conformers reproduced at an RMSD less than 2 Å. However, these curves shift 

towards high values as the molecular size increases. Moltiverse demonstrates consistency across 

all molecules, exhibiting a sigmoid-shaped curve in all cases. In contrast, other algorithms show, 

at least for one molecule, curves deviating from the sigmoid shape with abrupt steps in their ascent. 

This pattern suggests that Moltiverse maintains a more uniform behavior across the tested cofactor 

molecules.  
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Figure 1. Conformer generation quality comparison for the Cofactorv1 dataset. Panels are ordered 

from the molecule with the lowest (ATP) to the highest (ACO) number of rotatable bonds. A. The 

solid line indicates the average RMSDmin values, while the lower and upper dotted lines represent 

the average RMSDlow and RMSDhigh values, respectively. The gray dashed line at 2 Å serves as a 

reference point. B. Only the average of every metric is shown for clarity. 

Table 4. Conformer generation quality metrics for the Cofactorv1 dataset by algorithm.  

Algorithm Mode RMSDmin
a RMSDstd

a RMSDlow
a RMSDhigh

a 
RMSD - 

RDGYRcorr 
RDGYRrange

a RSMDmatrix
a ENERGYb 

RDKit etkdg3 1.78 0.51 1.21 2.89 0.63 1.50 2.53 162.01 
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etkdg3-mf 1.84 0.49 1.31 2.84 0.48 1.68 2.54 58.23 

kdg 1.78 0.49 1.23 2.92 0.64 1.60 2.54 162.32 

Conforge 

sys-best 2.10 0.55 1.43 2.65 0.41 1.81 2.83 78.07 

sys-def 2.12 0.49 1.47 2.52 0.34* 2.09 3.07 78.07 

stochastic 2.89 0.82 1.89 3.48 0.54 1.31 3.37 66.21 

ConfGenX def-opls3e 2.54 0.67 1.81 2.96 0.51 2.11 3.59 70.28 

Torsional 

Diffusion 

drugs 2.15 0.42 1.60 2.56 0.52 2.00 3.45 77.55 

drugs-pg 2.37 0.51 1.68 2.82 0.56 1.71 3.33 53.63 

Conformator 
fast 1.93 0.31 1.48 2.32 0.38 2.71* 3.74 253.83 

best 1.75 0.28 1.37 2.14* 0.37 2.62* 3.38 229.98 

Moltiverse c1 1.84 0.31 1.45 2.16* 0.26* 2.52* 3.38 37.79 
aUnits are Angstroms. bUnits are kcal/mol. The algorithms with the best overall quality for each 

accuracy criterion are highlighted in bold. *When multiple algorithms demonstrate statistically 

equivalent top quality, all such algorithms are marked with asterisks. 

 

Conformational diversity. Conformational diversity was assessed using two approaches, 

RDGYR range and RMSD matrix measurements for the generated conformers. The RDGYR 

indicates how compact (smaller value) or extended (larger) is a given structure, and it is 

particularly useful to evaluate the extent of the RDGYR (RDGYRrange) to compare the different 

algorithms (Figure 1B). The ensemble generated by RDKit (in any mode) showed a distribution 

of the RDGYR much narrower than the experimental structures (¡Error! No se encuentra el 

origen de la referencia.), especially for the larger molecules ACO, COA, and FAD. RDKit does 

not fully cover the experimental RDGYR distribution, which can be related to the poor accuracy 

of RDKit for these molecules. From these results, it can be suggested that RDKit tends to generate 

extended molecules. Conformatorfast, Conformatorbest, and Moltiverse showed the highest global 

RDGYRrange values: 2.71, 2.62, and 2.52 Å, respectively (Table 4), which indicates that these 

algorithms are able to cover a higher diversity of compact and extended molecules. This also shows 

their potential to generate structures outside the training datasets. However, RDKit, CONFORGE, 

and Moltiverse produced the most extended structures unlike Conformatorfast. Although RDKit 

had the lowest precision in reproducing the structures for FAD (RMSDstd of 0.48–0.50 Å), it 
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presented a higher average accuracy (RMSDmin). The latter may be related to the ability of RDKit 

to generate structures in a range of RDGYR closer to the highly-extended experimental structures 

(Figure S3). As RDKit has a tendency for generating extended conformers, they mostly fit the 

experimental RDGYR range. For the small molecules, GTP and ATP, all generators covered the 

RDGYR ranges of the dataset, and this is reflected in the better accuracy overall. 

