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ABSTRACT:  

The utilization of biomass to feedstock chemicals often relies on transforming hydroxyl-

containing molecules. One such example is glycerol which can undergo a selective 

hydrodeoxygenation reaction to produce propanediol, a valuable chemical precursor. Hence, 

glycerol’s hydrodeoxygenation reaction combines immediate industrial application with 

foundation of fundamental research into the reaction class relevant for sustainable feedstock. 

Given the complex nature of large organic molecules, most modelling work in heterogeneous 

catalysis focusses on the reactivity of small (C1-2) organics exclusively. Glycerol, 

characterized by its C3-backbone, exhibits 75 distinct gas-phase conformers.[1] When 

considering its 11 reactive bonds (C-O, C-H and O-H), the modeling of glycerol's reactivity 

spans an extensive conformational and reactive space. High computational costs of Density 

Functional Theory simulations restrict exhaustive exploration of the factorial reaction space, 

leading to limited insights of the hydrodeoxygenation (HDO) mechanism and hindering 

rational catalyst design. Therefore, to date, there is no systematic study focusing on 

comprehensively sampling the energetics of surface conformers of glycerol and their reactivity. 
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In this study, we employ a message-passing graph neural network architecture (MACE) to 

develop a machine-learned force-field (MLFF) potential, utilizing active learning to investigate 

the impact of conformational complexity on the reaction network of glycerol HDO on a 

Cu(111) surface. Following five iterations, our trained MLFF model accurately predicts surface 

bound structures with a root-mean-square accuracy of 0.04 eV (< 0.6 meV/atom total energy), 

essential to accurately determine conformational minima of 24 meta-stable and 26 intermediate 

states along seven competitive pathways. Conformational sampling uncovers the intricate 

nature of the complex energy landscape, where conformers with multiple shallow minima lead 

to non-trivial trends in the transition state energies connecting them.  Notably, the 

investigations predict lower activation barriers for O-H bond scissions of glycerol structures 

with α- and γ-backbone as compared to β-backbone. This is significant in case of scission of 

secondary O-H glycerol bonds where the activation barrier varies up to 0.44 eV depending 

upon the initial glycerol structure motif. Altogether, we identify dehydrogenation-dehydration-

hydrogenation as dominant pathway resulting in PDO formation on the Cu(111) surface. The 

selectivity of glyceraldehyde towards C-H bond scission over C-OH bond scission explains 

higher selectivity of 1,2-PDO over 1,3-PDO. 
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1. Introduction 

Glycerol (propane-1,2,3-triol) is the main by-product of transesterification of triglycerides 

from biomass feedstocks to form biodiesel.[2] Glycerol’s surplus availability has created a need 

for effective utilization strategies. It’s upcycling to propane-diol (PDO) by HDO reaction has 

been incentivized as a valuable and commercially attractive route for valorization.[3] 1,2-PDO, 

is used in unsaturated polyester resins, functional fluids, cosmetics and pharmaceuticals.[4] It’s 

isomer 1,3-PDO, is used as a plasticizer, corrosion remover, in paint and copolymers, and as a 

monomer for polytrimethylene terephthalate (PTT).[5]    

Recent efforts in catalyst design and development have focused on enhancing the activity, 

selectivity, and stability of catalysts for glycerol conversion to PDO.[6–11] The use of non-

noble metal catalysts,[12] mixed metal oxide catalysts,[13] particularly Cu-based catalysts,[14] 

have shown promise in achieving higher 1,2-PDO yields. Additionally, Cu-based catalysts can 

be further modified by incorporating other metals or promoters, such as nickel,[15] 

chromium,[16] aluminum,[17] zinc,[18] and silica,[19] to improve glycerol conversion, 

increase selectivity to PDO, and enhance catalyst stability. Cu-based catalysts exhibit between 

51-100% conversion of glycerol with selectivity up to 76-100% towards 1,2-PDO at 180-230 

℃ and 15-18 bar pressure ranges.[7,12–14] The conversion was observed to decrease at higher 

concentration of glycerol in the reactant mixture. The optimal reaction conditions for Cu-based 

catalysts, such as temperature and pressure, can vary depending on the specific catalyst 

composition and support. Therefore, finding the right conditions, support and promoters to 

maximize both glycerol conversion and selectivity to 1,2-PDO is an ongoing challenge.  

Density Functional Theory (DFT) simulations have emerged as a vital tool for catalyst 

development, significantly enhancing our ability to understand and optimize catalytic 

processes.[20,21] DFT simulations predict key parameters such as adsorption energies, and 

activation barriers, thereby enabling the identification of optimal reaction pathways. 

