
AI-driven de-novo design and development of

non-toxic DYRK1A inhibitors for Alzheimer’s

disease

Eduardo González,†,⊥ Pablo Varas,‡,†,⊥ Pedro González-Naranjo,¶ Eugenia

Ulzurrun,§,† Concepción Pérez,¶ Juan Antonio Páez,¶ David Ríos Insua,† Simón

Rodríguez Santana,∗,∥ and Nuria E. Campillo∗,§

†Instituto de Ciencias Matemáticas (ICMAT-CSIC)

‡AItenea Biotech S.L

¶Instituto de Química Médica (IQM-CSIC)

§Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC)

∥Universidad Pontificia Comillas (ICAI-UPC)

⊥These authors contributed equally.

E-mail: srsantana@icai.comillas.edu; nuria.campillo@csic.es

Abstract

In humans, dual-specificity Tyrosine-Phosphorylation-Regulated Kinase 1A is

an enzyme encoded by the DYRK1A gene involved in various diseases, including

DYRK1A syndrome, cancer, diabetes, and neurodegenerative pathologies such as

Alzheimer’s disease (AD). AD is the most prevalent form of dementia, accounting

for 60–80% of cases and remains an unmet medical challenge with no cure and

just palliative treatments. Recent studies have identified DYRK1A as a promising

therapeutic target in AD, given its involvement in multiple biological functions and

its alterations correlated with AD progression.
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In this work, we leverage multiple Artificial Intelligence (AI) tools, including pre-

dictive models and generative algorithms, to design non-toxic DYRK1A inhibitors.

We construct a dual-target drug discovery framework integrating AI-driven meth-

ods with classical techniques to identify novel compounds. An ensemble Quanti-

tative Structure-Activity Relationship (QSAR) model is employed for predicting

compound affinities, while Directed Message Passing Neural Networks (DMPNN)

are used to assess toxicity. In a generative phase, a Hierarchical Graph Genera-

tion model (HGG) facilitated the design of potential DYRK1A inhibitors. Promis-

ing candidate molecules were refined through classical docking studies, leading to

their synthesis and experimental validation. As a result, pyrazolyl-1H -pyrrolo[2,3-

b]pyridine was identified as a potent DYRK1A inhibitor, leading to the synthesis of

a new derivative series. Enzymatic assays demonstrated nanomolar-level inhibitory

activity, while anti-inflammatory and antioxidant properties were confirmed through

ORAC assays and LPS-induced pro-inflammatory response evaluations in BV2 mi-

croglial cells. Pharmacological testing revealed that the mentioned compound and

its derivatives exhibit significant DYRK1A inhibition alongside robust antioxidant

and anti-inflammatory effects.

Introduction

Drug discovery, particularly when aiming for addressing complex diseases like Alzheimer’s,

relies on a deep understanding of biological mechanisms and identifying potential ther-

apeutic targets. Among these, the dual-specificity Tyrosine-Phosphorylation-Regulated

Kinase 1A (DYRK1A) family is notable for its role in supporting fundamental biologi-

cal processes and its association with important diseases, including DYRK1A syndrome,

cancer, diabetes,1,2 and neurodegenerative disorders such as AD.2,3

AD, commonly characterized through cognitive decline, presents a major health chal-

lenge, with many unanswered questions regarding its prevention, treatment, and potential

cure. Despite extensive research, its underlying mechanisms remain elusive. However,

recent studies connect DYRK1A dysregulation with various aspects of AD pathology,
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highlighting its potential as a promising therapeutic target.2,4–6

The design of new molecules against a target has traditionally been addressed using

classic design methods, which face significant and complex challenges, e.g., navigating

the vast chemical space to identify compounds that meet desired properties. In recent

years, artificial intelligence (AI) has emerged as a promising methodology providing tools

for de novo molecule generation, leveraging extensive databases in conjunction with novel

AI generative methods.7–9 By integrating these approaches, researchers aim to accelerate

the discovery of novel therapeutics. Numerous successful candidates have emerged from

similar strategies, garnering widespread interest in the machine learning, statistics, and

chemical design communities.9–13 This interest has been most pronounced in instances

with abundant data, while successful cases based on limited datasets remain compara-

tively rare. Furthermore, most studies focus on proposing promising molecule candidates

based on computational models, with far fewer extending to full in vitro validation with

synthesis and laboratory measurement of molecular properties. This limitation is un-

derstandable, as such efforts require significant resources, including access to qualified

experts and well-equipped laboratories.

This paper demonstrates a successful integration of AI-based techniques for de novo

molecule generation. Our generative pipeline is validated through experimental in vitro

studies of candidate molecules proposed to inhibit the DYRK1A enzyme, a promis-

ing therapeutic target for Alzheimer’s disease and related conditions. Conducted in a

small-data regime, this process employed a range of AI techniques to develop a robust

model for suitable candidate generation. The main candidate identified was synthesized

alongside its derivatives to evaluate their biological activity. Enzymatic inhibition, anti-

inflammatory effects, and antioxidant capacity were experimentally confirmed, showcas-

ing highly promising results.

De-novo molecular design

Drug development is a long and intricate process, widely regarded as one of the most

complex industrial tasks. It typically spans 10 to 12 years and incurs costs exceeding a
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trillion dollars. Furthermore, around 90% of the proposed new compounds fail to secure

approval from the FDA (Food and Drug Administration).14 An increasing number of ani-

mals are also used in preclinical experimentation, despite raising ethical concerns and is

still regarded as a necessary step in the drug development process. These factors under-

score the immense complexity and challenges of drug discovery and design, which involve

navigating a virtual space of over 1060 molecules to identify a drug candidate with the

desired properties.15 Over the past decades, various strategies have been implemented to

accelerate and reduce the costs of this procedure, focusing on minimizing time, laboratory

efforts, and the number of animal lives employed during the experimental phases.16,17 AI

has emerged as providing promising tools in this domain, aiding in the optimization of

the drug development process.13,18

Indeed AI tools are now embedded across multiple steps of drug development, in-

cluding the identification and validation of molecular targets, optimizing hit and lead

compounds, suggesting synthesis pathways for drug-like molecules, predicting critical

molecular properties (e.g., ADME-Tox), and even refining the formulation of clinical tri-

als.19–21 Notably, one of the most promising applications of AI in this context is the de

novo molecular design, which involves generating new molecules with optimized property

profiles by exploring and exploiting the vast chemical space. Figure 1 illustrates a gen-

eral workflow of a typical de novo drug design process where red boxes represent inputs

requiring chemical expertise (e.g. data, targets, or expert judgment), green boxes indi-

cate modeling steps, and blue boxes correspond to laboratory work. The outcome of this

pipeline is a newly generated set of candidate molecules, proposed based on state-of-the-

art models, existing data, and expert insights, and validated through biological testing.

Additionally, this process does not require large quantities of data, making it suitable for

a wide range of scenarios.
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Figure 1: Flowchart for a typical process of de-novo design molecules

Recent successes in de novo AI molecule generation have led to the development

of several AI-based approaches tailored to the diverse needs of different tasks in drug

discovery. We categorize these approaches into two main types:

1. QSAR models, they estimate compound properties using information collected in

chemical databases. This can be achieved in a regression setting to predict contin-

uous values, e.g. molecular affinity, logP, or Quantitative Estimate of Druglikeness

(QED), or in a classification setting to assign discrete labels, e.g. toxic vs. non-

toxic. These models rely on training databases, where the quantity and quality

of data significantly influence method selection and performance. Deep learning

approaches, such as neural networks,22 typically require larger datasets. However,

public databases and frameworks like Chemprop23 mitigate these limitations in many

cases, enabling the application of advanced predictive techniques.

2. Generative models, Generative AI models serve to create new data from existing

datasets. In AI-assisted de novo molecule design, these models extrapolate from

data or expert knowledge to propose new compounds. Generative approaches can

be categorized as data-heavy (e.g., deep learning) or data-sparse (e.g., evolutionary

methods). We focus on multi-target de novo generation using methods capable

of extracting insights from small datasets to produce promising molecules. While

combining predictive and generative models can be effective, the limited size of our

DYRK1A inhibition dataset necessitated treating these tasks separately. To address

this, we fine-tuned state-of-the-art models with minimal computational resources
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to design molecular candidates efficiently.

Related work

The drug development process poses significant challenges for the pharmaceutical in-

dustry due to the extensive time and financial resources required to bring a new drug

to market. Virtual screening accelerates the discovery of potential drug candidates by

enabling the rapid evaluation of large compound libraries. Among the various strate-

gies aimed at reducing the cost and time of drug development, computer-aided drug

design (CADD) has proven to be highly effective. Within CADD, structure-based virtual

screening (SBVS) is regarded as one of the most promising in silico techniques for drug

discovery. SBVS focuses on predicting optimal binding interactions between molecules to

form stable complexes, using scoring functions to estimate the strength of non-covalent in-

teractions between a ligand and its molecular target. Numerous studies have highlighted

the profound impact of CADD on the development of new therapeutics,24 with a marked

increase in the application of virtual screening (VS) techniques in drug discovery.25

While the concepts behind computer-assisted de novo molecular design have long

been established,26,27 recent advances have driven unprecedented improvements in the

field. In particular, AI-based methods are increasingly being applied to accelerate and

optimize drug design processes. Seminal works, such as Gómez-Bombarelli et al. on

generative models, have paved the way for future developments, significantly influencing

advancements in QSAR model formulations.21

Given the rapid expansion of research in this area, an exhaustive list of references is

beyond the scope of this paper and would be more appropriate for a comprehensive review,

such as that conducted by Pang et al..29 As highlighted in their work, deep generative

models have demonstrated remarkable efficiency in generating drug-like molecules with

tailored properties. Li et al. 30 further advanced these ideas by introducing a 3D deep

generative model capable of designing molecules that fit specific target binding sites, a

method successfully applied to the design of inhibitors for the main protease of SARS-

CoV-2.
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Some earlier works26 emphasized the critical importance of considering synthetic fea-

sibility during the molecular design process, an issue that AI-driven models increasingly

address by incorporating constraints related to synthetic accessibility. More recent stud-

ies31–33 have highlighted the potential of AI to accelerate drug discovery by refining

molecule generation through machine learning techniques. These approaches enable the

prediction of biological activity and the optimization of multiple pharmacological prop-

erties. Collectively, these advances represent a shift toward generative models that are

highly adaptable to real-world drug development challenges.

From the perspective of experimental validation, a 2019 study employed deep learn-

ing algorithms to identify potential inhibitors of discoidin domain receptor 1 kinase

(DDR1).31 By leveraging extensive datasets of biological activity and molecular struc-

tures, the study predicted candidate molecules with DDR1 inhibitory activity. These

candidates underwent rigorous validation through molecular docking simulations to as-

sess their binding affinities and structural compatibility within DDR1’s active site. This

integrated approach demonstrated that the AI-predicted molecules not only exhibited

high binding affinities but also conformed structurally to DDR1’s requirements for ef-

fective inhibition. Consequently, combining AI-driven predictions with docking-based

experimental validation significantly accelerated the discovery of novel DDR1-targeting

therapeutics.31

Building on this methodology, our objective in this work is to harness AI tools, in-

cluding predictive models and generative algorithms, to design non-toxic inhibitors of

DYRK1A. To achieve this, we utilize both our own developed models and state-of-the-art

approaches from the literature, leveraging our DYRK1A affinity dataset for this task. The

structurally novel molecules generated by the compound of AI models underwent compre-

hensive experimental validation, including protein-ligand docking simulations. Following

synthesis, these molecules were further evaluated through enzymatic and cellular assays,

culminating in the design of a family of DYRK1A inhibitors with a good drug-like profile.

Such extensive validation is uncommon in similar studies, underscoring the robustness

and effectiveness of our approach.
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Results and Discussion

The main focus of this work is the design of DYRK1A inhibitors as potential ther-

apeutic agents for Alzheimer’s disease (AD) using AI tools. Following an initial design

phase, we synthesize and biologically evaluate the performance of each compound to de-

termine its suitability for this task. This evaluation includes both in vitro and cellular

assays for the most promising molecules. To approach this systematically, we propose

the protocol detailed in Figure 2, which outlines the complete process and involves two

complementary strategies: AI de novo design and classical drug development.

N
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Figure 2: Protocol for DYRK1A inhibitors development.

Following Figure 2, utilizing our DYRK1A affinity dataset, we constructed and fitted

QSAR predictive models to estimate the properties of different compounds. By combin-

ing this with other public datasets and available models, we also predicted additional

chemical properties for proposed compounds with unknown affinity levels, such as their

potential toxicity. Similarity and exploitability filters were applied to ensure that the

proposed molecules were synthesizable in the laboratory and distinct from those in pre-

existing databases. This entire process was coupled with a generative model, which was

iteratively refined using the curated selection of candidates to thoroughly explore the

most relevant part of the chemical space. Please refer to the Experimental section for

additional experimental details. Next, thousands (104) of candidates were generated us-

ing generative models and filtered based on predictions of binding affinity, toxicity, and

similarity to known inhibitors. Approximately the top 1% of the most promising can-

didate molecules were retained through this part of the pipeline. Following a review by

expert chemists, the top candidates underwent molecular docking studies to rank their
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potential. Finally, the highest-ranked molecules were handpicked, synthesized, and tested

in the laboratory.

AI-assisted de-novo design for DYRK1A inhibitors

QSAR models for DYRK1A inhibitors

As mentioned earlier, the first step in the de-novo molecule design process involves

training a model capable of assessing the quality of molecules based on our primary

objectives: DYRK1A inhibition, as measured by binding affinity, and non-toxicity. The

resulting QSAR model from this process is a key component for the later generative effort,

as it enables more efficient navigation of the chemical space, guiding the search towards

the most promising candidate regions. This approach estimates these key properties

without requiring each proposed compound to be explicitly present in the database. The

process was conducted under a low-data regime, as we did not have access to a large

database of affinity values. While this limitation poses challenges for certain techniques,

we view it as a significant point of interest, as successfully conducting molecule generation

in such a context could pave the way for similar efforts in other low-data scenarios.

