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Abstract

Large language models (LLMs) have shown promising potential across diverse chem-

istry tasks, including forward reaction prediction, retrosynthesis, and property predic-

tion. However, their ability to capture the intrinsic chemistry of molecules remains

unclear. To study this, we evaluate the consistency of state-of-the-art LLMs when

using different molecular representations, such as SMILES strings and IUPAC names.

Our results reveal strikingly low consistency rates of below 1% for commercial state-

of-the-art LLMs.

To cope with the imbalance in molecular representation in the training data, we

finetune the models using data represented in both SMILES and IUPAC, but the mod-

els still produce inconsistent predictions. To address this, we regularize training by a

sequence-level, symmetric Kullback-Leibler (KL) divergence loss. Although the pro-

posed KL divergence loss improves surface-level consistency, it does not lead to better

accuracy, due to the apparent orthogonality between consistency and accuracy, sug-

gesting that these models do not understand chemistry, as we expect them to. These

findings point to the inherent limitations of recent LLMs and the need for more ad-

vanced approaches that encourage these LLMs to capture intrinsic chemistry, resulting

in both accurate and consistent predictions.
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Introduction

Figure 1: Illustration of how language models approach predictions for chemistry tasks. It
remains unclear whether their predictions rely on surface-level patterns in molecular rep-
resentations (blue pathway) or on the intrinsic chemical properties (pink pathway) of the
molecules.

Large language models (LLMs) have achieved remarkable success in answering chemistry-

related questions and performing tasks such as reaction prediction and property estima-

tion1–6. While the potential of LLMs in chemistry reasoning is exciting, a fundamental

question remains: do LLMs truly understand the underlying chemistry of molecules7–10?

Molecules can be represented in various forms—1D strings, 2D graphs, or 3D coordi-

nates—but their intrinsic chemical nature, such as the atomic composition, electronic struc-

ture, and spatial arrangement, remains invariant across representations. LLMs predomi-

nantly operate on 1D representations, such as SMILES strings11, due to their simplicity

and compatibility with LLM architectures, which excel at processing sequential, tokenized

data12,13. However, this raises a critical concern: are LLMs merely learning surface-level pat-

terns embedded in these string-based formats (Figure 1, blue pathway), or are they capturing
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the intrinsic chemical properties that govern molecular behavior (Figure 1, pink pathway)?

To explore this, we evaluate the consistency of LLMs in chemistry tasks across different

string-based molecular representations, focusing on two widely used formats: SMILES strings

and IUPAC names14. Our findings reveal that LLMs exhibit strikingly low consistency

between these representations, even when trained on carefully curated, one-to-one mapped

datasets. To address this limitation, we introduce a sequence-level Kullback–Leibler (KL)

divergence15 loss during training, aimed at encouraging LLMs to produce more consistent

outputs across representations. While the KL divergence loss improves consistency, it also

amplifies consistently incorrect predictions. Further analysis demonstrates the orthogonality

between consistency and accuracy. These results suggest that LLMs still struggle with fully

capturing the fundamental chemistry underlying molecular representations.

These findings underscore the limitations of current LLM architectures and the pressing

need for more advanced models that can understand the invariant properties of molecules.

Such models would enable seamless integration of diverse molecular datasets, ensure reliable

performance across representations, and enhance versatility in chemistry applications.

Experiments

Problem setup

In this work, we study three different tasks, forward reaction prediction, retrosynthesis, and

property prediction. Each task can be formulated as a conditional generation problem: given

an input sequence x, predict the output sequence y. The tasks are defined as follows:

1. Forward reaction prediction: the input x consists of the reactants and reagents, and

the output y is the predicted product.

2. Retrosynthesis: the input x is the target product, and the output y comprises the

reactants.
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3. Property prediction: the input x is a single molecule, and the output y is the pre-

dicted property, which can be (1) a binary classification (True/False), for tasks such

as blood-brain barrier penetration (BBBP), toxicity to humans (ClinTox), HIV repli-

cation inhibition (HIV), and drug side effects (SIDER), or (2) a continuous numeric

value, for properties such as water solubility (ESOL) or the octanol/water distribution

coefficient (LIPO).

For all tasks, we employ language models to predict the output sequence distribution

Pθ(y|x) where θ denotes the model parameters.

The input sequence x, which may represent one or multiple molecules, can be encoded

in different formats, such as SMILES strings or IUPAC names. These varying input repre-

sentations can result in different output distributions, Pθ(y|xS) for SMILES and Qθ(y|xI) for

IUPAC. By evaluating the consistency between these distributions, we aim to assess whether

language models can capture the intrinsic chemistry underlying these symbolic representa-

tions.

Consistency

Consistency measures how often the model generates identical outputs when provided with

different molecular representations as input.