Furthermore, DFT simulations facilitate the exploration of how various catalyst compositions, 

surface structures and environmental conditions influence catalytic performance.[22–24] 

Consequently, the insights gained from DFT studies can provide a strategic roadmap for 

optimizing reaction conditions and catalyst compositions,[25] ultimately guiding the 

development of advanced catalysts for efficient glycerol conversion to PDO.[26] 
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However, the usual process of expert knowledge-driven modelling workflows for mechanistic 

investigation through DFT simulations is laborious and time-consuming.[27] They are highly 

based on human-mediated enumeration of reaction possibilities and risks introducing human 

bias. Glycerol has 35=243 combinations of dihedral angles with a staggered configuration of 

the two C-C and three C-O bonds, out of which 126 are symmetry non-equivalent. 75  of these 

configurations correspond to stable conformers in the gas phase.[1] Callam et. al. (2001) 

indicated that intramolecular hydrogen bonding and entropic contributions are important for 

accurately determining the relative conformer energies. Selecting only a limited number of 

glycerol conformers can bias the conclusions drawn from an incomplete Boltzmann 

distribution of conformers in the gas phase, thereby skewing the results towards the specific 

ensemble considered, [1] which applies to reactions on solid state catalysts as well. On top of 

the conformational complexity, the proposed reaction network for glycerol conversion also 

suggests presence of 6 primary C3 intermediates, from with formation of PDO is possible.[28]  

Previous studies on the adsorption of glycerol on surfaces have not comprehensively evaluated 

all 75 stable configurations, highlighting a significant gap in the current literature. Often, the 

ab-initio investigation of glycerol HDO reactions is restricted to explain the results of 

experimental output with limited computational resources. Typical investigations rely on the 

energetically most favorable conformers for the discovery of minimum energy paths and 

reaction mechanisms.[12] However, it is by no means necessarily the case that the most 

favorable conformers of reactant and products are connected by the lowest lying transition 

state. Therefore, there is a severe lack of predictive computational studies which either provide 

in-depth insights or propose new avenues to further improve the catalytic processes for glycerol 

conversion to 1,2-PDO.  

In response to the computational limitations associated with DFT simulations, machine 

learning provides a novel framework for enhancing the exploration of reaction networks and 

conformational diversity, thereby advancing our understanding of catalytic processes.[27,29] 

With the orders of magnitude faster machine learned force-field (MLFF) potentials, we could 

successfully delve into an extensive spectrum of glycerol conformers and reaction pathways, 

employing a blend of automated techniques and human-assisted methods for conformational 

and transition state exploration of glycerol conversion to 1,2-PDO. This study aims to 

simultaneously explore the complex conformational and reaction network landscape of the 

glycerol conversion to PDO on a pure Cu(111) surface, circumventing the constraints of 
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conventional DFT simulations by harnessing the benefits of  a higher-order equivariant 

message-passing neural network architecture (MACE) MLFF.[30,31] Our ambition is to 

supplant the traditionally simplistic solution to the query of "what is the reaction mechanism?" 

with a more comprehensive, unbiased approach.    

2. Methods 

2.1. Active Learning Protocol 

A common emerging strategy for developing MLFF involves an iterative approach, where 

the training set is expanded according to the application requirements of the force field.[32–

36] The training set, consisting of relevant configurations, is used to train the MLFF by 

comparing properties with a reference method like DFT. The trained MLFF is then used to 

generate new configurations and predictions (often with some kind of uncertainty estimation), 

which are validated against the reference method. If the predictions are unsatisfactory, in the 

absence of any relevant limitations of the ML framework or issues with the reference data, the 

primary assumption is that the model prediction is based on unreliable extrapolation. This 

assumption is further scrutinized with structural similarity analysis. To “teach” the model the 

unseen region, those configurations are added to the training set and the training process is 

restarted or repeated until the requirements are met.  

However, applying this strategy in heterogeneous catalysis for its complex reaction 

mechanisms is still challenging due to the lack of a reliable autonomous sampling strategy for 

reaction intermediates and transition states. We expand the previously developed method of 

active learning to scale up the traditional catalysis workflow,[32] where intermediates are 

proposed, verified by DFT relaxations, and transition states are searched based on these 

intermediates. We follow the steps: postulate the existence of numerous intermediate 

conformers and transition states, compute energies and forces with single-point DFT 

calculations to fit an MLFF and optimize the postulated configurations or reaction pathways 

with the MLFF. The configurations along the newly explored reaction pathways as well as 

altered configurations computed with new MLFF are verified by DFT. This iterative process 

continues until the emerging pathway converges to the desired accuracy threshold. 

2.1.1. Density Functional Theory simulation parameters 

Single-point periodic DFT calculations were performed for selected configurations using 

the Quantum Espresso software package,[37] and the Perdew-Burke-Enzerhof (PBE)[38] 

exchange and correlation functional. Standard solid-state pseudopotentials (SSSP)[39] were 
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employed to reduce the explicitly calculated orbitals to 1s of H; 2s and 2p of O and C, and 3d, 

4s, and 4p of Cu atoms. The self-consistent field (SCF) cycle was considered to be converged 

when energy differences per electronic step were below 10-7 eV. The valence monoelectronic 

states were expanded in plain waves with a kinetic energy cutoff of 884 eV. Gaussian smearing 

with a width of 0.1 eV was applied. The density of k-points in reciprocal space was set to 0.25 

Å-1 in the xy plane. 

2.1.2. ML model parameters 

A higher-order equivariant message-passing neural network architecture, referred to as 

MACE[40,41] implemented in PyTorch[42] was employed to train a single MLFF that can 

describe all the reaction steps reported.[43,44] All models referred to in this work use two 

MACE layers, a spherical expansion of up to lmax = 3, and 4-body messages in each layer 

(correlation order 3). All models used a 64-channel dimension for tensor decomposition. We 

used a radial cutoff of 6 Å and expanded the interatomic distances in 10 Bessel functions 

multiplied by a smooth polynomial cutoff function to construct radial features. The radial 

features are in turn fed into a fully connected feed-forward neural network with three hidden 

layers of 64 hidden units, a shallow MLP for the second layer readout with 64 hidden units and 

SiLU non-linearities. We fit a model with the maximal message equivariance, L = 2. The 

irreducible representations of the messages have alternating parity (in e3nn notation 64x0e + 

64x1o + 64x2e).  The final model was trained on a single NVIDIA A100 (80GB) GPU over 

the last 4 iterations (fresh start from iteration number 2 and then always restarted with new 

training data for additional epochs) for additional 250,+50,+100,+300 epochs, respectively.  