The analysis of the RDGYR raises an immediate question: whether some conformer generators 

tend to correctly produce more compact or extended structures. To answer this question, a 

correlation analysis was performed between the RMSDmin and RDGYR values of the experimental 

structures. The Spearman’s rank correlation (ρ) values are shown in Figure 2 for all tested 

algorithms. The correlation plots for the ACO molecule are shown in Figure 2A as an example, 

while the plots for all the molecules are shown in Figure S5. RDKit (rightmost panel in Figure 

2A) shows a strong (|ρ| ∼ 0.9) negative correlation, meaning that compact molecules (low 

RDGYR) are often badly predicted (high RMSDmin). On the contrary, a positive correlation 

indicates that algorithms such as CONFORGEstochastic (|ρ| ∼ 0.8) and ConfGenX (|ρ| ∼ 0.5) are 

better (low RMSDmin) at generating compact (low RDGYR) structures for the ACO molecule. 

Moltiverse and CONFORGEsys-def achieved the overall smallest |ρ| (Table 4), 0.26 and 0.34, 

respectively, suggesting that both algorithms can generate both compact and extended structures 

with similar accuracy. 

The RMSDmatrix has been used as a metric for assessing conformational diversity in studies 

examining how drug-like molecules change shape upon binding to proteins87. This matrix was 

expressed as the percentage of ensemble structures at various RMSD thresholds. The current study 

adopts a similar approach by calculating the RMSD within the generated ensembles as measure of 

structural diversity, but introduces two key modifications: first, the average of the RMSDmatrix 
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values (Figure 1B, Table 4) is used rather than the percentage distribution, and second, statistical 

analysis was employed to compare means across different conformer generation algorithms 

(Figure S9). The distribution of the RMSD values in the matrix is shown in Figure S4. 

Conformatorfast presented the higher RMSDmatrix (3.74 Å), which indicates that it produced the 

most diverse conformer ensemble. Conversely, the RDKit algorithm, across its various modes, 

generated conformational ensembles with the least diversity (RMSDmatrix between 2.53–2.54 Å).  

Moltiverse and other algorithms such as Conforgestochastic, ConfGenX, and Torsional Diffusion 

reported ensembles slightly less diverse than Conformatorfast (RMSDmatrix values between 3.4–3.6 

Å). 

Energy evaluation. The energy of all conformers in each generated ensemble was evaluated 

through density functional theory (DFT) calculations to avoid inaccuracies of the classical force 

fields employed by the different algorithms. This metric aimed to identify the algorithms capable 

of producing lower energy structures, serving as an indicator of the geometric correctness of the 

generated molecules. However, this metric should be interpreted cautiously, as experimental 

structures bound to proteins may exhibit internal energy strain, and although such structures reflect 

the free energy minimum, those states do not necessarily coincide with the structure of minimum 

potential energy84,88. Nevertheless, excessively high energies could indicate problematic 

geometries, as previously observed for algorithms such as Balloon, RDKit, Frog2, ConfGen, 

cxcalc, and MOE25,79. Lower energy states suggest sufficiently optimized geometries suitable for 

subsequent, more precise calculations of molecular properties. The energy distributions are shown 

in Figure S6. The average of the normalized energy (with respect to the lowest-energy state) is 

indicative of the energy window in a conformer ensemble. Moltiverse demonstrates the lowest 

global mean normalized energy value (37.79 kcal/mol) among all evaluated algorithms. This 
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superior result can be attributed to Moltiverse’s protocol, which incorporates a conformer 

refinement step using the semi-empirical GFN2-xTB method that ensures geometric correctness. 

Torsional Diffusion ranks second, with values of 53.63 and 77.55 kcal/mol for TDdrugs-pg and 

TDdrugs modes, respectively. Torsional Diffusion exhibited some notable high-energy 

conformations of the larger molecules, specifically NAD, NAP, FAD, COA, and ACO. Further 

inspection revealed that while the energy calculations converged, some of the geometries were 

physically unrealistic (Figure S7). It is noteworthy that despite employing MMFF94s force field 

optimization, Torsional Diffusion still generates conformers with a few geometric issues. This 

observation suggests that the MMFF94s optimization step is insufficient to detect or rectify the 

unrealistic conformations produced by the AI model. Interestingly, Conformator and RDKit 

generated conformers with the highest energy among the evaluated algorithms. One might initially 

assume that these higher energy values correspond to experimental structures due to strain, 

particularly when considering Conformator’s ability to reproduce such structures. However, it is 

crucial to note that energy calculations encountered two types of failure: those due to 

unrecognizable topology due to issues in the initial geometries and those resulting from energy 

convergence issues, also, likely stemming from geometrical errors. Table S3 quantifies the amount 

of calculation failures for each molecule. The larger, more complex molecules—NAD, NAP, FAD, 