To predict the affinity of each compound, we selected an ensemble model compris-

ing XGBoost,34 support vector regressors (SVR), k-nearest Neighbors (KNN), and a

directed message-passing neural network (DMPNN),23 following extensive experimental

evaluation. While each model performed well individually, integrating these methods into

an ensemble predictor provided more robust and reliable forecasts. This ensemble model

was compared with other predictive models, including MolCLR,35 a graph neural network

(GNN) pre-trained using contrastive learning; SPGNN,36 another GNN pre-trained with

a combination of self-supervised and multitask supervised tasks; and traditional mod-

els such as random forests (RF), gaussian processes (GP), and a multilayer perceptron

(MLP). Each of these models was applied with various molecular representations and

optimized individually.

Figure 3 displays the mean ranking of each predictive method, along with their re-

spective standard error bars. Rankings were constructed by sorting the models based
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on their predictive performance for each evaluation metric: Root Mean Squared Error

(RMSE), Mean Absolute Error (MAE), Explained Variance Score (EVS), and Coefficient

of Determination (R2), across the complete dataset, assigning positions from first to last,

and calculating the mean positions. The ensemble consistently achieved the lowest mean

absolute error, as evidenced by its superior mean ranking and minimal variance around

this leading position. Furthermore, we employed the most effective molecular represen-

tations for each method in the ensemble, utilizing a rigorous cross-validation procedure

to optimize the combination of hyper-parameters and molecular representations. In this

implementation, we chose to maintain homogeneous weights for all the ensemble models.

However, a further generalization of this approach could employ a weighted average for

the distinct model’s predictions that constitute the ensemble, potentially achieving even

higher performance. For further details and explicit results across the different metrics,

please refer to the section on experimental details.
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Figure 3: Performance ranking of models. The selected ensemble is highlighted in red.
Lower is better.

To evaluate the toxicity of the identified compounds, we employed the Directed MPNN

from the Chemprop package.23 This state-of-the-art model outputs 12 values, each repre-

senting the probability of a compound belonging to a specific toxicity class. The model

was utilized both as a predictive tool and a filtering mechanism, requiring each candidate

molecule to be classified as non-toxic across all 12 metrics to qualify as non-toxic.

Finally, several filters were employed during the generative process to classify potential

candidate molecules as promising alongside the predictive affinity and toxicity models.

In particular, we applied filters to ensure the internal consistency of the QSAR ensem-

ble model and to assess the similarity of generated molecules to those in pre-existing
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datasets. For further details, please refer to the description of the screening filters in the

Experimental Section.

Generative models and de-novo design

For the generative process, we explored several models to generate potential DYRK1A

inhibitors, selecting each method based on data avail (frase extra)ability and the chemical

viability of the proposed compounds. In all cases, candidate molecules were rigorously

filtered according to our criteria for binding affinity, toxicity, and novelty.

The chosen model was the HGG model,37 which was trained on a dataset of DYRK1A

inhibitors. Through an iterative process, it produced five batches of 104 new molecules.

After each generation, the newly generated molecules were evaluated for binding affinity,

toxicity, and structural similarity to known inhibitors. Molecules passing these filters were

added back to the training set, and the model was retrained, enabling iterative refinement

of the candidate list over five cycles. We restrict the usage of this recursive approach to

a few iterations (≤ 5) to avoid convergence, which may induce a decrease in the diversity

of the outputs after excessive iterations. Empirically, this process ensured a final set of

molecules with high affinity, low toxicity, and high chemical novelty, resulting in a robust

selection of viable inhibitors. The model consistently generated compounds that met

these criteria and demonstrated structural characteristics aligned with known effective

compounds. Expert chemists reviewing these structures deemed them promising in terms

of chemical properties and drug-likeness. Subsequent experimental results confirmed

these initial assessments, further validating the effectiveness of the HGG approach. For

additional experimental details, as well as information on other models evaluated during

this step, please refer to the Experimental section.

Finally, the top candidates generated by the Hierarchical Graph Generation model

underwent conventional molecular docking calculations to check their experimental per-

formance.
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Molecular Docking

A structure-based virtual screening (SBVS) was performed for ∼ 50 novel inhibitors

targeting the ATP-binding zone of the DYRK1A protein. As control it was redocked the

4E3 (5t) compound into the ATP binding site of the chain A of the published DYRK1A

structure (PDB code 4YLL38), reproducing the original pose as the highest ranked posed

(RMSD value of 0.715 Å, see experimental section). Table 1 shows the top compounds

(rank I-IX) obtained from virtual screening, all of which score higher than the control

(4E3). As additional information, Table S1 (see Supporting Information, SI) shows the

top 50 molecules resulting from the docking studies.

The inhibitor 4E3 forms bonds with Lys167, Lys188, Glu239, and Leu241 (Table 1).

Remarkably, interactions with catalytic residue Glu239 and Leu241 are present in 67% of

the compounds I-IX, suggesting their crucial role in ligand binding typical for the other

inhibitors.39 On the other hand, only compounds II and III interact with the catalytic

lysine Lys188. However, the remaining seven compounds have an arene oriented towards

this catalytic residue.

Significantly, the key hinge interactions are conserved across several newly synthe-

sized compounds. The conserved hinge motif in protein kinases, comprising three amino

acids, is defined by their positions relative to the sequence downstream of the “gate-

keeper” residue, designated as gk+1, gk+2, and gk+3. This motif is well-known for its

role in forming traditional hydrogen bonds with inhibitors.40 In our case, the reference

compound does not exhibit these hydrogen bonds. In contrast, the novel inhibitors I, III,

and VI interact with the hinge backbone residues Glu239 (gatekeeper + 1) and Leu241

(gatekeeper + 3) (Table 1). Particularly, the ligand’s chemical moieties interact with

the hinge region through three key hydrogen bonds, the ligand donates an H-bond to

the main-chain carbonyl of gk+1, while a nitrogen atom accepts an H-bond from the

main-chain amide of gk+3. The third interaction in which the ligand donates a proton to

the main-chain carbonyl of gk+3 in the third interaction. Compounds I and III exhibit

interactions with the hinge backbone similar to those observed in the adenine moiety

of ATP within the ATP-binding pocket, involving both canonical and noncanonical hy-
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drogen bonds (exemplified in Figure 4). Although compound VI also forms hydrogen

bonds with gk+1 (Glu239) and gk+3 (Leu241), these interactions are exclusively canon-

ical (Table 1). In contrast, none of the remaining compounds exhibit these three specific

interactions with the hinge region.

The identification of both canonical and noncanonical hydrogen bonds aligns with

the established mechanism through which inhibitor scaffolds mimic adenine’s interaction

with the hinge. These scaffolds incorporate hydrogen bond donors and acceptors that

engage with the carbonyl groups of gk+1 and gk+3.41,42

Figure 4: Interactions of residues gk+1 (E239) and gk+3 (L241) in the ATP binding site of
DYRK1A structure (PDB 4YLL) with inhibitors. A: Hit compound I; B: Superposition
of the reference compound 4E3 (magenta) and the top hit compound I (grey).

Considering both the docking score and the hinge hydrogen bond interactions,3-(3-

fluorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-4-yl)-1H -pyrrolo[2,3-b]pyridine (com-

pound 1) was selected as the top candidate for synthesis and subsequent biological assays.
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Table 1: Interactions of the top-10 ranked compounds with residues in the binding site
of DYRK1A. AHB: Aromatic Hydrogen Bond; HB: Hydrogen Bond; SBr: Salt Bridge;
HalB: Halogen Bond.

Rank Compound Docking score Lys167Lys188Glu239 Leu241 Ser242 Asp247 Asn292Asp307
(kcal/mol)

Control AHB HB/SB AHB HalB - - - -

I (1) -13.99 - - HB HB/AHB - HB/SBr - -

II -13.21 - HB HB HB AHB 2x(HB/SBr) - SBr

III -12.74 - HB HB 2x(HB) - HB/SBr - -

IV -12.54 - - - HB/AHB - 2x(HB)/SBr - -

V -12.38 - - - HB/(AHB)x2 - HB/SBr - -

VI -12.00 - - HB 2x(HB) - - - -

VII -11.75 AHB - HB AHB - - AHB -

VIII -11.69 - - AHB HB/AHB - HB/SBr - -

IX -11.46 HB - AHB - HB - AHB 2x(AHB)

Synthesis of the new compounds

The 3-(3-fluorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1Hpyrazol-4-yl)-1H -pyrrolo[2,3-

b]pyridine (1) was selected as the candidate for synthesis (Figure 5). A literature

search for 5-(4-piperidinyl-1H --pyrazolyl)-1H --pyrrolo[2,3-b]pyridine derivatives yielded

only three papers43–45 and several patents46–51 related to this family of candidates. Based

on these references, a general synthetic procedure was proposed (Scheme 1).

The synthetic methodology for obtaining the target compound, 3-fluorophenyl-5--

(pyrazol-4-yl)-1H -pyrrolo[2,3-b]pyridine (1), involves two stages. The first stage (A) com-
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B

A

Figure 5: Retrosynthesis to access compound 1

prises the formation of 3-fluorophenyl-1H --pyrrolo[2,3-b]pyridine (Scheme 1), followed by

the second stage (B), which introduces the 1-(1-methylpiperidin-4-yl)-1H --pyrazol-4-yl

group (also included in Scheme 1).

The first stage (A) represents a structurally versatile and general synthetic route for

the formation of 3-fluorophenyl-1H --pyrrolo[2,3-b]pyridine (2). Initial attempts to syn-

thesize compound 2 directly from compound 3 without protection were unsuccessful.

Consequently, the preparation of 2 was accomplished via a two-step route: first, protect-

ing the N-1 position of the pyrrole ring in compound 3 to yield intermediate 15, followed

by the introduction of the aryl substituent at position 3 using 2-(3-fluorophenyl)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane 4 (Scheme 1).

The second stage (B) involves the preparation of 3-fluorophenyl-1H --pyrazol-4-yl-1H -

-pyrrolo[2,3-b]pyridine 1 through a four-step sequence. This sequence includes the initial

introduction of the piperidinepyrazolyl group at position 5 of the pyrrolo[2,3-b]pyridine

ring, followed by methylation of the nitrogen in the piperidinyl group, as outlined in

Scheme 1.

After successfully synthesizing compound 1, a virtual library of 247 potential deriva-

tives was proposed (see Table S2 in the SI) to predict their affinity for DYRK1A using the

AI-based QSAR predictive model previously discussed. This virtual library was designed

based on two key criteria: (i) structural variability of substituents on the phenyl ring and

(ii) synthetic accessibility during step B (Scheme 1) using commercially available 4,4,5,5-

tetramethyl-1,3,2-dioxaborolanes with 2-substituents. Consequently, the aryl-substituted

groups at position 3 of the pyrrolo[2,3-b]pyridine ring consisted of phenyl groups bearing

one to three substituents selected from fluoro, chloro, methyl, trifluoromethyl, methoxy,

nitro, and dimethylamino.
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The activity of this chemical library was predicted using the AI-based QSAR models

described above. Most of the proposed derivatives exhibited affinity at the micro- or sub-

µM level (see Table S2 in the SI). Three compounds were chosen to represent a diverse

set of 3-aryl-5-pyrazolyl-1H --pyrrolo[2,3-b]pyridine derivatives (5-7). Additionally, mono-

, di-, and tri-substituted phenyl derivatives with favorable scores were selected. Thus,

along with the initial compound 1, a representative set of 3-aryl-5-pyrazolyl-1H -pyrrolo-

[2,3-b]pyridine derivatives (5-7) and the corresponding NH-piperidino derivatives (8-11)

were proposed as potential candidates (Figure 6).

N
HN

N
NNR1

R2

1 Me 3-F
5 Me 3-OMe
6 Me 3,5-diCl
7 Me 2-F,4-Me,5-OMe

H
H
H
H

R2 R1

8
9
10
11

R1

Figure 6: Representative set of 3-aryl-5-pyrazolyl-1H -pyrrolo[2,3-b]pyridine derivatives
proposed

According to stage A (Scheme 1), the first step involves the protection of position N-1

of 5-bromo-3-iodo-1H --pyrrolo[2,3-b]pyridine (3) with tosyl chloride. Subsequently, the

synthesis of 3-aryl-1H --pyrrolo[2,3-b]pyridine derivatives (2 and 12-14) was carried out by

reacting 1-tosyl-5-bromo-3-iodo-1H --pyrrolo[2,3-b]pyridine (15) with the corresponding

4,4,5,5-tetramethyl-1,3,2-dioxaborolane derivatives (4 and 16-18), including 3-fluoro, 3-

methoxy, 3,5-dichloro, or 2-fluoro-4-methyl-5-methoxy substituents, using Pd(dppf)Cl2

as a catalyst.

The general synthetic route for the introduction of the 1-(1-methylpiperidin-4-yl)-1H --

pyrazol-4-yl group comprises four steps (stage B, steps b-e)(Scheme 1). The synthesis of 3-

aryl-5-pyrazolyl-1H --pyrrolo[2,3-b]pyridine derivatives (19-22) was carried out by react-

ing 5-bromo-1-tosyl-1H --pyrrolo[2,3-b]pyridine derivatives (2,12-14) with tert-butyl 4-(4-

(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H --pyrazol-1-yl)piperidine-1-carboxylate (23),

using Pd(dppf)Cl2 as a catalyst. The removal of the Boc group then afforded the

corresponding NH-piperidino derivatives (24-27). The methylpiperazinylpyrrolo[2,3-b]-

pyridines (28-31) were prepared from 24-27 by reacting with formaldehyde in formic

acid. Finally, deprotection of the N-1-tosyl group yielded the selected candidates (1,5-

16

https://doi.org/10.26434/chemrxiv-2024-rcx7n ORCID: https://orcid.org/0000-0002-9948-2665 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-rcx7n
https://orcid.org/0000-0002-9948-2665
https://creativecommons.org/licenses/by-nc-nd/4.0/


7).