1. Forward reaction prediction and retrosynthesis: For a given input format, the model

is tested with generating outputs in both SMILES and IUPAC representations. For

SMILES input (xS), the model generates SMILES (yxS
S ) and IUPAC outputs (yxS

I ); for

IUPAC input (xI), the model generates SMILES (yxI
S ) and IUPAC output ((yxI

I )).

The outputs from different input representations are considered “match” if identical:

MATCHS = 1[yxS
S = yxI

S ]

MATCHI = 1[yxS
I = yxI

I ]

(1)
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1[·] is the indicator function which returns 1 if the condition inside is true and 0

otherwise. The consistency score for a single entry is the average of SMILES and

IUPAC matches. For a dataset of N entries, the overall consistency is calculated as:

Consistency(overall) =
1

2N

N∑
i=1

(MATCHS,i +MATCHI,i)

=
1

2N

N∑
i=1

(1[yxS
S,i = yxI

S,i] + 1[yxS
I,i = yxI

I,i])

(2)

We also compute the false consistency, defined as the consistency of entries that produce

incorrect predictions from both SMILES and IUPAC inputs. For M such entries, the

false consistency is:

Consistency(false) =
1

2M

M∑
i=1

(1[yxS
S,i = yxI

S,i] + 1[yxS
I,i = yxI

I,i]) (3)

2. Binary property prediction: The predictions are denoted as yxS and yxI for SMILES

and IUPAC inputs, separately. The consistency score for a dataset with N entries is:

Consistency(binary) =
1

N

N∑
i=1

(1[yxS
i = yxI

i ]) (4)

3. Numeric property prediction: consistency is measured as the mean squared error (MSE)

between the predictions from SMILES and IUPAC inputs:

Consistency(numeric) =
1

N

N∑
i=1

(yxS
i − yxI

i )2 (5)

Accuracy

Accuracy evaluates how closely the model’s predictions align with the ground truth.

1. Forward reaction prediction and retrosynthesis: For SMILES input, accuracy is cal-
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culated as the percentage of exact matches between the predicted SMILES output

(yxS
S ) and the target SMILES output (ytargetS ); for IUPAC input, accuracy is calculated

between the predicted IUPAC output (yxI
I ) and the target IUPAC output (ytargetI ).

Accuracy(SMILES) =
1

N

N∑
i

(1[yxS
S,i = ytargetS,i ])

Accuracy(IUPAC) =
1

N

N∑
i

(1[yxI
I,i = ytargetI,i ])

(6)

2. Binary property prediction: accuracy is calculated as the percentage of predictions

same to the ground-truth ytarget.

Accuracy(SMILES) =
1

N

N∑
i

(1[yxS
i = ytargeti ])

Accuracy(IUPAC) =
1

N

N∑
i

(1[yxI
i = ytargeti ])

(7)

3. Numeric property prediction: accuracy is measured as the MSE between the predicted

outputs and the ground truth values.

Accuracy(SMILES) =
1

N

N∑
i=1

(yxS
i − ytargeti )2

Accuracy(IUPAC) =
1

N

N∑
i=1

(yxS
i − ytargeti )2

(8)

Evaluation of state-of-the-art LLMs

We evaluated the consistency and accuracy of state-of-the-art LLMs for forward reaction

prediction. The models assessed include GPT-413, GPT-4o16, o1-preview, o1-mini17, Claude

3 Opus18, Llama 3.1 8B19, and the instruction-tuned LlasmolMistral
20. A test set of 300

chemical reactions was used for the evaluation.

To guide the models, we provided explicit instructions tailored to the input and output
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molecular representations. For instance, when both the input and output were in SMILES

format, the instruction read: “Based on the SMILES strings of reactants and reagents,

predict the SMILES string of the product. Please output the product directly.”

Finetuning LLMs with mapped SMILES & IUPAC data

To address possible biases in pre-trained data, we finetuned GPT2, Mistral 7B, and CodeT5

models using carefully curated datasets containing one-to-one mapped SMILES and IUPAC

input representations. These datasets were designed to isolate the impact of input represen-

tation differences while keeping the underlying chemistry constant.

At training time, for forward reaction prediction and retrosynthesis, the model generates

either SMILES or IUPAC outputs with equal probability. To explicitly specify the output

representation, we appended a flag at the end of each input sequence: “S” for SMILES

output and “I” for IUPAC output. Examples of input and output sequences used in the

training set are provided in the Supporting Information. All models were trained using a

cross-entropy loss function.

To examine the effect of model size, we conducted experiments with four variants of

GPT2: small (124M parameters), medium (355M parameters), large (774M parameters),

and extra-large (1.5B parameters).

For each model and task, we varied random seeds to calculate standard deviations in

consistency and accuracy. Detailed training hyperparameters and additional implementation

details are provided in the Supporting Information (Table 3 and Section ).