2.1.3. Initial training data generation and base model building 

In this study we focus on the glycerol HDO reaction mechanism on the lowest energy facet 

of Cu – [111].[45,46] . The Cu(111) catalyst was represented by a slab consisting of 4x4x4 

primitive units with a lattice constant of 3.61 Å. All slabs were separated by 20 Å of vacuum. 

For each slab, the bottom 2 layers were fixed. Starting with the previously reported[32] 

protocol of initial training set design, our approach includes a carefully constructed set of 

conformers of glycerol and other intermediates, in gas phase and on the Cu(111) surface. 

Additionally, we focus on maximizing diversity in the training data set configurations by 

applying statistical sampling approaches on both structural and property level. Considering the 

complexity in the glycerol HDO reaction scheme and high accuracy requirement, we initiated 

a large set (~1000) and performed single-point DFT calculations. This was done using a 
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combined approach of automation and expert knowledge-driven hypothesis generation for the 

entire reaction scheme as discussed in results section 3.2. While current best practices in active 

learning approaches suggest starting with a small number of initial training data and prioritizing 

higher number of iterations to reduce the cost of reference DFT data generation, in an industrial 

research environment, we prioritize having smaller number of iterations, which, with the 

present technological constraints, means the quickest way to reach the desired accuracy of the 

final MLFF model. This initial set included sufficient information to study the flexible 

backbone with multi-reactive groups of glycerol and other reaction intermediates in a highly 

branched reaction network. The base MLFF model in iteration 1 was trained on only 30% of 

randomly selected configurations and validated on the remaining 70%. This was sufficient to 

achieve moderate accuracy as noted in Table 1. The objective of this iteration was to get an 

estimate of the accuracy, identifying any issues with the reference data generation and getting 

ready for the required targeted data generation for next iterations. We used this model to curate, 

prune and generate additional data, especially relevant for transition pathway exploration to 

build a training and validation data set having 6589 and 1967 entries respectively for iteration 

2.  

2.1.4. Model finetuning over three iterations 

Although we counted the base model building as iteration 1, the actual active learning 

started from iteration 2 onwards, where a new model with the consolidated new training and 

validation set mentioned in the last section was used to start a model training from scratch for 

200 epochs. The MLFF model was then applied to explore the reaction network and collect 

new train data employing the principle described before, followed by explicit DFT calculations 

resulting in new training data. Iteration 3-5 resumed the training from the last checkpoints of 

the earlier iteration, expanding the training sets to 9782 and 12224 respectively. The validation 

Table 1: MACE MLFF active learning summary.  

 epochs  RSME E 

(meV/atom) 

RSME F 

(meV/Å) 

Iteration 1 600 
Training: 2972 2.8 20.4 

Validation: 6934 3.0 55.5 

Iteration 2 250 
Training: 6589 1.8 9.2 

Validation: 1967 0.9 21.0 

Iteration 3 +50 
Training: 9782 2.0 11.6 

Validation :1967 0.9 20.6 

Iteration 4 +100 
Training: 10373 1.7 10.2 

Validation: 1967 0.7 19.7 

Iteration 5 +300 
Training: 12224 1.7 9.1 

Validation: 1967 0.7 18.3 
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set was kept fixed throughout these 3 iterations. The summary of the results is shown in Table 

1. 

2.2. Applied Corrections 

2.2.1. Dispersion correction: Long-range dispersion corrections (van der Waals, 

vdW), utilized in correction schemes such as DFT-D3[47] functioning with a Becke-Johnson 

damping[48] was applied to MLFF calculations (PyTorch[49] implementation). 

2.2.2. Thermodynamic correction: Thermal effects on the full reaction network 

investigated in this work were addressed by performing MLFF vibrational calculations on the 

optimized structures (reactant/product and transition-state converged structures). Gibbs 

energies were then calculated by computing the zero-point energy corrections, heat capacities 

at constant volume and entropy based on the resulted frequencies from the vibrational 

calculations, within the harmonic approximation at temperature of 473 K (details are available 

in the SI-1). By comparing Gibbs energies and DFT?ML energies, we observe that accounting 

for thermodynamic corrections has pronounced effects on adsorption and reaction energetics 

and will drastically change the rates of reactions for temperatures above room temperature 

(Figure SI-15). For example, the minimum energy glycerol configuration, with reference to the 

clean slab and gasphase species, has a Gibbs energy of adsorption of -0.57 eV (as compared to 

-0.94 eV of DFT adsorption energy). Similarly, the Gibbs energy of reaction for the primary 

C-OH scission reaction is ΔGrxn = -0.02 eV as compared to ΔErxn= -0.18 eV, with zero-point 

corrections and entropic effects amounting to the difference of  0.16 eV. To cite a reactive 

example, the Gibb’s energy of activation (ΔG‡ = 1.04 eV) of the primary C-H scission is 0.15 

eV lower than the activation energy (ΔE‡ = 1.19 eV) without thermodynamic corrections. For 

this reason, the final energy profiles are reported in terms of Gibb’s energies (ΔG) at 473K and 

1 bar.  