  2: R = 3-F
12: R = 3-OMe
13: R = 3,5-diCl
14: R = 2-F,4-Me,5-OMe

NN

N
NNboc

Ts

R

N N
N

O
B Oboc

+

NN

N
NHN

Ts

c
R

N
HN

N
NHN

R

8-11

NN

N
NN

Ts

N
HN

N
NN

R

R

d

e

N
HN

Br
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NN

Br
I

4,16-18

a b

Ts
O
BO

+
R

NN

Br

Ts

R

3

Reagents and conditions: (a) Tosyl chloride, NaH, DMF, rt; (b)  Pd(dppf)Cl2, K2CO3, 1-4-dioxane:water (6:1), argon, microwave, 100°C, 2h;
 (c) TFA, CH2Cl2, rt, 90 min ; (d) formaldehyde, formic acid, 70 °C, overnight; (e) 0.4 M NaOH in MeOH, rt, 4 h.

2319-22

24-27 28-31

1,5-7

15

b

e

Stage A

Stage B

Scheme 1: General synthetic route for the preparation of 3-arylpyrrolo[2,3-b]pyridine
derivatives (A) and selected 1-methylpiperidin-4-yl-1H -pyrazol-4-yl-pyrrolo[2,3-
b]pyridine derivatives (B)

Last, the preparation of the corresponding NH-piperidinyl derivatives (8-11) was

achieved by deprotection of the N-1-tosyl group from the piperidin-4-yl-1H --pyrazol-4-yl-

pyrrolo[2,3-b]pyridines (24-27).

The structures of all newly synthesized compounds were confirmed based on their

analytical and spectroscopic data. Detailed spectroscopic characterization is provided in

the SI. Specifically, 1H NMR and 13C NMR chemical shifts are summarized in Tables S3

and S4, with Figures S1-S16 presenting the corresponding spectra in the SI.
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Biological studies

Once derivatives 1, 5-11 were synthesized, their biological evaluation was conducted.

The results obtained, see Table 2, indicate that all compounds exhibit inhibitory activity

in the nanomolar range against DYRK1A. Notably, compounds 1 and 5, along with their

demethylated analogues 8 and 9, demonstrated IC50 values comparable to the reference

compound, harmine. Overall, there was no significant difference in IC50 values between

the methylated compounds and their demethylated analogues.

Regarding the antioxidant capacity of compounds 1, 5-11, the ORAC assay revealed

values around 1 trolox equivalent for most compounds, except for the dichlorinated deriva-

tives 6 and 10, which showed values around 0.5 trolox equivalents. As with the inhibitory

activity, no notable differences were observed between the methylated compounds and

their demethylated analogues (Table 2).

Table 2: Inhibition of DYRK1A (IC50, nM) and Oxygen Radical Absorbance Capacity
(ORAC, Trolox equivalents) of compounds 1, 5 - 11. a Compounds were evaluated
using ATP (10 µmol/well) and DYRKtidE (4 µmol/well) as substrate. Experiments
were performed in triplicate. b Data are expressed as µmol of Trolox equivalents/µmol
of tested compound. c See ref.52

Compound IC50 DYRK1A(nM)a ORACb

1 41± 3 1.02
5 79± 5 1.25
6 459± 24 0.44
7 231± 20 1.3
8 48± 3 1.0
9 81± 4 1.3
10 450± 18 0.55
11 165± 17 1.2

Harmine 80c -

In addition, an interesting property closely related to AD is the one that refers to

the anti-inflammatory capacity of a drug. Thus, the compounds were studied using LPS-

induced proinflammatory responses in BV2 microglial cells. First, the toxicity of the

compounds was assessed via an MTT assay. Compounds 6, 7, 10, and 11 were found to

be non-toxic at concentrations up to 10 µM, whereas compounds 1, 5, 8, and 9 exhibited
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toxicity at 10 µM but were non-toxic at 5 µM.

Subsequently, the effect of the compounds on LPS-induced proinflammatory responses

in BV2 microglial cells was investigated. As illustrated in Figure 7, all compounds reduced

LPS-induced NO production, with compounds 1 and 8 showing the most pronounced

effects. The inhibition was dose-dependent and was particularly strong for compounds

1 and 5, along with their demethylated analogues 8 and 9 (Figures S17-S18 in the SI).

These findings align with the high DYRK1A inhibition observed previously for these

compounds.

Control 1 5 6 7 8 9 10 11
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Figure 7: Antiinflamatory effect of compounds 1 and 5-11 at their maximum dose assayed
(5 µM (1, 5, 8 and 9) or 10 µM (6,7,10 and 11). BV2 cells were incubated for 24h with
lipopolysaccharide (LPS; 200 ng mL-1) in the absence or presence of inhibitors, and the
production of nitrite was evaluated by the Griess reaction. Cells were pretreated with
inhibitors for 1h before lipopolysaccharide (LPS) stimulation. Values represent the mean
and their respective standard deviations from three independent experiments. **: p
< 0.01; ***: p < 0.001 versus LPS-treated cells.

Conclusions

The objective of this research was to apply a comprehensive range of AI-based tech-

niques to develop an effective model to generate candidate compounds with good drug-like

properties as DYRK1A inhibitors. Conducted under a small-data regime, this study uti-

lized a robust pipeline encompassing de novo molecular generation, AI-QSAR modeling,

expert knowledge integration, and docking studies.

The strategic application of AI tools, including predictive and generative models,

19

https://doi.org/10.26434/chemrxiv-2024-rcx7n ORCID: https://orcid.org/0000-0002-9948-2665 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-rcx7n
https://orcid.org/0000-0002-9948-2665
https://creativecommons.org/licenses/by-nc-nd/4.0/


proved highly effective in designing non-toxic DYRK1A inhibitors within a dual-target

drug discovery framework. An ensemble model comprising XGBoost, S support vector re-

gressors, K-nearest Neighbors, and a directed message passing neural network (DMPNN)

was developed to predict the binding affinity of each compound, while the DMPNN fur-

ther assessed toxicity profiles. For the generative phase, a hierarchical graph generation

model enabled the design of promising DYRK1A inhibitors, facilitating the identification

of molecular structures with favorable binding affinity, toxicity, and drug-like properties.

Classical docking studies were employed to prioritize candidates for synthesis and

experimental validation. Among these, fluorophenyl-5-methylpiperidinopyrazolyl-1H -

pyrrolo[2,3-b]pyridine 1 emerged as the top candidate based on its superior docking score

and hinge hydrogen bond interactions. Compound 1 was synthesized and pharmacolog-

ically evaluated, demonstrating potent DYRK1A inhibitory activity at the nanomolar

level.

Further exploration of this novel compound family resulted in synthesising and eval-

uating derivatives (5-11), all of which exhibited comparable efficacy. These derivatives

also possess additional antioxidant and anti-inflammatory properties, broadening their

therapeutic potential.

In conclusion, this study successfully identified a novel DYRK1A inhibitor with nanomo-

lar potency using AI-guided methodologies and established a new family of pyrazolylpyrrolo[2,3-

b]pyridine derivatives with promising pharmacological profiles, paving the way for further

exploration in therapeutic applications.

Experimental section

AI-assisted de-novo design

This section provides a comprehensive and detailed account of the complete process

undertaken with the de novo generative models that led to the identification of the

proposed candidate molecules. It includes an outline of the key characteristics of the

dataset used, its application in the generative workflow, and additional details necessary
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to facilitate the reproduction of similar procedures in analogous contexts.

Datasets

Two datasets containing molecules in SMILES format were utilized in this work:

• The primary dataset consists of 1, 782 active inhibitors targeting DYRK1A, sourced

from the ChEMBL database.53 It includes pharmacological activity data for each

molecule measured using various methods, such as Ki, Kd, IC50, or EC50. These

values are converted to pChEMBL scores, defined as the negative log10 of the molar

concentration.

• The Tox21 dataset,54 comprising 12, 060 training samples with 12 binary labels

representing the outcomes of 12 distinct toxicological experiments.

AI-based QSAR models

We aim to develop new compounds with high affinity for DYRK1A while maintaining

non-toxic profiles, framing this as a dual-target problem. To achieve this, we first con-

struct QSAR models for each property of interest (affinity and toxicity), enabling us to

evaluate the quality of the proposed molecules.

1. Affinity target: To construct the affinity model, we employed several approaches

trained on the primary DYRK1A database. Compared to typical datasets used for

QSAR model development, this dataset is relatively small, presenting challenges in

achieving high-quality predictions. The pChEMBL values were derived from various

measurement methods (Ki, Kd, IC50, or EC50), leading to observable differences

among recorded values solely due to the measurement method, as illustrated in

Figure 8. To account for this confounding factor, each measurement type was

standardized and normalized separately using a Box-Cox transformation,55 and the

standardized target values were used for performance assessments. This correction

was also considered when evaluating each model’s performance.
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Figure 8: Stacked-bars plot of the frequencies of DYRK1A inhibitors affinity featured in
the database by measurement type.

We employed multiple approaches to develop the predictive affinity model, integrat-

ing various molecular representations for each compound to improve accuracy. This

process involved selecting the most suitable descriptors for each model, tailored to

its specific requirements. The available descriptors are:

• Graph: This representation models a molecule as a graph,56 where atoms are

nodes and bonds are edges, effectively capturing molecular connectivity and

structural relationships.

• Morgan: (Morgan fingerprints 57) Circular fingerprints that encode the local

environment around each atom, capturing atom neighborhoods. These are

widely used for similarity searches and structure-activity relationship (SAR)

analysis.

• Rdkitfpbits:58 A representation using bit vectors that denote specific sub-

structures and functional groups within a molecule, enabling rapid identifica-

tion of molecular features.

• M3C: A frequency-based encoding that quantifies how often each substructure

appears within a molecule. This descriptor provides a detailed measure of

molecular features and is obtained using the DescriptaStorus package.
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• SPGNN-e:36 Learned molecular representations derived from graph neural

networks (GNNs). These representations capture complex atomic and bonding

relationships in a data-driven manner, enhancing predictive accuracy.

Given the available representations of the dataset, we employed various predictive

algorithms to construct our QSAR model. For each candidate model, multiple

combinations of molecular descriptors were tested, selecting the configuration that

yielded the most favorable results. Hyper-parameter selection was performed using

a grid search with 10-fold cross-validation for each algorithm. The algorithms tested

for constructing the QSAR model were:

• MolCLR:35 A self-supervised learning framework applied to Graph repre-

sentations. It leverages large unlabeled datasets to pre-train graph neural

networks through contrastive learning by maximizing agreement between aug-

mented views of the same molecule, thereby learning meaningful molecular

representations.

• SPGNN:36 A graph neural network model that operates on Graph repre-

sentations, pre-trained with tasks at both the node and the graph level. This

approach enhances the model’s ability to learn detailed structural relation-

ships.

• GPs (Gaussian Processes): Utilizes M3C representations to predict molecu-

lar properties with uncertainty estimation. This probabilistic model provides

confidence intervals for predictions, making it particularly valuable for small

datasets.

• RFs (Random Forest): Relies on RDKit fingerprints to predict molecular

properties. It constructs an ensemble of decision trees, averaging predictions

across multiple trees to produce robust results.

• MLP (Multi-layer Perceptron): Combines M3C and RDKit fingerprints to

enhance predictive power. MLP captures complex relationships by passing the

input through multiple layers of interconnected nodes.

23

https://doi.org/10.26434/chemrxiv-2024-rcx7n ORCID: https://orcid.org/0000-0002-9948-2665 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-rcx7n
https://orcid.org/0000-0002-9948-2665
https://creativecommons.org/licenses/by-nc-nd/4.0/


• KNN (K-nearest Neighbors): Uses a combination of M3C and SPGNN-e

representations to predict molecular properties. It determines a molecule’s

properties by analyzing its closest neighbors in the dataset.

• SVR (Support Vector Regressor): Utilizes both M3C and RDKit finger-

prints for regression-based predictions. SVR identifies a hyperplane in high-

dimensional space that best fits the data points for accurate property estima-

tion.

• Chemprop:23 A directed message-passing neural network that uses Graph rep-

resentations to predict molecular properties. It computes edge embeddings

through message passing and aggregates them into a molecular embedding for

prediction.

• XGBoost (Extreme Gradient Boosting):34 Employs both Morgan and RD-

Kit representations to deliver highly accurate and efficient predictions. XG-

Boost constructs an ensemble of weak learners using gradient boosting, itera-

tively refining the model to improve performance.

Based on the performance metrics, we constructed our primary predictive model as

an ensemble consisting of XGBoost,34 Support Vector Regressors (SVR), K-nearest

Neighbors (KNN), and the Chemprop directed message-passing neural network.23

SVR contributed strong regression capabilities by employing kernel methods to

model non-linear relationships using M3C and RDKit fingerprints. KNN, com-

bining M3C and SPGNN-e representations, captured local molecular similarities

by predicting properties based on the nearest neighbors in the dataset. XGBoost,

utilizing Morgan and RDKit fingerprints, provided robust and efficient predictions

through its gradient boosting algorithm, which iteratively and effectively improves

weak learners. Finally, Chemprop enhanced the ensemble with deep learning-based

structural insights by leveraging graph representations and directed message-passing

mechanisms. This diverse combination allowed the ensemble to produce robust and

reliable predictions.
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Figure 9: Metric-wise results for each method. Each metric is detailed at the top of
each sub-figure, indicating whether it should be maximized (↑) or minimized (↓) The
individual models that constitute the ensemble are included on the right of each plot
after the dashed line.

We employed the ensemble to predict the performance of each molecule and filter

potential candidates. If the predictions from the models within the ensemble differed

by more than a specified threshold, the proposed compound was discarded. This

served as a consistency check, ensuring alignment among the models regarding

the predicted affinity value of promising compounds. This heuristic rule provided

greater stability during the subsequent generative phases. Initially, the threshold

was set to approximately 1 unit for the predicted affinity; however, later experiments

indicated that a more flexible (higher) threshold could also be effective.