ACO, and COA—accounted for most of these failures. Among the evaluated algorithms, RDKit 

exhibited the highest number of total failures (5870), followed by Conforge (3480), and 

Conformator (2100). ConfGenX, Torsional Diffusion, and Moltiverse demonstrated significantly 

fewer failures, with 80, 8, and 4 total failures, respectively. This outcome demonstrates that the 

quality of the conformers should be considered when evaluating conformer generation, as some 
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geometric optimization strategies are not enough to ensure structural correctness, which 

inadvertently diminishes the usefulness of the conformer ensemble. 

 

Figure 2. RMSDmin vs RDGYR correlation. A. Spearman’s rank correlation (ρ), data points and 

trend lines are displayed for the ACO molecule, using data from the first replicate only. The ρ is 

shown in dark squares. ACO was chosen because it is the largest molecule in the dataset. B. 

Absolute mean of Spearman’s rank correlations |ρ|, calculated by computing independent 

correlations for each replica in each mode. 

Systematic quality ranking of conformer generation algorithms. The quality of the 

conformer generation algorithms was evaluated using eight distinct metrics: RMSDmin, RMSDstd, 

RMSDlow, RMSDhigh, RMSD-RDGYRcorr, RDGYRrange, RMSDmatrix, and ENERGY. These metrics 

collectively assess various aspects of conformational accuracy, diversity, and correctness. 

Consequently, the following steps were performed to establish a ranking of the tested algorithms 

based on these metrics: 
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1. For each metric, the algorithms were ordered from best to worst. 

2. Each algorithm was assigned a score based on its position in this order. 

3. The scores across all eight metrics were then aggregated to determine an overall quality 

ranking. 

4. The algorithm ranking was refined through statistical analysis. If no statistically significant 

difference was found between two or more algorithms, they were assigned the same 

ranking position for each metric. 

This aggregate ranking allows for a balanced evaluation that considers multiple facets of the 

quality of conformer generation. It’s important to note that while some algorithms may excel in 

certain metrics, they might underperform in others. However, it’s crucial to consider that the 

relative importance of each metric may vary depending on the specific application or research 

context. Table 5 lists the scores of the algorithms based on their results across each evaluated 

variable. An ideal algorithm would consistently achieve the top position in all metrics, resulting in 

a total RANK value of 8. It is important to note that for a more generalized comparison, any 

additional methods beyond those examined in this study should be evaluated using the same data, 

metrics, and ranking methodology. According to this ranking, Moltiverse ranks first overall, 

achieving a RANK of 19. However, it still shows room for improvement in four key areas: 

accuracy (RMSDmin), precision (RMSDstd), lower limit of accuracy (RMSDlow), and RMSDmatrix. 

Conformator, in its best mode, is placed in the second rank with a RANK of 22, demonstrating 

superior accuracy and precision among the studied algorithms. The third position is shared by 

RDKitetkdg3-mf and Torsional Diffusion (TDdrugs), both achieving a RANK of 35. Conforgesys-def and 

ConfGenXdef-opls3e occupy the fourth and fifth positions, with RANK of 38 and 48, respectively. 
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Table 5. Conformer generator scores and ranking for the Cofactorv1 dataset by algorithm.  

Algorithm Mode RMSDmin RMSDstd RMSDlow RMSDhigh 
RMSD - 

RDGYRcorr 
RDGYRrange RSMDmatrix ENERGY RANK 

Moltiverse c1 3 3 5 1 1 1 4 1 19 

Conformator 
best 1 1 4 1 2 1 4 8 22 

fast 4 2 6 2 2 1 1 9 27 

RDKit 
etkdg3-

mf 
3 6 3 5 2 3 10 3 35 

Torsional 

Diffusion 
drugs 7 4 7 3 3 2 3 6 35 

RDKit kdg 2 5 2 6 3 4 9 7 38 

Conforge sys-def 6 7 6 3 1 2 7 6 38 

RDKit etkdg3 2 8 1 6 3 4 11 7 42 

Conforge sys-best 5 10 5 4 2 3 8 6 43 

Torsional 

Diffusion 
drugs-pg 8 9 8 5 3 3 6 2 44 

ConfGenX 
def-

opls3e 
9 11 9 7 3 2 2 5 48 

Conforge stochastic 10 12 10 8 3 5 5 4 57 

 