2.3. Transition-state calculations 
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 For each elementary reaction step, 1500 

conformers of the reactant were selected using 

farthest point sampling and nudged elastic bands 

(NEB) for each conformer were prepared and 

evaluated. Products for bond breaking reactions 

(for e.g., C-OH scission of glycerol (Figure 1)) 

were created in a way that the cleaved product 

(OH*) is placed on the neighboring Cu surface 

site. The nearest neighboring surface sites (top, 

hollow or bridge) were selected for the placement 

of the dissociated fragments after scission. 

  Once the products created above were 

relaxed, the NEB pathway connecting a product 

conformer with the original reactant conformer was created with 20 intermediate images using 

the idpp[50] method. For the bond association reactions (example hydrogenation of 

hydroxyacetone to 1,2-PDO), the reaction is set up in the reverse order (the O-H scission of 

1,2-PDO), and the reverse activation barriers and reaction energies are computed using MLFF 

to find the minimum energy reaction pathways. Transition state (TS) scans were performed 

using the dynamic nudged elastic band (DyNEB) [51–54] method as implemented in the atomic 

simulation environment (ASE)[55] with a maximum force threshold (fmax) of 0.05 eV/Å. TS 

structures attained using NEBs are further refined to a tighter convergence of fmax=0.02 eV/Å 

with the automated relaxed potential energy surface scans (ARPESS)[56] method. Obtained 

TS structures were confirmed by performing vibrational calculations with the MLFF, ensuring 

an imaginary frequency at the reaction vibrational mode. Connection points of a given 

transition state were reconfirmed using the intrinsic reaction coordinate (IRC)[57] method.  

3. Results and Discussion 

3.1. Exploration of glycerol conformers and transition state  

3.1.1. Adsorption of glycerol conformers on the Cu(111) surface 

In this study, we enumerate glycerol structures on Cu(111) surface by analyzing their 

adsorption energies. Callam et. al. (2001)[1] identified 126 distinct monomer configurations of 

glycerol, of which 75 were determined to be stable conformers. However, previous 

studies[3,9,58–60] on adsorption of glycerol only considered a subset of these structures as 

 
Figure 1: Postulated primary C-O scission 

of a glycerol molecule adsorbed on the Cu 

(111) surface. The white shaded circular 

area corresponds to the part of the surface 

that can potentially host the cleaved OH 

group. The dotted white arrows point 

towards potential top, bridge and hollow 

sites. (Colorcode: Cu – orange, C – gray, O 

– red and H - white) 
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starting points and, therefore, a large part of the potential energy landscape remains 

undiscovered.   

To address this gap, we employed MACE-MLFF with minima hopping54 search method to 

systematically search for minimum structures, initiated using 70 stable glycerol conformers in 

gas phase, obtaining a collection of over 16000 relaxed configurations resulting from surface-

induced alterations and the structural intricacies. The structural representations of adsorbed 

glycerol structures and initial gas-phase monomers were encoded using smooth overlap of 

atomic positions (SOAPs) descriptors,[62] which compares the structures’ local atomic 

environments (rcut =3.0 Å). The high-dimensional SOAP vectors are further reduced to two-

dimensional representations using the uniform manifold approximation and projection 

(UMAP)56  method for easier visualization, as seen in Figure 2. The two-dimensional 

representation shows all the configurations as points where ”similar” configurations are 

projected close to each other while far away points represent configurations that are structurally 

different. The distinct clusters forming out of this projection represent groups with major 

structural similarity motifs among adsorbed glycerol configurations. We further project the 

pure gas phase glycerol conformers on top of this map to highlight the overlapping motifs with 

adsorbed conformers.  

We find adsorbed glycerol structures showing complex structural motifs which includes the 

essence of gas phase conformer motifs, but also add additional richness due to structural 

changes arising from surface adsorbate interactions as seen in Figure 2(a). We observed that 

the distinction between the glycerol conformer groups arises primarily from the orientation of 

the C3O3 backbone dihedral bond angles, as seen in Figure SI-2, where there is a strong 

correlation between dihedrals and clusters in Figure 2. The backbone dihedrals on each side of 

glycerol structure can be categorized into 3 types (α, β, γ), as shown in Figure 2(d). This leads 

to 6 distinct categories (or families) of glycerol structures  (αα, αβ(/βα), αγ(/γα), ββ, βγ(/γβ), 

γγ), that can explain the clusters in UMAP (Figure 2(b)). This observation indicates that 

glycerol backbone dihedrals remain the most dominant feature in distinguishing glycerol motifs 

in adsorbed glycerol structures similar to gas phase structures. However, note that, even though 

the dihedrals can be used to segregate glycerol structures into distinct categories, they cannot 

be used alone to determine the adsorption energy of the glycerol structures. The adsorption 

energy profiles also show low energy structures (< 0.1 eV above the minimum energy structure) 

in all conformer families defined by backbone, except βγ (Figure SI-4). The most strongly 

adsorbed glycerol conformer is part of the αγ family with adsorption energy (ΔE = -0.94 eV) 
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followed closely by members of the αα (ΔE = -0.93 eV),  γγ and ββ families (ΔE = -0.9 eV). 

This illustrates the presence of many shallow wells around the global minimum of the potential 

energy landscape of glycerol adsorption on the Cu(111) surface. This result aligns well with 

the experimental[64] and MD[65] simulated percentage probability distribution of glycerol 

conformers.   