Figure 9 presents the performance of all models evaluated using four key met-

rics: EVS, MAE, R2, and RMSE. The EVS quantifies the proportion of variance

explained by the model, with higher values indicating better performance; MAE

measures the average absolute error between predicted and actual values, while R2

assesses the goodness of fit; RMSE, similar to MAE, evaluates prediction errors

while placing greater emphasis on larger deviations. The objective is to maximize

EVS and R2 while minimizing MAE and RMSE. As illustrated, the ensemble con-

sistently delivered superior median performance across all metrics, with minimal

variance across the dataset. Based on these results, this ensemble was selected

as the QSAR model for this work. Figure 3 provides additional insights by sum-
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marizing the methods through their mean rankings and corresponding standard

deviations, offering a clearer comparison.

2. Toxicity target: To complete the binary target QSAR model, we developed a

model to predict the toxicity of each compound. For this task, we utilized the larger

Tox21 dataset.54 In this dataset, each compound is assessed for toxicity across 12

biomarkers, such as the aryl hydrocarbon receptor (AhR) and the estrogen receptor

(ER). The selected model is the Directed Message-Passing Neural Network, imple-

mented within the Chemprop package,23 a state-of-the-art algorithm for molecular

property prediction. This model operates on molecular graphs, passing messages

between atoms and bonds to capture intricate structural relationships and predict

chemical properties.

The output of the model is an array of 12 probability values, each representing the

likelihood (ranging from 0 to 1) of the compound belonging to a specific toxicity

class. This model is employed both as a predictive tool and as a filter in the

generative process, requiring candidate molecules to achieve a probability of toxicity

below 0.5 across all 12 metrics. This serves as an initial screening step to ensure that

generated compounds do not exhibit toxic traits, thereby aligning with the desired

drug-like properties. While the cutoff at 0.5 has yielded promising experimental

results, stricter thresholds can be applied for individual toxicity labels if a more

conservative approach is desired.

In addition to the QSAR models, we implemented a similarity function to enhance

the diversity of the proposed molecules. Specifically, the Tanimoto similarity metric was

employed to prevent the generation of molecules that were overly similar to one another.

For each candidate molecule, its similarity was calculated against all compounds in the

existing database, ensuring that the maximum similarity value remained below 0.5. This

threshold can also be adjusted to promote an even greater diversity in the exploration of

the chemical space, depending on the specific goals of the study.

Together, these QSAR models collectively predict the properties of the proposed com-

pounds and form the foundation for the filters used to screen molecules, which are ex-
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plicitly detailed in the section on screening filters.

Generative models

To generate new candidate molecules, we primarily relied on pre-trained generative

models, as these typically require large datasets for effective training. This approach

enabled us to generate high-quality candidates despite the limited data availability. Given

our specific dataset constraints, we repurposed pre-existing, pre-trained approaches to suit

our needs. Among the models considered, the HGG37 proved particularly effective due

to its ability to process complex molecular data and produce viable molecular structures

that met our stringent criteria for affinity, toxicity, and novelty.

The HGG model is a hierarchical graph encoder-decoder model that constructs molecules

using structural motifs as building blocks. Initially trained on a dataset containing

SMILES representations of DYRK1A inhibitors, the model generated five batches of

10, 000 molecules, iteratively filtering them for binding affinity, toxicity, and structural

similarity to known inhibitors. Molecules passing all filtering criteria were reintegrated

into the training dataset, enabling the model to retrain and progressively refine the can-

didate list over five iterations. This iterative approach improved the quality of the final

molecule selection, ensuring that each candidate satisfied stringent standards for chem-

ical properties and drug-likeness. While applying such a recursive process blindly could

raise concerns about overfitting, in our case, the limited number of iterations ensured

the results remained focused on the relevant regions of the chemical space for this spe-

cific task. Furthermore, expert chemists reviewed the resulting structures and deemed

them both synthetically feasible and chemically interesting. Subsequent experimental

validation confirmed these initial evaluations, reinforcing the effectiveness of the HGG

model.

For comparison, we briefly explored other models, including Pocket2Mol,59 an E(3)-

equivariant generative network leveraging protein pocket data, as well as several addi-

tional algorithms. These included genetic algorithms like the Reinforced Genetic Al-

gorithm (RGA)60 and diffusion models such as DiffSBDD.61 Although some methods
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showed potential (e.g. Pocket2Mol) and should be further explored in extensions of this

current work, others frequently produced molecules with less desirable chemical proper-

ties, making them unsuitable for further development.

Finally, the candidates generated by the HGG model underwent conventional molec-

ular docking calculations, yielding scores that surpassed those of the reference ligand.

The top-scoring molecules from this process were filtered and ranked using the QSAR

ensemble model, with the top 9 compounds displayed in Table 1.

Screening filters

To screen the generated molecules, we apply FOUR different types of filters. When

needed, we will refer to the predictive QSAR models for pChEMBL affinity and toxicity

as fpch, ftox, respectively.

• Affinity filter: Given a molecule G, its predicted affinity (pChEMBL) must be

higher than the third quaRtile Q3 of our primary dataset:

fpch(G) > Q3.

This ensures that the molecules generated are somewhat promising candidates for

our affinity target.

• Toxicity filter: G must be classified as nontoxic in all 12 toxicity classes:

12∑
i=1

f
(i)
tox(G) = 0, where f

(i)
tox(G) =


0 if p(tox(i)|G) < 0.5,

1 if p(tox(i)|G) ≥ 0.5.

where p(tox(i)|G) is the estimated probability that the compound G is deemed

toxic in the i-th category across all 12 available toxicity classes i ∈ {1, . . . , 12}.

As mentioned earlier in the article, this 0.5 threshold can be changed if a more

conservative estimate of the toxicity of the compounds is needed.

• Similarity filter: We define the similarity between a molecule G and our primary
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dataset D through:

sD(G) = max
G′∈D

{T (G,G′)},

where T is the Tanimoto coefficient between two molecules. To ensure that a

molecule G is sufficiently different from the known inhibitors of the dataset, its

similarity will have to be less than a predefined value:

sD(G) < 0.5

Increasing this threshold encourages the model to explore more diverse regions of

the chemical space but comes with an increased risk of generating non-chemically

viable compounds. Conversely, selecting lower values keeps the model closer to the

existing dataset, prioritizing chemically sound candidates. Empirically, a threshold

of 0.5 provided a good balance between these two behaviors. However, depending

on the nature of the task and the available data, alternative threshold values may

provide a more suitable exploration of the chemical space.

• Exploitability filter: Given a molecule G, the variance of the predicted affinities

in the ensemble model, σens(G), must not exceed a pre-set threshold, σthr. We

consider σthr = 1 for our experiments, although further tests suggest that larger

and more permissive thresholds may also work well. This helps ensure certain

stability regarding the proposed candidate molecules so no single candidate presents

structures that exploit particular parts of the ensemble model.

σ̂ens(G) < σthr

This highlights one of the key strengths of the ensemble model in this context: by

incorporating diverse methods within the ensemble, enforcing this condition makes

it challenging for the generative process to propose a candidate compound that

exploits the specific formulation of any single algorithm. Instead, the compound

must perform well across the other components of the ensemble. Therefore, we
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consider the diversity and collective performance of the ensemble model to be a

crucial aspect of our generative process.

Molecular Docking

For implmenting molecular docking, the following pipeline was applied.

• Ligand Preparation: The conversion from SMILES to SD format was performed

using the structconvert tool available in the Schrödinger module.62 Ligand prepa-

ration was conducted using the LigPrep tool included in the Maestro package.63,64

Progressive levels were generated, encompassing possible ionization states at phys-

iological pH and potential tautomers. Final energy minimization was carried out

using the OPLS4 force field, with default parameters set for stereoisomers.

• Protein Preparation: Human DYRK1A (PDB code 4YLL38) underwent prepara-

tion for subsequent computational analyses utilizing Protein Preparation Wizard,65,66

a tool integrated into Maestro.64 As part of the protocol, the protein structure

underwent preprocessing, including bond order assignment and structural adjust-

ments using Prime.67–69 Additionally, protonation at pH 7± 2 was generated using

Epik.70,71 Subsequently, optimization of the hydrogen-bonding network and calcu-

lation of residue protonation states at pH 7 were performed using PROPKA,72

followed by a final restrained minimization employing the OPLS4 force field.

• Ligand Docking: The centroid of the crystallized ligand in the catalytic pocket

served as the grid center. During grid generation, a van der Waals radius scaling

factor of 1.0 and a partial charge cutoff of 0.25 were applied. Docking was carried

out using the Glide extra precision mode (XP) within the Schrodinger software

suite,73–77 with no constraints applied. Default parameters were utilized for ligand

settings, including flexible ligand sampling and the addition of epik state penalties to

the docking score. The final step involved post-docking minimization using default

settings.

• Docking Validation Protocol: To validate the docking protocol for DYRK1A
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using the Glide program, we redocked the ligand 4E3 (5t) into the binding site of

the crystal structure 4YLL (Table 3).

Table 3: Ligand interactions for redocked 4E3 ligand into 4YLL (HB: Hydrogen bond)

CompoundPose RMSD Docking Score Residue; Interaction; Distance

(Å) (kcal/mol) (Å)

4E3Pose 1 0.715 -8.417 Lys167; Aromatic HB; 2.77

Lys188; HB; 1.81

Lys188; Salt bridge; 3.55

Glu239; Aromatic HB; 2.39

Leu241; Halogen Bond (Br); 2.78

4E3Pose 2 0.739 -8.247 Lys167; Aromatic HB; 2.76

Lys188; HB; 1.87

Lys188; Salt bridge; 3.61

Glu239; Aromatic HB; 2.35

Leu241; Halogen Bond (Br); 2.70

Chemistry

Chemistry Melting points were determined using a MP70 (Mettler Toledo) apparatus

and are uncorrected. 1H NMR spectra (400 or 500 MHz) and 13C NMR spectra (100 or

125 MHz) were recorded on BRUKER AVANCE III HD-400 (400 MHz) and VARIAN

SYSTEM-500 (500 MHz) spectrometers and are reported in ppm on the δ scale. The

signal of the solvent was used as a reference. High-performance liquid chromatography

(HPLC) was performed using a Waters 2695 apparatus with a diode array UV/Vis de-

tector Waters 2996 and coupled to a Waters micromass ZQ using a Sunfire C18 column

(4.6× 50 mm, 3.5µm) at 30◦C, with a flow rate of 0.35 mL/min. The mobile phases used

were: CH3CN and 0.1% formic acid in H2O. Electrospray in positive mode was used for

ionisation. The sample injection volume was set to 3µL of a solution of 1 mg/mL CH3CN.

Gradient conditions, time of gradient (gt) and time of retention (rt) are specified for each

case and a different gradient elution was specified for each case. Flash chromatography
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was performed in an Isolera Prime (Biotage) equipment with a variable detector, using

silica gel 60 (230 − 400 mesh) cartridges or KP C18-HS cartridges, both from Biotage.

Elemental analyses were performed on a Heraeus CHN-O Rapid analyzer. Reactions

heated by microwaves were realized in a Biotage Initiator microwave oven reactor (fre-

quency of 2045 GHz). The purity of all compounds was greater than 95% before biological

testing (SI). Reagents and solvents were purchased from common commercial suppliers,

mostly Scharlau, BLD and FluoroChem, and were used without further purification. The

compound 5-bromo-3-iodo-1-tosyl-1H -pyrrolo[2,3-b]pyridine (15) was prepared from the

procedure reported in Goodfellow et al..78

General procedure for the synthesis of the 5-bromo-3-(aryl)-1-

tosyl–1H –pyrrolo[2,3-b]pyridine compounds 2, 12-14.

A microwave vial was charged with 5-bromo-3-iodo-1-tosyl-1H -pyrrolo[2,3-b]pyridine

(15), the corresponding aryl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4, 16-18), potas-

sium carbonate (K2CO3) and [1,1’-Bis(diphenylphosphino)ferrocene] dichloropalladium

(II)(Pd(dppf)Cl2). The vial was sealed with a septum cap and purged with argon. 1,4-

dioxane and water were added. The mixture was stirred at rt and bubbled with argon

during 5 min. The reaction mixture was irradiated in a microwave for 2h at 100oC. The

crude reaction mixture was diluted with dichloromethane (CH2Cl2) and filtered. The

solvents were evaporated under a vacuum, and the product was purified by flash chro-

matography (0˘15% EtOAc in hexane).

5-bromo-3-(3-fluorophenyl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (2). From 2-

(3-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4) (53 mg, 0.25 mmol), 5-bromo-

3-iodo-1-tosyl-1H -pyrrolo[2,3-b]pyridine (15) (102 mg, 0.21 mmol), K2CO3 (116mg, 0.84

mmol, 4% eq) and Pd(dppf)Cl2 (8.1mg, 0.011 mmol, 5% eq), 1,4-dioxane (3 mL) and

H2O (0.5 mL). Yield: (51 mg, 55%). Mp: 163.8 – 164.4 oC. 1H NMR: CDCl3 (400 MHz)

δ: 8.50 (d, 1H, 6-H); 8.20 (d, 1H, 4-H); 8.09 (d, 2H, Ts); 7.90 (s, 1H, 2-H); 7.47 – 7.42

(m, 1H, Ar); 7.34 - 7.30 (m, 3H, Ar, Ts); 7.26 – 7.22 (m, 1H, Ar); 7.11 – 7.06 (m, 1H,

Ar); 2.39 (s, 3H, CH3). 13C NMR: CDCl3 (100 MHz) δ: 163.3 (d, J = 246 Hz; Ph); 146.1
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(C-6); 145.9 (Ts); 145.8 (C-7a);135.0 (Ts); 134.3 (d, J = 8 Hz; Ph); 131.1 (C-4); 131.0

(d, J = 8 Hz; Ph); 130.0 (2C, Ts); 128.4 (2C, Ts); 124.5 (C-2); 123.2 (d, J = 3 Hz; Ph);

122.9 (C-3a); 118.6 (d, J = 2 Hz; C-3); 115.8 (C-5); 115.0 (d, J = 21 Hz; Ph); 114.4 (d,

J = 22 Hz; Ph); 21.8 (CH3). HPLC-MS (ES+): CH3CN/H2O 60:40 – 95:5, gt: 5 min; rt:

5.97; [M+H]+ = 445 / 447.