Figure 3 shows the general quality of each algorithm’s best mode across all metrics. This 

visualization is based on a normalization of each variable in a scale from 0 to 1, where 1 represents 

the most desirable value for each metric. Lower raw values are optimal for RMSDmin, RMSDstd, 

RMSDlow, RMSDhigh, RMSD-RDGYRcorr, and ENERGY, while higher raw values are optimal for 

RDGYRrange and RMSDmatrix. The plot shows how closely the algorithms approach each other in 

each dimension. A hypothetical ideal algorithm would achieve the optimal position across all 

metrics, resulting in a polygon that fully extends to the outer limits of the radar plot. It’s important 

to note that the inclusion of additional methods in future comparisons could potentially alter the 

scale of this graph, as the normalization process relies on the extreme values observed for each 

metric.  
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Figure 3. Comparison of the algorithms across eight normalized quality metrics. The radar chart 

shows normalized values (0-1 scale). For all metrics, values closer to 1 indicate better quality. 

To illustrate the best predictions produced by each algorithm, the conformation with the lowest 

RMSDmin along with the corresponding experimental structure is shown in Figure 4. Moltiverse 

achieved the lowest RMSDmin values for ACO and COA (1.49 Å and 1.34 Å, respectively). 

Conforgesys-def performed best for FAD (0.99 Å), while both Conformator modes produced the best 

result for NAP (0.77 Å). TDdrugs-pg yielded the lowest RMSDmin values for NAD, GTP, and ATP 

(0.89 Å, 0.51 Å, and 0.58 Å, respectively). These results clearly show that different methods 

exhibit varying accuracy across molecules, where no single algorithm consistently outperforms 

others. Notably, Moltiverse was the only method to achieve predictions below 2 Å RMSD for these 

tested molecules. This result aligns with its superior RMSDhigh metric, suggesting that even 

Moltiverse’s worst-case predictions are relatively similar to experimental structures. 

https://doi.org/10.26434/chemrxiv-2024-qs0pc-v2 ORCID: https://orcid.org/0000-0002-3542-7528 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-qs0pc-v2
https://orcid.org/0000-0002-3542-7528
https://creativecommons.org/licenses/by/4.0/


 29 

 

Figure 4. Lowest RMSD conformations for the studied algorithms on the Cofactorv1 dataset. 

Each row represents a different molecule labeled with its PDB ID. The columns show 

conformations generated by the tested algorithms, color-coded as indicated in the legend. The 

experimental reference structure is shown in red. RMSD values (in Å) are provided below each 

conformation. The grey boxes enclose the lowest RMSDmin value obtained for each molecule 

among all the algorithms. 

Time performance. Moltiverse stands out as the most computationally intensive and time-

consuming algorithm, requiring an average of 2254.14 ± 439.98 seconds per run on a machine 
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with the listed specifications (see methods). This is approximately four orders of magnitude slower 

than the fastest tested algorithm (Figure 5A). While Moltiverse and Torsional Diffusion were run 

using 16 processor cores, the other methods used only a single core, making the performance gap 

even more pronounced. Conforge emerges as the clear best performing in terms of speed, with its 

default systematic mode being exceptionally fast. Conforgesys-def completes in just 0.18 ± 0.06 

seconds on average, while Conforgesys-best takes only slightly longer at 0.23 ± 0.13 seconds. 

Interestingly, Conforgestochastic is significantly slower at 335.02 ± 164.91 seconds. Conformator 

offers the next fastest performance after Conforge’s systematic modes. Its fast version 

(Conformatorfast) averages 28.24 ± 13.19 seconds, while Conformatorbest takes 36.51 ± 15.66 

seconds. This places Conformator as a good middle-ground option between the ultra-fast Conforge 

systematic modes and slower alternatives. RDKitkdg takes 37.52 ± 17.96 seconds, RDKitetkdg3 42.95 

± 19.24 seconds, and RDKitetkdg3-mf is slightly slower with 47.51 ± 20.52 seconds on average. The 