It is challenging to rationalize the energetic hierarchy of the glycerol structures and 

consequently deduce the most stable configurations. Apart for backbone dihedrals, other 

features such HOCC glycerol dihedrals, C-C-C and H-O-C angles, intramolecular H-bonds, 

average distance from Cu(111) surface, etc. vary and give rise to smaller clusters among larger 

families (αα, αβ, αγ, ββ, βγ, γγ), as seen in Figure 2(b). For example, the largest αα cluster with 

no gas phase projection overlaying on top of this cluster has a slightly larger C-C-C angle 

(116˚) as compared to the relaxed gas-phase C-C-C angle (~110˚). The dihedrals of C-O bonds 

and intra-molecular H-bonds also produce smaller but distinct clusters among the larger 

conformational clusters. The chemiscope[66] of these features and glycerol structures are also 

provided as a supplementary information for readers to visualize the distinctions.  

Overall, the energetic ordering is dictated by the balance between surface contact and hydrogen 

bonding. The average distance of glycerol atoms to the Cu(111) surface can be partially used 

to determine the strength of adsorption: the lower the average distance of glycerol conformer 

the more favorable is the adsorption energy (Figure 2c). However, we also see that structures 

with shorter average distance (~ 3Å) from the Cu(111) surface can have an adsorption energy 

between -0.94 eV to -0.4 eV.  Other factors such as intramolecular H-bonding also play a role 

in determining the adsorption behavior which are not easily quantifiable. The lack of simple 

descriptors for such problems highlights the importance of MLFF and our active learning 

strategy which were successful in addressing this complexity.  
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Figure 2: (a) Adsorption energy of explored 16862 relaxed glycerol structures on the Cu(111) 

surface represented as a function of their structure similarity. The map has been constructed 

computing SOAP descriptors followed by application of a Uniform Manifold approximation 

and Projection (UMAP) model to arrive at the 2-dimensional representation. The crosses 

indicate the 70 gas phase glycerol structures and red dots indicate global minimum glycerol 

structure on Cu(111) in each conformer. (b) Distinction of glycerol conformers on Cu(111) 

surface as seen on UMAP. (c) Adsorption energy of glycerol as a function of average distance 

of each atom on glycerol molecule from top surface of Cu(111). (d) a sketch representation of  

α, β and γ phases determining six glycerol conformers (αα, ββ, γγ, αβ, αγ and βγ). (e)-(j) The 

top view of most exothermic glycerol conformers (αα, ββ, γγ, αβ, αγ and βγ) and their 

adsorption energies calculated using MACE MLFF on the Cu(111) surface.  
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3.1.2. Glycerol bond scission on Cu(111) surface 

 

Glycerol has six non-equivalent potential reactive bonds: primary and secondary C-O bonds, 

C-H bonds, and O-H bonds, that must be accounted for when constructing a reaction network. 

Here, we tackle the reaction network exploration for glycerol hydrodeoxygenation with both 

large conformational complexity and minimum energy path searches. From the ~16000 

glycerol conformations, we select 1500 adsorbed glycerol structures as unique structures using 

the farthest point sampling[62] (Figure SI-1) to construct initial paths for calculating the 

minimum energy pathways for scission of the six glycerol bonds. The initial minimum energy 

paths were constructed and optimized using NEBs, followed by refining using ARPESS 

(Section 2.3) taking vibrational analysis into account. Again, the glycerol structures (reactant 

image) of minimum pathways obtained using intrinsic reaction coordinate (IRC) simulations 

 

Figure 3: (a) MACE MLFF calculated activation energy barrier for glycerol bond scissions on 

Cu(111) surface. Calculated minimum energy pathways from αα, ββ, γγ, αβ, αγ and βγ 

glycerol conformers for primary (b) O-H, (c) C-OH and (d) C-H scission and secondary (e) 

O-H, (f) C-OH and (g) C-H scissions. The transition state energies (ΔE TS{abs.}) are computed 

in reference to minimum energy glycerol conformer (ΔEads = -0.94 eV). 
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were categorized into six conformers (αα, αβ, αγ, ββ, βγ, γγ) based on C3O3 motifs (Figure 3, 

SI 5-10). 

Figure 3(a) presents all the activation barriers calculated for the six glycerol bond scissions 

with activation barriers less than 1.8 eV with respect to the lowest energy glycerol structure on 

the Cu(111) surface. To ensure a comprehensive scan and to reduce the risk of missing any 

crucial details, we incorporated approximately 1500 glycerol configurations, as described in 

the previous section, into our transition state scans. This approach aims to identify the most 

favorable activation barrier. Given the automated nature of our workflow, we occasionally 

encountered chemically similar configurations due to minor variations, such as slight 

translations or rotations of the glycerol molecules on the Cu surface. These similarities were 

easily identified through a combination of unsupervised machine learning and expert human 

inspection at various stages. Rather than eliminating these redundancies with strict similarity 

checks from the outset, we allowed for some overlap, considering the complex reaction 

network of this molecule. This decision was particularly influenced by the computational 

efficiency of optimizing the NEB calculations using the MLFF method, with each calculation 

taking approximately 45 minutes on a single CPU. 