5-bromo-3-(3-methoxyphenyl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (12). From

2-(3-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (16) (96 mg, 0.42 mmol), 5-

bromo-3-iodo-1-tosyl-1H -pyrrolo[2,3-b]pyridine (15) (152 mg, 0.32 mmol), K2CO3 (227

mg, 1.64 mmol, 4%eq) and Pd(dppf)Cl2 (12 mg, 0.016 mmol, 5% eq), 1,4-dioxane (3 mL)

and H2O (0.5 mL). Yield: (133 mg, 58%). Mp: 165.8 - 166.3 oC. 1H NMR: CDCl3 (400

MHz) δ: 8.48 (d, 1H, 6-H); 8.21 (d, 1H, 4-H); 8.09 (d, 2H, Ts); 7.89 (s, 1H, 2-H); 7.38

(t, 1H, Ar); 7.29 (d, 2H, Ts); 7.13 – 7.11 (m, 1H, Ar); 7.07 – 7.06 (m, 1H, Ar); 6.94 –

6.91 (m, 1H, Ar); 3.87 (s, 3H, OCH3); 2.38 (s, 3H, CH3). 13C NMR: CDCl3 (100 MHz)

δ: 163.2 (d, J = 246 Hz; Ph); 154.6 (CO); 146.3 (C-7a); 145.5 (Ts); 143.3 (C-6); 136.6

(Ind); 135.2 (Ts); 134.9 (d, J = 8 Hz; Ph); 130.8 (d, J = 8 Hz; Ph); 129.8 (2C, Ts); 128.2

(2C, Ts); 125.1 (C-4); 124.9 (C-2); 124.0 (C-5); 123.8 (Ind); 123.2 (d, J = 3 Hz; Ph);

121.4 (C-3a); 119.7 (Ind); 119.1 (d, J = 3 Hz; C-3); 114.6 (d, J = 21 Hz; Ph); 114.4 (d,

J = 22 Hz; Ph); 80.0 (OC); 59.7 (CH); 32.5 (Pip); 28.5 (5C, 3*CH3, Pip); 24.9 (Pip);

21.7 (CH3). HPLC-MS (ES+): CH3CN/H2O 60:40 – 95:5, gt: 5 min; rt = 5.84; [M+H]+

= 457/459.

5-bromo-3-(3,5-dichlorophenyl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (13). From

2-(3,5-dichlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (17) (249 mg, 0.91 mmol),

5-bromo-3-iodo-1-tosyl-1H -pyrrolo[2,3-b]pyridine (15) (400 mg, 0.83 mmol), K2CO3 (573

mg, 4.15 mmol, 5 eq) and Pd(dppf)Cl2 (32 mg, 0.04 mmol, 5% eq), 1,4-dioxane (3 mL)

and H2O (0.5 mL). Yield: (297 mg, 72%). Mp: 187.6 – 188.2 oC. 1H NMR: CDCl3 (400

MHz) δ: 8.52 (d, 1H, 6-H); 8.15 (d, 1H, 4-H); 8.10 (d, 2H, Ts); 7.91 (s, 1H, 2-H); 7.42 (d,

2H, Ar); 7.37 (t, 1H, Ph); 7.31 (d, 2H, Ts); 2.40 (s, 3H, CH3). 13C NMR: CDCl3 (100

MHz) δ: 146.4 (C-6); 146.0 (Ts); 145.7 (C-7a); 135.9 (2C, Ph); 135.2 (Ts); 134.8 (Ph);

130.7 (C-4); 130.0 (2C, Ts); 128.4 (2C, Ts); 128.0 (Ph); 125.8 (2C, Ph); 125.1 (C-2); 122.4
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(C-3a); 117.1 (C-3); 115.9 (C-5); 21.8 (CH3). HPLC-MS (ES+): CH3CN/H2O 80:20 –

95:5, gt: 5 min; rt = 4.27; [M+H]+ = 497.

5-bromo-3-(2-fluoro-5-methoxy-4-methylphenyl)-1-tosyl-1H -pyrrolo[2,3-b]

pyridine (14). From 2-(2-fluoro-5-methoxy-4-methylphenyl)-4,4,5,5-tetra-methyl-1,3,2-

dioxaborolane (18) (149 mg, 0.56 mmol), 5-bromo-3-iodo-1-tosyl-1H -pyrrolo[2,3-b]pyridine

(15) (200 mg, 0.41 mmol), K2CO3 (283 mg, 2.05 mmol, 4 eq) and Pd(dppf)Cl2 (15 mg,

0.02 mmol, 5% eq), 1,4-dioxane (3 mL) and H2O (0.5 mL). Yield: (113 mg, 55%). Mp:

169.3 – 169.6 oC. 1H NMR: CDCl3 (400 MHz) δ: 8.48 (d, 1H, 6-H); 8.10 (d, 2H, Ts); 8.06

(t, 1H, 4-H); 7.90 (s, 1H, 2-H); 7.30 (d, 2H, Ts); 7.00 (d, 1H, Ar); 6.85 (d, 1H, Ar); 3.86

(s, 3H, OCH3); 2.39 (s, 3H, CH3); 2.26 (s, 3H, CH3). 13C NMR: CDCl3 (100 MHz) δ:

154.3 (d, J = 2 Hz; Ph); 153.7 (d, J = 239 Hz; Ph); 145.8 (C-6); 145.8 (Ts); 145.5 (C-7a);

135.0 (Ts); 131.9 (d, J = 5 Hz; C-4); 129.9 (2C, Ts); 128.9 (d, J = 8 Hz; Ph); 128.4 (2C,

Ts); 125.7 (d, J = 3 Hz; C-2); 123.6 (C-3a); 118.4 (d, J = 24 Hz; Ph); 116.6 (d, J = 16

Hz; Ph); 115.6 (C-5); 114.3 (C-3); 110.9 (d, J = 4 Hz; Ph); 56.2 (OCH3); 21.8 (CH3);

16.3 (CH3). HPLC-MS (ES+): CH3CN/H2O 60:40 – 95:5, gt: 5 min; rt = 7.02; [M+H]+

= 489/491.

General procedure for the synthesis of the tert-butyl 4-(4-(3-(aryl)-

1-tosyl-1H -pyrrolo[2,3-b]pyridin-5-yl)-1H -pyrazol-1-yl)piperi

dine-1-carboxylate compounds 19-22

Ȧ microwave vial was charged with the corresponding 5-bromo derivative (2,12-14),

tert-butyl 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H -pyrazol-1-yl)piperidine-1-

carboxylate, potassium carbonate (K2CO3) and [1,1’-Bis(diphenylphosphino)

ferrocene]dichloropalladium(II) (Pd(dppf)Cl2). The vial was sealed with a septum cap

and purged with argon. 1, 4-dioxane and water were added. The mixture was stirred

at rt and bubbled with argon during 5 min. The reaction mixture was irradiated in mi-

crowave for 2 h at 100 °C. The crude reaction mixture was diluted with dichloromethane

(CH2Cl2) and filtered. The solvents were evaporated under a vacuum, and the product
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was purified by flash chromatography (0 – 50 % EtOAc in hexane).

Tert-butyl 4-(4-(3-(3-fluorophenyl)-1-tosyl-1H -pyrrolo[2,3-b]pyridin-5-yl)

-1H -pyrazol-1-yl)piperidine-1-carboxylate (19). From 5-bromo-3-(3-fluoro-phenyl)-

1-tosyl-1H -pyrrolo[2,3-b]pyridine (2) (90 mg, 0.2 mmol), tert-butyl 4-(4-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)-1H -pyrazol-1-yl)piperidine-1-carboxylate (23) (87 mg, 0.23 mmol),

K2CO3 (126 mg, 0.91 mmol, 4.6 eq) and Pd(dppf)Cl2 (8.0 mg, 0.011 mmol, 5% eq), diox-

ane (3 mL) and H2O (0.5 mL). Yield: (116 mg, 94%). Mp: 106.8 – 107.2 oC. 1H NMR:

CDCl3 (400 MHz) δ: 8.61 (d, 1H, 6-H); 8.13 (d, 2H, Ts); 8.08 (d, 1H, 4-H); 7.89 (s, 1H,

2-H); 7.79 (d, 1H, Ind); 7.73 (d, 1H, Ind); 7.49 – 7.43 (m, 1H, Ar); 7.40 - 7.37 (m, 1H,

Ar); 7.32 – 7.29 (m, 3H, Ar, Ts); 7.11 – 7.08 (m, 1H, Ar); 4.37 – 4.28 (m, 3H, Pip); 2.96

- 2.89 (m, 2H, Pip); 2.38 (s, 3H, CH3); 2.19 (d, 2H, Pip); 2.03 – 1.93 (m, 2H, Pip); 1.49

(s, 9H, CH3). 13C NMR: CDCl3 (100 MHz) δ: 163.2 (d, J = 246 Hz; Ph); 154.6 (CO);

146.3 (C-7a); 145.5 (Ts); 143.3 (C-6); 136.7 (Ind); 135.4 (Ts); 134.9 (d, J = 8 Hz; Ph);

130.8 (d, J = 8 Hz; Ph); 129.8 (2C, Ts); 128.2 (2C, Ts); 125.1 (C-4); 124.9 (C-5); 124.0

(Ind); 123.2 (C-2); 123.2 (d, J = 3 Hz; Ph); 121.4 (C-3a); 119.7 (Ind); 119.1 (d, J = 2

Hz; C-3); 114.6 (d, J = 21 Hz; Ph); 114.4 (d, J = 22 Hz; Ph); 80.0 (OC); 59.7 (CH); 32.5

(Pip); 24.5 (5C, 3*CH3, Pip); 24.9 (Pip); 21.7 (CH3). HPLC-MS (ES+): CH3CN/H2O

60:40 – 95:5, gt: 5 min; rt: 5.77; [M+H]+ = 616.

Tert-butyl 4-(4-(3-(3-methoxyphenyl)-1-tosyl-1H -pyrrolo[2,3-b]pyridin-5-yl)-

1H -pyrazol-1-yl)piperidine-1-carboxylate (20). From 5-bromo-3-(3-methoxyphenyl)-

1-tosyl-1H -pyrrolo[2,3-b]pyridine (12) (150 mg, 0.33 mmol), tert-butyl 4-(4-(4,4,5,5-tetra

methyl-1,3,2-dioxaborolan-2-yl)-1H -pyrazol-1-yl)piperidine-1-carboxylate (23) (137 mg,

0.36 mmol), K2CO3 (137 mg, 0.99 mmol, 3 eq) and Pd(dppf)Cl2 (12.1 mg, 0.017 mmol,

5% eq), dioxane (3 mL) and H2O (0.5 mL). Yield: (176 mg, 85%). Mp: 88.5 – 89.2

oC. 1H NMR: CDCl3 (400 MHz) δ: 8.59 (d, 1H, 6-H); 8.11 (d, 2H, Ts); 8.08 (d, 1H,

4-H); 7.86 (s, 1H, 2-H); 7.77 (d, 1H, Ind); 7.67 (d, 1H, Ind); 7.41 (t, 1H, Ar); 7.29 (d,

2H, Ts); 7.18 (m, 1H, Ar); 7.11 (m, 1H, Ar); 6.93 (m, 1H, Ar); 4.34 – 4.26 (m, 3H,

Pip); 3.88 (s, 3H, OCH3); 2.90 (t, 2H, Pip); 2.37 (s, 3H, CH3); 2.18 – 2.14 (m, 2H,

Pip); 2.01 – 1.90 (m, 2H, Pip); 1.48 (s, 9H, CH3). 13C NMR: CDCl3 (100 MHz) δ:160.3
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(Ph); 154.7 (CO); 146.5 (C-7a); 145.4 (Ts); 143.2 (C-6); 136.7 (Ind); 135.5 (Ts); 134.1

(Ph); 130.3 (Ph); 129.8 (2C, Ts); 128.2 (2C, Ts); 125.5 (C-4); 124.8 (C-2); 124.0 (C-5);

123.5 (Ind); 121.8 (C-3a); 120.3 (Ph); 120.1 (Ind); 119.9 (C-3); 113.5 (Ph); 113.1 (Ph);

80.1 (OC); 59.8 (CH); 55.6 (OCH3); 32.6 (2C, Pip); 28.6 (5C, 3*CH3, Pip); 21.8 (CH3).

HPLC-MS (ES+): CH3CN/H2O 60:40 – 95:5, gt: 5 min; rt = 5.61; [M+H]+= 628. Tert-

butyl 4-(4-(3-(3,5-dichlorophenyl)-1-tosyl-1H -pyrrolo[2,3-b]pyridin-5-yl)-1H -

pyrazol-1-yl)piperidine-1-carboxylate (21). From 5-bromo-3-(3,5-di-chloro

phenyl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (13) (182 mg, 0.37 mmol), tert-butyl 4-(4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)-1H -pyrazol-1-yl)-piperidine-1-carboxylate (23) (153

mg, 0.41 mmol), K2CO3 (153 mg, 1.11 mmol, 3 eq) and Pd(dppf)Cl2 (14 mg, 0.019 mmol,

5% eq), dioxane (3 mL) and H2O (0.5 mL). Yield: (173 mg, 71%). Mp: 117.2 – 117.6 oC.

1H NMR: CDCl3 (400 MHz) δ: 8.54 (d, 1H, 6-H); 8.10 (d, 2H, Ts); 8.01 (d, 1H, 4-H); 7.86

(s, 1H, 2-H); 7.79 (s, 1H, Ind); 7.76 (s, 1H, Ind); 7.44 (d, 2H, Ar); 7.27 – 7.25 (m, 3H, Ts,

Ar); 4.34 – 4.22 (m, 3H, Pip); 2.89 (bs, 2H, Pip); 2.33 (s, 3H, CH3); 2.13 (d, 2H, Pip);

2.04 – 1.90 (m, 2H, Pip); 1.46 (s, 9H, CH3). 13C NMR: CDCl3 (100 MHz) δ: 154.2 (CO);

145.7 (C-7a); 145.3 (Ts); 143.2 (C-6); 136.3 (Ind); 135.6 (Ts); 135.3 (2C, Ph); 134.8 (Ph);

129.5 (2C, Ts); 128.0 (2C, Ts); 127.2 (Ph); 125.5 (2C, Ph); 125.5 (C-4); 124.9 (C-2); 124.5

(Ph); 124.2 (C-5); 124.1 (Ind); 121.8 (C-3a); 119.1 (Ind); 117.3 (C-3); 79.5 (OC); 59.3

(CH); 32.1 (2C, Pip); 28.2 (3C, 3*CH3); 24.6 (2C, Pip); 21.4 (CH3). HPLC-MS (ES+):

CH3CN/H2O 80:20 – 95:5, gt: 5 min; rt = 3.95; [M+H]+= 666.