Sequence-level KL divergence loss

To improve consistency across molecular representations, we introduce a sequence-level KL

divergence loss during training. This loss minimizes the divergence between the probabilistic

distributions generated from SMILES and IUPAC inputs, Pθ(y|xS) and Qθ(y|xI).
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We consider both directions of the KL divergence, DKL(P ||Q) and DKL(Q||P ):

DKL(P ||Q) =
∑
y∈Y

Pθ(y|xS) log
Pθ(y|xS)

Qθ(y|xI)

DKL(Q||P ) =
∑
y∈Y

Qθ(y|xI) log
Qθ(y|xI)

Pθ(y|xS)

(9)

where Y is the set of all possible output sequences.

However, the sequence-level KL divergence is computationally intractable. Therefore,

we estimate the KL divergence using the Monte-Carlo sampling method. Details of KL

divergence loss can be found in the Supporting Information.

Data

We base our work on the SMolInstruct dataset, which is a large-scale instruction-tuning

dataset for chemistry20. We used the Property Prediction and Chemical Reaction subsets.

The original datasets use SMILES representation. We translated SMILES into IUPAC to

construct one-to-one mapped SMILES and IUPAC input datasets for the finetuning.

For each molecule in the dataset, we first used PubChemPy21, a Python wrapper for the

PubChem PUG REST API, to retrieve its IUPAC name. If no IUPAC name was found,

we use an open-source model, Chemical-Converters22, an open-source model based on

the Google MT5 architecture, to translate SMILES into IUPAC. This model achieves an

accuracy of 86.9% for SMILES-to-IUPAC conversion.

The training dataset for the forward reaction prediction task consists of 1M entries. For

most models, we used an 80k subset for fine-tuning. To evaluate the impact of dataset size,

we also trained a GPT2 model on the full dataset.

Similarly, the training dataset for the retrosynthesis task contains 1M entries. Most

models were fine-tuned using an 80k subset, with the exception of a GPT2 model, which

was trained on the full dataset.

The statistics of the mapped datasets are listed in the Supporting Information Table 4.
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Results and discussion

Evaluation of state-of-the-art LLMs

Figure 2: Consistency and accuracy of forward reaction predictions by state-of-the-art LLMs.
Across all models, consistency remains below 1%. Most models exhibit higher accuracy for
IUPAC inputs, except for LlaSMolMistral, which is instruction-tuned on a SMILES dataset.
Darker colors represent higher values, while lighter colors indicate lower values.

We evaluated the consistency and accuracy of forward reaction prediction across seven

state-of-the-art LLMs, focusing on their performance when using SMILES versus IUPAC

input representations. The results revealed four key insights (Figure 2).

First, across all models, consistency scores ranged from 0% to 1%, revealing the poor

alignment between SMILES and IUPAC representations. The result indicates that LLMs

struggle to maintain consistent outputs when tasked with generating predictions from dif-

ferent input representations.

Second, LLMs without instruction tuning achieved higher accuracy for IUPAC inputs.

This discrepancy is likely due to the training data distribution, which tends to include

more examples using IUPAC23–25, providing the models with a familiarity advantage for this

representation.
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Third, models designed for reasoning, such as o1-preview and o1-mini, demonstrated

improved accuracy. However, this increase in accuracy did not translate to higher consistency

between SMILES and IUPAC representations. This observation suggests that accuracy and

consistency are orthogonal metrics, with improvements in one not necessarily leading to

improvements in the other. This orthogonality is further explored in the discussion.

Finally, the instruction-tuned model, LlasmolMistral, achieved significantly higher accu-

racy with SMILES inputs, reflecting the impact of its SMILES-specific training. However,

this tuning did not enhance accuracy with IUPAC inputs, indicating a lack of generaliza-

tion between the two representations. This result highlights a key limitation of current

LLMs—they fail to develop an intrinsic understanding of the chemical equivalence between

different molecular representations.

Figure 3: Consistency and accuracy of LLMs in (a) forward reaction prediction and (b)
retrosynthesis after finetuning on one-to-one mapped data. The overall consistency (red)
and false consistency (blue) are overlaid. Most models are finetuned on an 80k dataset
subset, except for “GPT2 full”, which refers to a GPT2 small model trained on the full
1M dataset. Error bars represent the standard deviation across training runs with varying
random seeds.
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Finetuning LLMs with mapped SMILES & IUPAC data

The state-of-the-art LLMs discussed earlier do not utilize one-to-one mapped training data,

which may introduce biases that favor either IUPAC or SMILES representations. To mitigate

these biases, we performed finetuning using a one-to-one mapped dataset of SMILES and

IUPAC representations, ensuring that the representation format was the only variable.