Figure 3b-g shows the calculated minimum energy pathways for the scission of glycerol bonds 

with the lowest activation barriers, relative to the lowest-energy glycerol configuration 

(ΔETS{abs.}). Secondary O-H scission has the lowest activation barrier (ΔETS{abs.} = 0.93 eV) 

followed by primary O-H scission (ΔE TS{abs.} = 0.99 eV). Primary C-OH, secondary C-OH and 

primary C-H scission have higher activation barriers (ΔE TS{abs.} = 1.41 eV, 1.35 eV and 1.33 

eV, respectively), and hence are highly unlikely to occur on a Cu(111) surface. The breaking 

of the secondary C-H bond displayed both a strongly endothermic reaction energy (ΔErxn = 1.0 

eV) and a high activation barrier (ΔETS{abs.} = 1.2 eV). Therefore, secondary C-H scission is 

likely to occur only with high reversibility in backward reaction. The activation energy barriers 

calculated in this study (by MACE-MLFF and verified using DFT-SCF calculations)  are lower 

than those reported in the literature, although with similar trends. For instance, Zhang et al. 

(2019) reported an activation barrier of 1.12 eV for the breaking of the secondary O-H bond 

on a Cu(111) surface, which is reasonably close considering the differences in reactant 

conformations. Similarly, Liu and Greeley (2013) reported a 0.66 eV difference in activation 

barriers between the breaking of primary O-H (ΔETS{abs.} = 0.8 eV) and primary C-OH 

(ΔETS{abs.} = 1.46 eV) bonds using scaling relations. In contrast, by explicitly optimizing the 

TS structures and thoroughly exploring the saddle points for each reaction, we report a 
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significantly lower difference of 0.34 eV and 0.42 eV between O-H:C-H and O-H:C-OH bond 

scissions, respectively. Therefore, while the trends of bond scissions are not altered due to 

enhanced sampling of minimum energy pathways and transition states, the absolute values and 

energy differences are affected by considering different glycerol structural effects. This will be 

critical when computing reaction rate constants for kinetic modelling to estimate the activity 

and selectivity of reactions.    

We also observe that the minimum energy pathways to determine transition states are not 

always linked to the minimum energy glycerol conformer on the Cu(111) surface. Additionally, 

the initial glycerol conformer structure has a slightly higher effect on secondary O-H bond 

scission as compared to primary O-H scission (SI Figure 5 and 8). For secondary O-H scission, 

the difference in activation barriers originating from γγ and ββ glycerol conformer structures 

is 0.44 eV. While primary O-H scission has only 0.19 eV difference between the lowest 

activation barriers of different conformers. Therefore, this suggests that catalytic surfaces that 

favor a high number of glycerol structures with β dihedral, might be more selective to primary 

O-H scission as compared to secondary O-H scission.  

3.2. Glycerol HDO reaction mechanisms to PDO 
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Glycerol deoxygenation can occur through several pathways, as shown in Figure 4: (1) a two-

step direct HDO process (P1 and P7 pathway),[67] (2) dehydration to enol and tautomerization 

to either hydroxyacetone or 3-hydroxypropionaldehyde, followed by hydrogenation to PDO 

(P2 and P6 pathway)[6], and (3) dehydrogenation to either glyceraldehyde or 

dihydroxyacetone, followed by dehydration and hydrogenation (as illustrated in P3, P4 and 

P5)[68]. These pathways are generally accepted in the scientific community, as the presence 

of glyceraldehyde and hydroxyacetone has been observed during experimental studies of 

glycerol HDO on metal catalysts.61  

The reaction network of glycerol HDO on a heterogeneous catalytic surface compares the 

formation of 4 primary intermediates (1,2-enol, 1,3-enol, glyceraldehyde and 

dihydroxyacetone), along with 1,2-PDO and 1,3-PDO formation through the direct method 

(Figure 4). Here, we extend our conformational sampling and minimum energy pathway search 

for intermediates of other reactions involved in glycerol hydrodeoxygenation reaction to 1,2-

PDO as well as 1,3-PDO on a Cu(111) surface, similar to the search described in section 3.1. 

Again, for each intermediate ~1500 adsorbed structures were selected using the farthest point 

sampling from conformers obtained using minima hopping exploration. The minimum energy 

 

Figure 4: Proposed reaction mechanisms for glycerol deoxygenation to propane-diol (PDO). 
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paths using all 1500 structures were constructed and optimized using NEB followed by 

ARPESS refinement (Section 2.7).  

In Figure 5, we provide the Gibb’s energy profiles for the lowest-energy transition states and 

intermediates calculated at 473 K as described in Section 2.2.  

As seen in section 3.1.2, the scission of the primary C-OH bond (ΔGact. = 1.34 eV) and 

secondary C-OH bond (ΔGact. = 1.33 eV) exhibits the highest Gibb’s energy of activation 

among the bond breaking reactions. The scission of the secondary C-H and primary C-H bonds, 

 

Figure 5: The P1-P7 reaction pathway for glycerol HDO to 1,2-PDO(a-d) and 1,3-PDO(e-g) 

on Cu(111) surface calculated using MACE MLFF. The black text indicates the relative 

energy of the intermediate with respect to the initial state (glycerol and H2 in gas phase). The 

red text indicates the Gibb’s energy of activation for all reaction steps. 
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which represent alternative pathways for glycerol dehydration (P2 and P6), displayed both a 

high Gibb’s energy for reaction (ΔGrxn = 0.67 eV) and a high Gibb’s energy for activation 

(ΔGact. = 1.14 and 1.28 eV, respectively), unlike the primary and secondary O-H bond scission 

with barriers of 0.94 eV and 0.96 eV, respectively. Consequently, we conclude that only P3-

P5 pathways are viable routes for the conversion of glycerol HDO to 1,2-PDO and 1,3-PDO 

on the Cu (111) surface and hence these are discussed further.  