Tert-butyl 4-(4-(3-(2-fluoro-5-methoxy-4-methylphenyl)-1-tosyl-1H -pyrrolo

[2,3-b]pyridin-5-yl)-1H -pyrazol-1-yl)piperidine-1-carboxylate (22). From 5-bromo-

3-(2-fluoro-5-methoxy-4-methylphenyl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (14) (200 mg,

0.41 mmol), tert-butyl 4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H -pyrazol-1-

yl)piperi- dine-1-carboxylate (23) (170 mg, 0.45 mmol), K2CO3 (170 mg, 1.23 mmol,

3 eq) and Pd(dppf)Cl2 (14.6 mg, 0.017 mmol, 5% eq), dioxane (3 mL) and H2O (0.5

mL). Yield: (195 mg, 73%). Mp: 163.1 – 163.5 oC. 1H NMR: CDCl3 (400 MHz) δ: 8.58

(d, 1H, 6-H); 8.12 (d, 2H, Ts); 7.94 (d, 1H, 4-H); 7.87 (s, 1H, 2-H); 7.75 (s, 1H, Ind);

7.66 (s, 1H, Ind); 7.29 (d, 2H, Ts); 7.00 (d, 1H, Ar); 6.89 (d, 1H, Ar); 4.33 – 4.24 (m,
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3H, Pip); 3.86 (s, 3H, OCH3); 2.94 – 2.86 (m, 2H, Pip); 2.37 (s, 3H, CH3); 2.26 (s, 3H,

CH3); 2.17 – 2.13 (m, 2H, Pip); 2.00 – 1.89 (m, 2H, Pip); 1.47 (s, 9H, CH3). 13C NMR:

CDCl3 (100 MHz) δ: 154.7 (CO); 154.2 (d, J = 2 Hz; Ph); 153.8 (d, J = 239 Hz; Ph);

146.0 (C-7a); 145.5 (Ts); 143.2 (C-6); 136.7 (Ind); 135.4 (Ts); 129.8 (2C, Ts); 128.6 (d, J

= 8 Hz; Ph); 128.3 (2C, Ts); 126.1 (d, J = 3 Hz; C-4); 124.9 (d, J = 3 Hz; C-2); 124.7

(C-5); 123.9 (Ind); 122.2 (C-3a); 120.0 (Ind); 118.3 (d, J = 24 Hz, Ph); 117.2 (d, J =

16 Hz; Ph); 114.9 (C-3); 111.1 (d, J = 4 Hz; Ph); 80.1 (OC); 59.7 (CH); 56.2 (OCH3);

32.5 (2C, Pip); 28.5 (5C, 3*CH3, Pip); 21.8 (CH3); 16.2 (d, J = 1 Hz, CH3). HPLC-MS

(ES+): CH3CN/H2O 60:40 – 95:5, gt: 5 min; rt = 6.58; [M+H]+ = 660.

General procedure for the synthesis of the 3-(aryl)-5-(1-(piperidin-

4-yl)-1H -pyrazol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine compounds

24-27.

Trifluoroacetic acid (TFA) was added to a solution of the corresponding Boc-protected

compound (19-22) in dichloromethane at rt. The reaction is stirred until the end of the

reaction. The solvent was evaporated under a vacuum. The residue was suspended in

NaHCO3 aq 1 M (10 mL) and the resulting suspension was cooled to 4 oC (overnight).

The final product was obtained by filtration, washed with water and air dried.

3-(3-fluorophenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-1H -pyrrolo

[2,3-b]pyridine (24). From tert-butyl 4-(4-(3-(3-fluorophenyl)-1-tosyl-1H -pyrrolo[2,3-

b]pyridin-5-yl)-1H -pyrazol-1-yl)piperidine-1-carboxylate (19) (106 mg, 0.17 mmol) in

CH2Cl2 (10 mL) and TFA (2 mL). Yield: (68 mg, 78%). Mp: 141.8 – 142.6 oC. 1H

NMR: CDCl3 (400 MHz) δ: 8.61 (d, 1H, 6-H); 8.12 (d, 2H, Tos); 8.06 (d, 1H, 4-H); 7.88

(s, 1H, 2-H); 7.77 (s, 1H, Ind); 7.70 (s, 1H, Ind); 7.47 – 7.43 (m, 1H, Ar); 7.39 - 7.37 (m,

1H, Ar); 7.31 – 7.28 (m, 3H, Ar, Tos); 7.11 – 7.06 (m, 1H, Ar); 4.29 – 4.24 (m, 1H, CH);

3.29 – 3.24 (m, 2H, Pip); 2.79 (t, 2H, Pip); 2.38 (s, 3H, CH3); 2.22 – 2.18 (m, 2H, Pip);

1.98 – 1.88 (m, 2H, Pip). 13C NMR: Acetone-d6 (100 MHz) δ: 164.0 (d, J = 243 Hz; Ph);

146.9 (C-7a); 145.6 (Ts); 143.6 (C-6); 136.9 (Ind); 136.2 (Ts); 136.0 (d, J = 8 Hz; Ph);
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131.7 (d, J = 9 Hz; Ph); 130.6 (2C, Ts); 129.0 (2C, Ts); 126.5 (C-5); 125.7 (C-4); 125.6

(C-2); 125.0 (Ind); 124.3 (d, J = 2 Hz; Ph); 121.9 (C-3a); 119.8 (Ind); 119.7 (d, J = 2

Hz; C-3); 115.0 (d, J = 21 Hz; Ph); 114.6 (d, J = 21 Hz; Ph); 60.2 (CH); 45.6 (2C, Pip);

33.9 (2C, Pip); 21.5 (CH3). HPLC-MS (ES+): CH3CN/H2O 15:85 – 95:5, gt: 5 min; rt:

5.09; [M+H]+ = 516.

3-(3-methoxyphenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-1H -pyrrolo

[2,3-b]pyridine (25). From tert-butyl 4-(4-(3-(3-methoxyphenyl)-1-tosyl-1H -pyrrolo[2,3-

b]pyridin-5-yl)-1H -pyrazol-1-yl)piperidine-1-carboxylate (20) (230 mg, 0.37 mmol) in

CH2Cl2 (10 mL) and TFA (2 mL). Yield: (192 mg, 98%). Mp: 121.8 – 122.3 oC. 1H

NMR: CDCl3 (400 MHz) δ: 8.59 (d, 1H, 6-H); 8.12 – 8.09 (m, 3H, Ts, 4-H); 7.86 (s, 1H,

2-H); 7.76 (d, 1H, Ind); 7.69 (d, 1H, Ind); 7.41 (t, 1H, Ar); 7.28 (d, 2H, Ts); 7.18 (d, 1H,

Ar); 7.12 – 7.11 (m, 1H, Ar); 6.95 – 6.92 (m, 1H, Ar); 4.28 – 4.22 (m, 1H, Pip); 3.88 (s,

3H, OCH3); 3.28 – 3.23 (m, 2H, Pip); 2.81 – 2.74 (m, 2H, Pip); 2.37 (s, 3H, CH3); 2.21 –

2.16 (d, 2H, Pip); 1.98 – 1.87 (m, 2H, Pip). 13C NMR: CDCl3 (100 MHz) δ: 160.3 (Ph);

146.4 (C-7a); 145.4 (Ts); 143.3 (C-6); 136.5 (Ind); 135.5 (Ts); 134.1 (Ph); 130.3 (Ph);

129.8 (2C, Ts); 128.2 (2C, Ts); 125.5 (C-4); 125.0 (C-2); 123.8 (C-5); 123.5 (Ind); 121.8

(C-3a); 120.3 (Ind); 120.1 (C-3); 119.8 (C-3); 113.5 (Ph); 113.1 (Ph); 60.1 (CH); 55.5

(OCH3); 45.8 (2C, Pip); 34.1 (2C, Pip); 21.8 (CH3). HPLC-MS (ES+): CH3CN/H2O

15:85 – 95:5, gt: 5 min; rt = 4.97; [M+H]+ = 528.

3-(3,5-dichlorophenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-1H -py-

rrolo[2,3-b]pyridine (26). From tert-butyl 4-(4-(3-(3,5-dichlorophenyl)-1-tosyl-1H -

pyrro- lo[2,3-b]pyridin-5-yl)-1H -pyrazol-1-yl)piperidine-1-carboxylate (21) (306 mg, 0.46

mmol) in CH2Cl2 (10 mL) and TFA (2 mL). Yield: (213 mg, 82%). Mp: 132.9 – 133.5

oC. 1H NMR: CDCl3 (400 MHz) δ: 8.62 (d, 1H, 6-H); 8.12 (d, 2H, Ts); 8.01 (d, 1H, 4-H);

7.88 (s, 1H, 2-H); 7.78 (s, 1H, Ind); 7.71 (s, 1H, Ind); 7.46 (s, 2H, Ar); 7.37 (s, 1H, Ar);

7.30 (d, 2H, Ts); 4.31 – 4.23 (m, 1H, Pip); 3.28 – 3.23 (m, 2H, Pip); 2.78 (t, 2H, Pip);

2.38 (s, 3H, CH3); 2.21 – 2.17 (m, 2H, Pip); 1.99 – 1.90 (m, 2H, Pip). 13C NMR: CDCl3

(100 MHz) δ: 146.2 (C-7a); 145.7 (Ts); 143.8 (C-6); 136.5 (Ind); 135.9 (Ts); 135.8 (2C,

Ph); 135.2 (Ph); 129.9 (2C, Ts); 128.4 (2C, Ts); 127.8 (Ph); 125.9 (2C, Ph); 125.3 (C-4);
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124.9 (C-2); 124.3 (C-5); 123.9 (Ind); 121.0 (C-3a); 119.5 (Ind); 117.8 (C-3); 60.2 (CH);

45.8 (2C, Pip); 34.1 (2C, Pip); 21.8 (CH3). HPLC-MS (ES+): CH3CN/H2O 15:85 – 95:5,

gt: 5 min; rt = 5.41; [M+H]+ = 566 / 568.

3-(2-fluoro-5-methoxy-4-methylphenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-

yl) -1-tosyl-1H -pyrro-lo[2,3-b]pyridine (27).From tert-butyl 4-(4-(3-(2-fluoro-5-methoxy-

4-methylphenyl)-1-tosyl-1H -pyrrolo[2,3-b]pyridin-5-yl)-1H -pyrazol-1-yl)piperidine-1-carboxy-

late (22) (246 mg, 0.37 mmol) in CH2Cl2 (10 mL) and TFA (2 mL). Yield: (203 mg,

98%). Mp: 117.9 – 118.6 oC. 1H NMR: CDCl3 (400 MHz) δ: 8.59 (d, 1H, 6-H); 8.12 (d,

2H, Ts); 7.95 (t, 1H, 4-H); 7.88 (s, 1H, 2-H); 7.74 (s, 1H, Ind); 7.68 (s, 1H, Ind); 7.29 (d,

2H, Ts); 7.01 (d, 1H, Ar); 6.90 (d, 1H, Ar); 4.29 – 4.21 (m, 1H, CH); 3.86 (s, 3H, OCH3);

3.28 – 3.24 (m, 2H, Pip); 2.78 (td, 2H, Pip); 2.37 (s, 3H, CH3); 2.27 (s, 3H, CH3); 2.20 –

2.16 (m, 2H, Pip); 1.95 – 1.91 (m, 2H, Pip). 13C NMR: CDCl3 (100 MHz) δ: 154.2 (d,

J = 2 Hz; Ph); 153.8 (d, J = 239 Hz; Ph); 146.0 (C-7a); 145.4 (Ts); 143.2 (C-6); 136.4

(Ind); 135.4 (Ts); 129.8 (2C, Ts); 128.6 (d, J = 8 Hz; Ph); 128.3 (2C, Ts); 126.1 (d, J =

4 Hz; C-4); 124.9 (d, J = 3 Hz; C-2); 124.8 (C-5); 123.7 (Ind); 122.2 (C-3a); 119.8 (Ind);

118.4 (d, J = 23 Hz, Ph); 117.2 (d, J = 16 Hz; Ph); 115.0 (C-3); 111.2 (d, J = 5 Hz;

Ph); 60.0 (CH); 56.2 (OCH3); 45.8 (2C, Pip); 34.0 (2C, Pip); 21.8 (CH3); 16.3 (CH3).

HPLC-MS (ES+): CH3CN/H2O 15:85 – 95:5, gt: 5 min; rt: 5.26; [M+H]+ = 560.

General procedure for the synthesis of the 3-(aryl)-5-(1-(1-methylpi-

peridin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine com-

pounds 28-31.