ConfGenX and the Torsional Diffusion are slower, with times ranging from about 90 to 375 

seconds. Figure 5B shows the average runtime for each step of the Moltiverse protocol. The MD-

based sampling stage is the most time-consuming stage, requiring 1321.05 ± 297.82 seconds, 

followed by the ligand parameterization at 567.81 ± 384.23 seconds, which is particularly high for 

larger molecules. These two steps collectively account for approximately 84% of the total 

processing time. Other stages include clustering (192.06 ± 65.55 s), MM refinement (78.98 ± 15.41 

s), and QM refinement (72.99 ± 21.81 s). In contrast, stages such as minimization, molecule 

processing, and molecular stretching consume significantly less time, each taking less than 21 

seconds on average. 
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Figure 5. Time performance. A. For all generators except Moltiverse and Torsional Diffusion, a 

single thread was used to perform the calculations. Moltiverse and Torsional Diffusion used the 

full 16-core processor. B. Time per stage in the Moltiverse protocol. 

DISCUSSION.  

The success of Moltiverse with larger, more flexible molecules suggests that other algorithms 

could improve by incorporating the RDGYR as a variable for conformational sampling or 

systematic filtering, and thus ensure an improved space exploration when dealing with highly 

flexible molecules. Most of the tested algorithms exhibit high RMSD-RDGYRcorr values, 

indicating a bias towards either extended structures (as seen with RDKit) or compact structures 

(Conforgestochastic, ConfGenX, and Torsional Diffusion). Indeed, the RDGYR would be beneficial 

as a metric to quantify the coverage of the conformational space in terms of molecular stretching. 

This approach would likely lead to more diverse and representative conformer ensembles. RDKit 

conformers exhibited the highest failure rate in energy calculations hinting at structural issues 

(Table S3). Notably, the RDKitetkdg3-mf mode showed significantly fewer failures compared to the 

other two RDKit modes. The incorporation of MMFF94s force field minimization in RDKitetkdg3-
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mf results in lower mean energy values than other RDKit modes, at a relatively modest 

computational cost. This observation suggests that the integration of optimization based on force 

fields or QM methods could further enhance the consistency and quality of generated conformers 

across various conformer generation algorithms. 

  

CONCLUSIONS 

Moltiverse, a novel protocol based on open-source applications and the M-eABF method for 

free energy calculations, demonstrates exceptional capability in generating high-quality, bound-

like structures across diverse molecules. The Cofactorv1 dataset has been introduced to assess the 

capability of Moltiverse for large molecules. This dataset encompasses multiple high-quality 

experimental structures for seven highly flexible molecules, complementing existing conformer 

datasets. Thanks to the significantly larger degrees of freedom to be explored due to an average of 

19.9 ± 3.5 rotatable bonds per molecule, Cofactorv1 represents a challenging benchmark for 

evaluating conformer generation algorithms. Moltiverse uses the radius of gyration as the single 

collective variable to drive conformational sampling, which is shown to be particularly effective 

for large, flexible molecules. Comparative analysis reveals Conformator’s superior accuracy and 

precision among studied algorithms. Moltiverse generates conformers that are often relatively 

close to known experimental measures (low RMSDhigh) and it reports highly diverse ensembles 

(high RDGYRrange), matching Conformator’s results, while producing both compact and extended 

conformations with the same quality (low RMSD-RDGYRcorr) alongside Conforge. Notably, 

Moltiverse mostly generates structurally correct low-energy conformers, unlike other algorithms 

that introduce geometric distortions in the reported structures. However, Moltiverse currently 

requires greater computational resources compared to other tested algorithms, indicating a need 
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for optimization in future versions. The proposed holistic evaluation offers a robust framework for 

assessing conformer generation that could be extended to existing datasets. Moltiverse’s 

capabilities highlight its potential as a valuable tool in computational chemistry and drug 

discovery, particularly when working with complex, flexible molecules. 

DATA AND SOFTWARE AVAILABILITY 

All materials for reproducing and extending this study are publicly available through the following 

public repository: DOI: https://doi.org/10.6084/m9.figshare.27346974.v3. The dataset includes 

the Cofactorv1 dataset of original and processed molecules in PDB format, the raw results (CSV 

files), input file for conformer generation with all algorithms, SMILES codes, Jupyter Notebooks 

to carried out the benchmark analysis, and R scripts to perform statistical analysis. the Moltiverse 

source code is available at GitHub: https://github.com/ucm-lbqc/moltiverse 
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