By following the P3 pathway, initiated by the secondary O-H scission (ΔGact. = 0.94 eV), the 

Gibb’s energy for activation for the scission of the secondary C-H bond and subsequent 

formation of dihydroxyacetone on the Cu(111) surface is 0.78 eV (ΔGrxn. = 0.1 eV). 

Dihydroxyacetone is determined to be the most likely product of glycerol dehydrogenation on 

the Cu(111) surface, as reported in the literature.[70] Interestingly, while C-OH bond cleavage 

is unlikely for glycerol due to high Gibb’s energy for activation, it is found to be more likely 

to occur for carbonylic compounds. The Gibb’s energy for activation for the primary C-OH 

cleavage from dihydroxyacetone to form the precursor to hydroxyacetone is only 0.95 eV. 

Subsequent hydrogenation of hydroxyacetone led to the formation of 1,2-PDO. Note that all 

elementary steps further in this reaction pathway have Gibb’s energy for activation lower than 

1 eV.  It is important to note that this pathway does not allow for the formation of 1,3-PDO as 

dihydroxyacetone only contains primary hydroxyl groups that can be cleaved. The initial 

dehydrogenation step protects the secondary oxygen from potential cleavage and lowers the 

likelihood of 1,3-PDO formation.  

Following primary O-H bond scission (ΔGact. = 0.94 eV, P4 and P5 pathway), the Gibb’s energy 

for activation for the primary C-H bond scission to form glyceraldehyde is 0.69 eV (ΔGrxn. = 

0.4 eV). Investigation of the dehydration of glyceraldehyde for PDO conversion reveals that 

there are two possible bond scissions for the glyceraldehyde molecule on the surface. These 

include secondary C-H bond scission and secondary C-OH bond scission. The Gibb’s energy 

for activation for the scission of the secondary C-H and C-OH bonds are 0.52 eV and 0.85 eV, 

respectively, relative to the minimum energy configuration of glyceraldehyde on the Cu(111) 

surface. Thus, a favorable route to 1,2-PDO via glyceraldehyde is also likely to be through the 

low Gibb’s energy for activation secondary C-H split. The scission of the primary C-OH bond 

from the product of this elementary step only requires 0.51 eV. However, despite the low 

Gibb’s energy for activation for all the elementary steps in this mechanism to form 1,2-PDO, 

the formation of glyceraldehyde from glycerol is endothermic (ΔGrxn. = 0.4 eV). This is likely 

to cause a reverse reaction flux via this mechanism. 
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Although the experimental data clearly shows that a Cu catalyst is selective towards 1,2-PDO, 

we also investigated the potential pathways for converting glycerol to 1,3-PDO to understand 

why it is a minor product. Following P5 pathway, the only possible route, we observed that the 

scission of the secondary C-OH bond in glyceraldehyde requires 0.33 eV higher Gibb’s energy 

for activation compared to the scission of the secondary C-H bond. This indicates a preference 

for the formation of 1,2-PDO from glyceraldehyde. Therefore, the Cu(111) surface shows 

higher selectivity for 1,2-PDO over 1,3-PDO, which may be further influenced by other factors, 

particularly the presence of oxidic species during experiments. [71] 

4. Outlook on Machine learned potential performance and speed.  

The integration of machine learning (ML) into catalyst development has become a 

transformative approach, leveraging the high speed and accuracy of ab-initio calculations. 

However, current machine learning studies primarily focus on identifying novel catalysts, 

which rely on understanding critical reactions between key material features, such as scaling 

relationships with formation energies and Brønsted-Evans-Polanyi (BEP) relationships that 

correlate with catalytic activity.[25,72–78] The complexity of reaction networks, however, 

especially with longer-chain carbon molecules such as glycerol extends beyond these 

relationships, as conformational searches are often not fully considered.  

This study explores a rigorous sampling for glycerol and intermediate structures and minimum 

energy pathways to comment on the role of conformational space of larger molecules like 

glycerol on reaction energetics. This meant unrestricted simulations above 15000 minimum 

energy configurations per reactant and 1000 minimum energy paths per reaction. Here, we have 

a total of 22 intermediates and 26 transition states. Considering the speed of current DFT 

simulations, this would not have been possible using only DFT. Even with more restrictive 

constraints, we still would have to consider around 100 intermediate structures (as shown in 

Section 3.1.1) and minimum energy pathways (section 3.1.2) with high levels of human 

interference at each step. This would also take years with the most advanced high-performance 

computers to complete. With MLFF potentials, a single relaxation took ~10 minutes on single 

CPU, i.e, 0.002% of the compute time taken by DFT relaxation simulations. Therefore, with 5 

active learning iterations requiring recalculations, ~15000 DFT SCF simulations for 

development of training set and ML model training, computational costs with MLFF are a 

fraction (<0.01%) of the computational cost required for DFT-only calculations. For that 

https://doi.org/10.26434/chemrxiv-2024-34mq8-v2 ORCID: https://orcid.org/0000-0001-8434-3497 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-34mq8-v2
https://orcid.org/0000-0001-8434-3497
https://creativecommons.org/licenses/by-nc/4.0/


   

 

20 
 

reason, as we approach more sophisticated reaction networks, we demonstrate a major 

advantage of adopting this active learning approach over relying solely on DFT simulations.  