Over a solution of the corresponding piperidine derivative (24-27) in formic acid at

rt, was added, dropwise, formaldehyde 37% aqueous. The mixture was stirred and heated

to 70 oC.until the end of the reaction. The solvent was evaporated under a vacuum. A

saturated aqueous solution of sodium carbonate (Na2CO3) was added (to pH = 10) and

the obtained suspension was cooled to 4 oC.(overnight). The final product was obtained

by filtration, washed with water and air dried.
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3-(3-fluorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl

-1H -pyrrolo[2,3-b]pyridine (28). From 3-(3-fluorophenyl)-5-(1-(piperidin-4-yl)-1H -

pyrazol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (24) (120 mg, 0.23 mmol), formic acid (2

mL) and formaldehyde 37% aqueous (0.7 mL, 4.4 mmol). Time of reaction: 24h. Yield:

(111 mg, 89%). Mp: 191.7 – 192.3 oC. 1H NMR: CDCl3 (400 MHz) δ: 8.62 (d, 1H, 6-H);

8.13 (d, 2H, Tos); 8.08 (d, 1H, 4-H); 7.89 (s, 1H, 2-H); 7.79 (s, 1H, Ind); 7.73 (s, 1H,

Ind); 7.49 – 7.43 (m, 1H, Ar); 7.40 – 7.36 (m, 1H, Ar); 7.32 – 7.29 (m, 3H, Ar, Tos); 7.11

– 7.06 (m, 1H, Ar); 4.20 – 4.14 (m, 1H, CH); 3.00 (d, 2H, Pip); 2.38 (s, CH3); 2.34 (s,

NCH3); 2.22 – 2.08 (m, 6H, Pip). 13C NMR: CDCl3 (100 MHz) δ: 163.2 (d, J = 245 Hz;

Ph); 146.2 (C-7a); 145.4 (Ts); 143.3 (C-6); 136.3 (Ind); 135.2 (Ts); 134.9 (d, J = 8 Hz;

Ph); 130.8 (d, J = 9 Hz; Ph); 129.8 (2C, Ts); 128.2 (2C, Ts); 125.1 (C-4); 125.0 (C-2);

123.7 (C-5); 123.6 (Ind); 123.2 (d, J = 3 Hz; Ph); 121.4 (C-3a); 119.6 (Ind); 119.1 (d, J

= 3 Hz; C-3); 114.6 (d, J = 21 Hz; Ph); 114.3 (d, J = 22 Hz; Ph); 59.3 (CH); 54.7 (2C,

Pip); 46.0 (NCH3); 32.6 (2C, Pip); 21.7 (CH3). HPLC-MS (ES+): CH3CN/H2O 15:85 –

95:5, gt: 5 min; rt = 5.09; [M+H]+= 530.

3-(3-methoxyphenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-

1H -pyrrolo[2,3-b]pyridine (29). From 3-(3-methoxyphenyl)-5-(1-(piperidin-4-yl)-1H -

pyrazol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (25) (120 mg, 0.23 mmol), formic acid (2

mL), and formaldehyde 37% aqueous (0.7 mL, 4.4 mmol). Time of reaction: 18 h. Yield:

(111 mg, 89%). Mp: 147.9 – 148.6 oC. 1H NMR: CDCl3 (400 MHz) δ: 8.60 (d, 1H, 6-H);

8.13 – 8.08 (m, 3H, Ts, 4-H); 7.87 (s, 1H, 2-H); 7.77 (s, 1H, Ind); 7.71 (s, 1H, Ind); 7.41

(t, 1H, Ar); 7.29 (d, 2H, Ts); 7.19 (d, 1H, Ar); 7.13 (s, 1H, Ar); 6.94 (d, 1H, Ar); 4.19

– 4.13 (m, 1H, Pip); 3.88 (s, 3H, OCH3); 3.01 – 2.98 (m, 2H, Pip); 2.37 (s, 3H, CH3);

2.34 (s, NCH3); 2.22 – 2.07 (m, 6H, Pip). 13C NMR: CDCl3 (100 MHz) δ: 160.2 (Ph);

146.4 (C-7a); 145.3 (Ts); 143.2 (C-6); 136.4 (Ind); 135.4 (Ts); 134.0 (Ph); 130.2 (Ph);

129.8 (2C, Ts); 128.2 (2C, Ts); 125.4 (C-4); 124.9 (C-2); 123.7 (C-5); 123.4 (Ind); 121.8

(C-3a); 120.3 (Ph); 120.0 (Ind); 119.8 (C-3); 113.4 (Ph); 113.1 (Ph); 59.3 (CH); 55.4

(OCH3); 54.7 (2C, Pip); 46.1 (NCH3); 32.7 (2C, Pip); 21.7 (CH3). HPLC-MS (ES+):

CH3CN/H2O 15:85 – 95:5, gt: 5 min; rt = 5.11; [M+H]+= 542.
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3-(3,5-dichlorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-

1H -pyrrolo[2,3-b]pyridine (30). From 3-(3,5-dichlorophenyl)-5-(1-(piperidin-4-yl)-

1H -pyrazol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (26) (120 mg, 0.21 mmol), formic acid

(5 mL), and formaldehyde 37% aqueous (2 mL, 4.4 mmol). Time of reaction: 28 h. Yield:

(103 mg, 84%). Mp: 113.8 – 114.5 oC. 1H NMR: CDCl3 (400 MHz) δ: 8.61 (d, 1H, 6-H);

8.12 (d, 2H, Ts); 8.01 (d, 1H, 4-H); 7.88 (s, 1H, 2-H); 7.77 (s, 1H, Ind); 7.70 (s, 1H,

Ind); 7.46 (d, 2H, Ar); 7.37 (t, 1H, Ar); 7.30 (d, 2H, Ts); 4.22 – 4.13 (m, 1H, Pip); 3.01

– 2.98 (m, 2H, Pip); 2.38 (s, 3H, CH3); 2.34 (s, 3H, NCH3); 2.22 – 2.10 (m, 6H, Pip).

13C NMR: CDCl3 (100 MHz) δ: 146.2 (C-7a); 145.7 (Ts); 143.8 (C-6); 136.5 (Ind); 135.9

(Ts); 135.8 (2C, Ph); 135.2 (Ph); 129.9 (2C, Ts); 128.4 (2C, Ts); 127.8 (Ph); 125.9 (2C,

Ph); 125.4 (C-4); 124.9 (C-2); 124.3 (C-5); 124.0 (Ind); 121.0 (C-3a); 119.5 (Ind) 117.8

(C-3); 59.5 (CH); 54.8 (2C, Pip); 46.2 (NCH3); 32.8 (2C, Pip); 21.8 (CH3). HPLC-MS

(ES+): CH3CN/H2O 15:85 – 95:5, gt: 5 min; rt = 5.47; [M+H]+= 580 / 582.

3-(2-fluoro-5-methoxy-4-methylphenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -py-

razol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (31). From 3-(2-fluoro-5-methoxy-4-

methylphenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (27)

(103 mg, 0.18 mmol), formic acid (5 mL) and formaldehyde 37% aqueous (2 mL, 4.4

mmol). Time of reaction: 18 h. Yield: (90 mg, 87%). Mp: 113.9 – 114.6 oC. 1H NMR:

CDCl3 (400 MHz) δ: 8.58 (d, 1H, 6-H); 8.12 (d, 2H, Ts); 7.94 (t, 1H, 4-H); 7.88 (s, 1H,

2-H); 7.73 (s, 1H, Ind); 7.66 (s, 1H, Ind); 7.29 (d, 2H, Ts); 7.01 (d, 1H, Ar); 6.90 (d, 1H,

Ar); 4.17 – 4.12 (m, 1H, CH); 3.86 (s, 3H, OCH3); 2.99 – 2.96 (m, 2H, Pip); 2.37 (s, 3H,

CH3); 2.33 (s, NCH3); 2.27 (s, 3H, CH3); 2.19 – 2.07 (m, 6H, Pip). 13C NMR: CDCl3

(100 MHz) δ: 154.2 (d, J = 1 Hz; Ph); 153.8 (d, J = 239 Hz; Ph); 146.0 (C-7a); 145.4

(Ts); 143.2 (C-6); 136.4 (Ind); 135.4 (Ts); 129.9 (2C, Ts); 128.6 (d, J = 8 Hz; Ph); 128.3

(2C, Ts); 126.1 (d, J = 5 Hz; C-4); 124.9 (d, J = 3 Hz; C-2); 124.8 (C-5); 123.6 (Ind);

122.2 (C-3a); 119.9 (Ind); 118.4 (d, J = 24 Hz, Ph); 117.3 (d, J = 16 Hz; Ph); 115.0

(C-3); 111.2 (d, J = 5 Hz; Ph); 59.4 (CH); 56.2 (OCH3); 54.8 (2C, Pip); 46.2 (NCH3);

32.8 (2C, Pip); 21.8 (CH3); 16.3 (CH3). HPLC-MS (ES+): CH3CN/H2O 15:85 – 95:5,

gt: 5 min; rt = 5.28; [M+H]+= 574.
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General procedure for the synthesis of the 3-(aryl)-5-(1-(1-methylpipe-

ridin-4-yl)-1H -pyrazol-4-yl)-1H -pyrrolo[2,3-b]pyridine compounds

1,5-11.

A solution of the corresponding tosyl derivative (24-31) in 0.4 M NaOH methanolic

solution was stirred at room temperature until the end of the reaction. The solvent was

evaporated under a vacuum. Water was added and the obtained suspension was cooled

to 4 oC (overnight). The final product was obtained by filtration, washed with water and

air dried.

3-(3-fluorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-4-yl)-1H -pyrro-

lo[2,3-b]pyridine (1). From 3-(3-fluorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-

4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (28) (55 mg, 0.1 mmol) and 0.4 M NaOH methano-

lic solution (20 mL). Time of reaction: 2 h. Yield: (32 mg, 90%). Mp: 234.6 – 235.8 oC.

1H NMR: DMSO-d6 (400 MHz) δ: 11.99 (bs, 1H, NH); 8.56 (d, 1H, 6-H); 8.41 (d, 1H,

4-H); 8.38 (s, 1H, 2-H); 8.00 (s, 1H, Ind); 7.96 (s, 1H, Ind); 7.59 – 7.47 (m, 3H, Ar); 7.07

(t, 1H, Ar); 4.14 – 4.10 (m, 1H, CH); 2.87 (d, 2H, Pip); 2.21 – 2.31 (s, 3H, CH3); 2.08 –

1.98 (m, 6H, Pip). 13C NMR: DMSO-d6 (100 MHz) δ: 162.8 (d, J = 242 Hz; Ph); 147.9

(C-7a); 141.0 (C-6); 137.6 (d, J = 8 Hz; Ph); 135.7 (Ind); 130.7 (d, J = 9 Hz; Ph); 125.2

(C-2); 124.9 (Ind); 123.3 (C-4); 122.2 (d, J = 1 Hz; Ph); 121.7 (C-5); 119.8 (Ind); 117.1

(C-3a); 113.1 (d, J = 2 Hz; C-3); 112.6 (d, J = 21 Hz; Ph); 112.1 (d, J = 21 Hz; Ph);

58.3 (CH); 54.2 (2C, Pip); 45.8 (NCH3); 32.1 (2C, Pip). HPLC-MS (ES+): CH3CN/H2O

20:80 – 95:5, gt: 5 min; rt = 4.15; [M+H]+= 376.

3-(3-methoxyphenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-4-yl)-1H -pyrro-

lo[2,3-b]pyridine (5). From 3-(3-methoxyphenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-

4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (29) (75 mg, 0.14 mmol) and 0.4 M NaOH methano-

lic solution (40 mL). Time of reaction: 4 h. Yield: (42 mg, 85%). Mp: 134.9 - 135.4 oC.

1H NMR: CDCl3 (400 MHz) δ: 11.73 (bs, 1H, NH); 8.71 (d, 1H, 6-H); 8.32 (d, 1H, 4-H);

8.28 (d, 1H, Ind); 7.83 (d, 1H, 2-H); 7.51 (d, 1H, Ind); 7.40 (t, 1H, Ar); 7.27 (d, 1H, Ar);

7.21 (s, 1H, Ar); 6.88 (d, 1H, Ar); 4.36 – 4.28 (m, 1H, Pip); 3.89 (s, 3H, OCH3); 3.15 –
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3.11 (m, 2H, Pip); 2.55 – 2.45 (m, 5H, NCH3, Pip); 2.31 – 2.20 (m, 4H, Pip). 13C NMR:

CDCl3 (100 MHz) δ: 160.2 (Ph); 148.6 (C-7a); 141.6 (C-6); 136.6 (Ph); 135.9 (Ind); 130.1

(Ph); 124.7 (C-2); 123.8 (Ind); 123.4 (C-4); 122.2 (C-5); 121.3 (Ph); 119.8 (Ind); 118.6

(C-3a); 116.3 (Ph); 111.6 (C-3); 113.1 (Ph); 111.6 (Ph); 59.7 (CH); 55.5 (OCH3); 55.1

(2C, Pip); 46.0 (CH3); 32.6 (2C, Pip). HPLC-MS (ES+): CH3CN/H2O 20:80 – 95:5, gt:

5 min; rt = 4.12; [M+H]+= 388.

3-(3,5-dichlorophenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-4-yl)-1H -

py-rrolo[2,3-b]pyridine (6). From 3-(3,5-dichlorophenyl)-5-(1-(1-methylpiperidin-4-

yl)-1H -pyrazol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (30) (62 mg, 0.11 mmol) and 0.4

M NaOH methanolic solution (20 mL). Time of reaction: 4 h. Yield: (28 mg, 64%). Mp:

219.8 – 220.5 oC. 1H NMR: DMSO-d6 (400 MHz) δ: 12.13 (bs, 1H, NH); 8.56 (bs, 1H,

6-H); 8.36 (bs, 2H, 4-H, Ind); 8.07 (s, 1H, 2-H); 7.99 (s, 1H, Ind); 7.78 (bs, 2H, Ar); 7.44

(s, 1H, Ar); 4.13 (bs, 1H, CH); 3.32 (bs, 2H, Pip); 2.87 (bs, 2H, Pip); 2.21 (bs, 2H, Pip);

2.03 (bs, 5H, Pip, NCH3). 13C NMR: DMSO-d6 (100 MHz) δ: 147.9 (C-7a); 141.3 (C-6);

138.9 (Ph); 135.8 (Ind); 134.6 (2C, Ph); 126.4 (C-2); 125.1 (Ph); 124.8 (Ind); 124.4 (2C,

Ph); 123.2 (C-4); 122.0 (C-5); 119.6 (Ind); 116.8 (C-3a); 111.6 (C-3); 58.3 (CH); 54.2

(2C, Pip); 45.8 (NCH3); 32.1 (2C, Pip). HPLC-MS (ES+): CH3CN/H2O 15:85 – 95:5,

gt: 5 min; rt = 4.71; [M+H]+ = 426 / 428.

3-(2-fluoro-5-methoxy-4-methylphenyl)-5-(1-(1-methylpiperidin-4-yl)-1H -py-

razol-4-yl)-1H -pyrrolo[2,3-b]pyridine (7). From 3-(2-fluoro-5-methoxy-4-methylphenyl)-

5-(1-(1-methylpiperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (31) (66

mg, 0.12 mmol) and 0.4 M NaOH methanolic solution (20 mL). Time of reaction: 4 h.

Yield: (40 mg, 83%). Mp: 226.8 - 227.5 oC. 1H NMR: DMSO-d6 (400 MHz) δ: 11.93

(bs, 1H, NH); 8.55 (d, 1H, 6-H); 8.31 (s, 1H, Ind); 8.17 (t, 1H, 4-H); 7.93 (s, 1H, Ind);

7.72 (s, 1H, 2-H); 7.15 – 7.11 (m, 2H, Ar); 4.15 – 4.07 (m, 1H, CH); 3.87 (s, 3H, OCH3);

2.86 (d, 2H, Pip); 2.20 (s, 3H, CH3); 2.20 (NCH3); 2.08 – 1.96 (m, 6H, Pip). 13C NMR:

DMSO-d6 (100 MHz) δ: 153.6 (d, J = 1 Hz; Ph); 152.8 (d, J = 235 Hz; Ph); 147.4 (C-7a);

140.9 (C-6); 135.5 (Ind); 125.9 (d, J = 5 Hz; C-2); 125.1 (d, J = 5 Hz; Ph); 124.7 (Ind);

123.6 (d, J = 4 Hz; C-4); 121.3 (C-5); 119.8 (Ind); 119.6 (d, J = 7 Hz; Ph); 118.0 (C-3a);
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117.6 (d, J = 14 Hz; Ph); 111.2 (d, J = 4 Hz; Ph); 108.5 (C-3); 59.3 (CH); 55.8 (OCH3);

54.2 (2C, Pip); 45.8 (NCH3); 32.1(2C, Pip); 15.7 (CH3). HPLC-MS (ES+): CH3CN/H2O

15:85 – 95:5, gt: 5 min; rt = 4.52; [M+H]+= 420.

3-(3-fluorophenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1H -pyrrolo[2,3-b]py-

ridine (8). From 3-(3-fluorophenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-1H -

pyrrolo [2,3-b]pyridine (24) (48 mg, 0.09 mmol) and 0.4 M NaOH in MeOH (20 mL).

Time of reaction: 70 min. Yield: (28 mg, 89%). Mp: 146.8 – 147.6 oC. 1H NMR: DMSO-

d6 (400 MHz) δ: 12.02 (bs, 1H, NH); 8.56 (d, 1H, 6-H); 8.41 (d, 1H, 4-H); 8.36 (s, 1H,

Ind); 7.99 (s, 1H, Ind); 7.96 (s, 1H, 2-H); 7.65 (d, 1H, Ar); 7.60 – 7.57 (m, 1H, Ar); 7.51

– 7.45 (m, 1H, Ar); 7.09 – 7.04 (m, 1H, Ar); 4.24 – 4.16 (m, 1H, CH); 3.07 – 3.03 (m,

2H, Pip); 2.63 – 2.56 (m, 2H, Pip); 2.02 – 1.98 (m, 2H, Pip); 1.88 – 1.78 (m, 2H, Pip).

13C NMR: DMSO-d6 (100 MHz) δ: 162.8 (d, J = 244 Hz; Ph); 147.9 (C-7a); 141.0 (C-6);

137.6 (d, J = 8 Hz; Ph); 135.6 (Ind); 130.7 (d, J = 9 Hz; Ph); 125.2 (C-2); 124.7 (Ind);

123.3 (C-4); 122.2 (d, J = 2 Hz; Ph); 121.8 (C-5); 119.7 (Ind); 117.1 (C-3a); 113.0 (d, J

= 3 Hz; C-3); 112.5 (d, J = 22 Hz; Ph); 112.1 (d, J = 21 Hz; C-3); 59.4 (CH); 45.2 (2C,

Pip); 33.7 (2C, Pip). HPLC-MS (ES+): CH3CN/H2O 20:80 – 95:5, gt: 5 min; rt =1.68;

[M+H]+= 362.

3-(3-methoxyphenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1H -pyrrolo[2,3-

b]pyridine (9). From 3-(3-methoxyphenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-

1H -pyrrolo[2,3-b]pyridine (25) (50 mg, 0.09 mmol) and 0.4 M NaOH in MeOH (20 mL).

Time of reaction: 70 min. Yield: (25 mg, 74%). Mp: 246.8 – 247.3 oC. 1H NMR: DMSO-

d6 (400 MHz) δ: 11.91 (bs, 1H, NH); 8.55 (d, 1H, 6-H); 8.40 - 8.34 (m, 2H, 4-H, Ind);

7.97 (m, 1H, 2-H); 7.87 (s, 1H, Ind); 7.38 – 7.36 (m, 2H, Ar); 7.26 (s, 1H, Ar); 6.86 – 6.83

(m, 1H, Ar); 4.23 – 4.16 (m, 1H, CH); 3.89 (s, 3H, CH3);3.15 – 3.03 (m, 2H, Pip); 2.63

– 2.60 (m, 2H, Pip); 2.12 – 1.96 (m, 4H, Pip). 13C NMR: DMSO-d6 (100 MHz) δ: 159.9

(Ph); 147.9 (C-7a); 141.2 (C-6); 136.6 (Ph); 135.7 (Ind); 130.2 (Ph); 124.9 (C-2); 124.6

(Ind); 123.6 (Ph); 121.8 (C-4); 119.9 (C-5); 119.1 (Ind); 117.6 (C-3a); 114.5 (Ph); 111.9

(Ph); 111.6 (C-3); 59.4 (CH); 55.3 (OCH3); 45.1 (2C, Pip); 33.6 (2C, Pip). HPLC-MS

(ES+): CH3CN/H2O 20:80 – 95:5, gt: 5 min; rt = 4.03; [M+H]+= 374.
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3-(3,5-dichlorophenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1H -pyrrolo[2,3-

b]pyridine (10). From 3-(3,5-dichlorophenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1-

tosyl-1H -pyrrolo[2,3-b]pyridine (26) (80 mg, 0.14 mmol) and 0.4 M NaOH in MeOH (20

mL). Time of reaction: 4h. Yield: (31 mg, 71%). Mp: 271.1 - 271.9 oC. 1H NMR:

DMSO-d6 (400 MHz) δ: 12.08 (bs, 1H, NH); 8.56 (d, 1H, 6-H); 8.36 (d, 1H, 4-H); 8.34

(s, 1H, Ind); 8.07 (s, 1H, 2-H); 7.99 (s, 1H, Ind); 7.78 (d, 2H, Ar); 7.44 (s, 1H, Ar); 4.23

– 4.17 (m, 1H, CH); 3.05 (d, 2H, Pip); 2.59 (t, 2H, Pip); 1.99 (d, 2H, Pip); 1.84 – 1.80

(m, 2H, Pip). 13C NMR: DMSO-d6 (100 MHz) δ: 148.0 (C-7a); 141.3 (C-6); 138.9 (Ph);

135.7 (Ind); 134.6 (2C, Ph); 126.5 (C-2); 124.9 (Ph); 124.7 (Ind); 124.4 (2C, Ph); 123.2

(C-4); 122.0 (C-5); 119.6 (Ind); 116.9 (C-3a); 111.5 (C-3); 59.4 (CH); 45.2 (2C, Pip); 33.7

(2C, Pip). HPLC-MS (ES+): CH3CN/H2O 15:85 – 95:5, gt: 5 min; rt =4.69; [M+H]+=

412 / 414.

3-(2-fluoro-5-methoxy-4-methylphenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-

yl)-1H -pyrrolo[2,3-b]pyridine (11). From 3-(2-fluoro-5-methoxy-4-methyl

phenyl)-5-(1-(piperidin-4-yl)-1H -pyrazol-4-yl)-1-tosyl-1H -pyrrolo[2,3-b]pyridine (27) (70

mg, 0.12 mmol) and 0.4 M NaOH in MeOH (20 mL). Time of reaction: 4h. Yield: (37

mg, 75%). Mp: 247.9 - 248.5 oC. 1H NMR: DMSO-d6 (400 MHz) δ: 11.96 (bs, 1H, NH);

8.56 (d, 1H, 6-H); 8.29 (s, 1H, Ind); 8.17 (t, 1H, 4-H); 7.92 (s, 1H, Ind); 7.72 (s, 1H,

2-H); 7.15 – 7.13 (m, 2H, Ar); 4.22 – 4.14 (m, 1H, CH); 3.87 (s, 3H, OCH3); 3.04 (d, 2H,

Pip); 2.59 (t, 2H, Pip); 2.20 (s, 3H, CH3); 1.98 (d, 2H, Pip); 1.86 – 1.76 (m, 2H, Pip).

13C NMR: DMSO-d6 (100 MHz) δ: 153.6 (d, J = 1 Hz; Ph); 152.8 (d, J = 235 Hz; Ph);

147.4 (C-7a); 141.0 (C-6); 135.4 (Ind); 125.8 (d, J = 4 Hz; C-2); 125.1 (d, J = 8 Hz;

Ph ); 124.5 (Ind); 123.6 (d, J = 4 Hz; C-4); 121.4 (C-5); 119.7 (Ind); 119.6 (d, J = 15

Hz, Ph); 118.0 (C-3a); 117.6 (d, J = 14 Hz; Ph); 111.2 (d, J = 4 Hz; Ph); 108.6 (C-3);

59.3 (CH); 55.8 (OCH3); 45.2 (2C, Pip); 33.6 (2C, Pip); 15.7 (CH3). HPLC-MS (ES+):

CH3CN/H2O 15:85 – 95:5, gt: 5 min; rt =4.49; [M+H]+ = 406.

Biological studies

Inhibition of Human DYRK1A kinase
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The ADP-Glo™+ DYRK1A Kinase Enzyme System (no. catalog VA7425) from

Promega was used to screen compounds for activity against DYRK1A. ATP and other

reagents were purchased from Sigma-Aldrich (St. Louis, MO). The assays were performed

in a buffer solution using 96-well plates. The compound to be tested (5 µL, 40 µM dis-

solved in 4% DMSO) was added to each well followed by ATP (5 µL, final concentration

in the well 10 µM), DYRKtidE (5 µL, 4 µg/well) and the enzyme (5 µL, 25 ng/well).

It was then allowed to incubate for 60 min at room temperature and ADP-Glo™reagent

(20 µL) was added allowing it to incubate again for 40 min at room temperature. After

the incubation, the kinase detection agent (40 µL) was added and allowed to incubate

for 30 min at room temperature. Finally, the luminescence was recorded using a FLU-

Ostar Optima (BMG Labtechnologies GmbH, Offenburg, Germany) multimode reader.

The inhibition activities were calculated based on the maximum activity measured in the

absence of an inhibitor. Experiments were performed in triplicate.

Cell culture

The mouse microglial BV2 cell line was propagated using DMEM, 10% FBS, 1%

streptomycin-penicillin, under humidified 5% CO2 and 95% air. On attaining semicon-

fluence, cells were treated with 400 ng/ml of LPS for 24 h. Some cultures were pretreated

for 1 h with the different compounds at several concentrations ranging from 1 µM to 10

µM. After treatment, cultures were processed for cell viability and nitrite production.

Experiments were performed in triplicate.

Cell Viability

Cell viability was determined using the MTT assay, which measures the reduction of 3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to formazan crystals.

Briefly, the MTT solution (2 mg/ml) was added to each well and incubated at 37 oC.for

2 hours. After removing the culture medium, 100 µL of dimethyl sulfoxide was added to

each well to dissolve the formazan. The optical density was measured at 532 nm using a

microplate reader. The absorbance of the control group was considered as 100% of the

cell viability.

Nitrite Determination
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The assessment of NO production involved quantifying nitrite levels, one of the end

products of NO oxidation, by a procedure based on the diazotization of nitrite by sulfanilic

acid (Griess reaction). Upon reaching semiconfluence, cells were exposed to 400 ng/ml of

LPS for 24 hours. Before this, certain cultures were pretreated with various compounds at

concentrations ranging from 0.5 µM to 10 µM. Following a 24-hour incubation period, 50

µL aliquots of the samples were combined with 50 µL of Griess reagent in 96-well plates,

and the mixture was allowed to incubate at room temperature for 10 minutes. The

absorbance of the resulting mixture was then measured at 520 nm using a microplate

reader.

Measurement of the Antioxidant Effect of the Compounds

The antioxidant activity of the newly synthesized compounds was assessed using the

oxygen radical absorbance capacity (ORAC) in vitro assay (Ou et al.). The FLUOstar

Optima plate reader (BMG Labtech GmbH, Offenburg, Germany) was employed, with

excitation at 485 nm and emission at 520 nm. 2,2’-Azobis-(amidinopropane) dihydrochlo-

ride (AAPH), (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), and

fluorescein (FL) were procured from Sigma-Aldrich. The assay was conducted in 75 mM

phosphate buffer (pH = 7.4) with a final reaction volume of 200 µL. Each well of black

96-well plates contained 25 µL of the antioxidant sample and 150 µL of fluorescein (10

nM). After pre-incubation at 37°C for 30 minutes, 25 µL of a 240 mM AAPH solution

was rapidly added using a multi-channel pipette. Fluorescence measurements were taken

every 90 seconds for 90 minutes, with the plate agitated before each reading. The com-

pounds were tested at four concentrations (10 - 1 µM). A blank containing FL and AAPH

in phosphate buffer, as well as four concentrations of Trolox (10 - 1 µM) served as con-

trols. All reactions were performed in duplicate, with at least three independent tests

per compound. Data were exported for analysis, plotting absorbance versus time. The

area under the fluorescence decay curve (AUC) was calculated for each sample. ORAC

values were derived from the AUC values and expressed as Trolox equivalents.79
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Graphical abstract: Integrated workflow for developing DYRK1A inhibitors combining
AI-driven de-novo design with experimental validation.
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