In section 3.2, we highlight that the crucial steps that drive the selectivity of the deoxygenation 

reaction towards 1,2-PDO over 1,3-PDO on the Cu (111) surface is determined by small 

changes in energetic landscape (ΔΔE < 0.1 eV or 1.35 meV/atom), for which a high level of 

prediction accuracy was necessary. The accuracy of the MLFF model was required to (a) 

distinguish the energetics of conformer sampling, and (b) accurately compare the reaction 

energies and activation barriers for competing reaction pathways. The universal machine 

learning models trained on open QM databases (RMSE > 0.085 eV/atom) cannot be considered 

to produce reliable accuracies for sensitive chemistry required for conformational sampling. 

Matbench discovery,[79] a benchmark for comparing universal MLFF also describes these 

models as “triaging tools for effectively allocating compute budget in high-throughput DFT”. 

In addition, by conducting the preliminary tests on the recently published mace-mp0 universal 

force field model,[40] it is evident that although an overall visual trend may appear promising, 

it is not suitable for this particular application (Figure SI-12 and Figure SI-13). However, it is 

important to note that this constitutes an out-of-domain extrapolation for the model, as it was 

solely trained on bulk lattice data from the materials project. The parity plot between our 

MACE MLFF calculated (ΔEMLFF) vs. DFT calculated (ΔEDFT) adsorption energies for glycerol 

conformers on the Cu(111) surface with reference to Cu(111) slabs and gas-phase glycerol 

molecule verifies that lowest energy conformers are achieved using MLFF. The highest error 

in conformer sampling is 0.08 eV (Figure SI-11). Similarly, the transition states of glycerol 

scissions have root mean square errors (RMSE) of less than 0.07 eV. Overall, our trained MLFF 

model accurately discerns 22 intermediates, and 26 transition states, reconfirmed with DFT, 

with an average RMSE of 0.048 eV (< 0.6 meV/atom total energy) embedded within an 

intricate network of seven competitive pathways. These errors reveal that the energy difference 

between competitive reactions should be more than 0.1 eV for reliable conclusions using 

MLFF, which has been taken into consideration here.   
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5.  Conclusion: 

The goal of this study was to investigate the detailed HDO reaction mechanism of glycerol to 

PDO on a Cu(111) surface including a comprehensive conformational sampling on glycerol 

adsorption and other intermediates. While the conformational sampling of gas phase glycerol 

molecules, predicting 75 conformers, is well-documented, its exploration in heterogeneous 

catalytic systems remains limited due to the high computational costs and constraints of DFT. 

Here, an active learning-based MACE Machine Learned Force Field is utilized to explore a 

complex network of 7 competing pathways starting from >16000 possible structures of glycerol 

on the Cu(111) surface.  

Out of 16000 glycerol adsorbed structures, we find many shallow low energy potential wells 

comprised of 3382 adsorbed glycerol structures with similar energetics (-0.94 < ΔEads < -0.84) 

and structurally unique conformations are present on the Cu(111) surface. The structural 

dissimilarity arises primarily from dihedral angles along the C3O3 backbone. Other factors 

effecting the dissimilarity are average distance from the Cu(111) surface, intramolecular H-

bonds, constraints on C-C-C bond angles due to adsorption, among many smaller variations in 

bond lengths and angles. The conformational sampling is also essential to determine the 

magnitude of absolute differences between activation barriers of glycerol bond scission (C-

H:C-OH:O-H). We also observed the β-phase dihedrals having higher activation barriers for 

glycerol O-H bond scissions as compared to α- and γ-phase dihedrals. This particularly affects 

the secondary O-H bond scission, where the β in either side of the glycerol structure (αβ, ββ 

and βγ) leads to a higher activation barrier. These observations re-enforce the importance of 

considering conformational sampling for describing such reaction mechanisms accurately at 

quantum mechanical level – a prerequisite for exploring new catalyst development. We found 

that glycerol is likely to form the dihydroxyacetone intermediate before undergoing C-O 

cleavage leading to the experimentally reported intermediate, acetol (hydroxyacetone). On the 

contrary, glyceraldehyde, another intermediate of glycerol dehydrogenation, shows better 

activity for C-H bond breakage, which is followed by primary C-O bond cleavage. Further 

hydrogenation of acetol and 3-HPA in P3 and P4 pathways, respectively, lead to 1,2-PDO 

formation. This study qualitatively explains the preference of 1,2 PDO over 1,3 PDO based on 

the explored pathways on the pure Cu(111) surface.  

Finally, our approach here describes a need for advancing the active learning based MLFF 

technology to supplement the DFT studies for comprehensive investigations of complex 
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chemistries of larger molecules on heterogeneous catalysts with high accuracies in a fraction 

of time. Here, only ~16,000 DFT SCF calculations were required to estimate the energetics of 

an almost 400 times larger sampling space. The RMSE of less than 0.6 meV/atom for 

intermediates and transition states suggests that MLFF potentials can be used as a first pass for 

predictive estimation. The high computational cost gains and low energetic prediction errors 

should be encouraging enough for the catalyst community to embrace these novel approaches 

as integral part of their strategy. The final training dataset and ML models will be available 

upon publication, and we encourage other researchers to build on this. 
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