We evaluated three architectures – GPT2, Mistral 7B26, and CodeT5 Small27 – on three

tasks: forward reaction prediction, retrosynthesis, and property prediction. For GPT2, we

further varied the model size, GPT2 Small, GPT2 Medium (M), GPT2 Large (L), and GPT2

XL, to examine the impact of scaling. Additionally, we compared performance using two

training data sizes: 80k and 1M data points.

Performance was evaluated using two metrics: consistency and accuracy. We analyzed

both overall consistency and false consistency (cases where SMILES and IUPAC inputs

produce the same incorrect predictions), which is critical for disentangling consistency from

accuracy. Accuracy was measured separately for SMILES and IUPAC inputs. The results

are presented in Figure 3, Table 1 and Table 2.

Impact of model architectures. For forward reaction prediction and retrosynthesis

tasks, CodeT5 consistently outperformed Mistral and GPT2. Its encoder-decoder architec-

ture likely contributes to this by constructing a structured latent representation of the input,

enabling better transformation into the output space27. In contrast, the decoder-only archi-

tectures of GPT2 and Mistral, designed for autoregressive generation, may be less suited for

these structured prediction tasks.

For property prediction, however, the results vary across models and tasks. These mixed

results indicate that certain architectures, such as CodeT5’s encoder-decoder framework,

may excel at capturing structural patterns important for some properties, while decoder-

only models like GPT2 and Mistral may generalize better for less complex tasks28.

Impact of model sizes. Scaling up the GPT2 model from Small to XL showed no

significant improvements in consistency or accuracy for forward reaction prediction or ret-
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Table 1: Consistency and accuracy of LLMs in binary property prediction after controlled
fine-tuning (columns 3–5) and with KL divergence loss (columns 6–8). Entries with im-
provements following the addition of KL divergence loss are highlighted in bold. Error bars
represent the standard deviation across training runs with varying random seeds. An upward
arrow (↑) indicates that higher values correspond to better performance.

Properties Models
Performance (%) ↑ Performance w/ KL (%) ↑

Consist. Acc. (S) Acc. (I) Consist. Acc. (S) Acc. (I)

BBBP
GPT2 83.6± 1.1 83.6± 1.7 81.0± 2.1 91.5± 1.8 86.2± 0.9 82.0± 1.1
Mistral 85.2± 6.8 68.3± 5.8 76.7± 1.3 90.5± 1.1 84.1± 4.3 78.8± 5.3
CodeT5 85.7± 2.0 85.7± 0.3 85.2± 2.9 88.9± 2.4 86.2± 1.5 82.5± 0.3

ClinTox
GPT2 95.4± 1.9 93.1± 0.4 91.6± 1.5 96.2± 2.0 93.1± 1.2 92.4± 0.0
Mistral 100.0±4.8 92.4± 0.0 92.4± 4.0 99.2± 0.4 92.4± 0.0 91.6± 0.4
CodeT5 87.0± 2.0 89.3± 1.2 85.5± 3.1 94.7± 0.4 91.6± 0.9 90.8± 1.2

HIV
GPT 97.3± 0.7 95.3± 0.4 95.3± 0.3 98.3± 0.0 96.3± 0.3 95.3± 0.2
Mistral 99.7± 0.2 95.7± 0.2 95.3± 0.0 99.7± 0.2 95.3± 0.0 95.0± 0.2
CodeT5 96.7± 0.5 96.0± 0.5 96.0± 0.2 97.3± 1.1 95.7± 0.2 96.3± 0.2

SIDER
GPT 61.3± 1.2 55.7± 1.2 62.0± 2.5 77.7± 3.8 55.7± 0.3 65.7± 0.3
Mistral 98.3± 0.8 65.0± 3.5 66.0± 0.2 96.7± 1.3 64.7± 3.6 63.3± 1.5
CodeT5 71.3± 4.3 60.7± 2.8 60.7± 1.0 76.7± 5.9 62.3± 1.3 61.7± 1.2

Table 2: Consistency and accuracy of LLMs in numeric property prediction after controlled
fine-tuning (columns 3–5) and with KL divergence loss (columns 6–8). Entries with improve-
ments following the addition of KL divergence loss are highlighted in bold. Error bars denote
the standard deviation across training runs with varying random seeds. A downward arrow
(↓) indicates that lower values correspond to better performance.

Properties Models
Performance (MSE) ↓ Performance w/ KL (MSE) ↓

Consist. Acc. (S) Acc. (I) Consist. Acc. (S) Acc. (I)

ESOL
GPT2 4.3± 0.5 1.5± 0.1 3.3± 0.6 2.7± 0.3 1.6± 0.3 3.1± 0.1
Mistral 4.9± 0.5 1.7± 0.8 4.5± 0.6 2.1± 0.2 1.3± 0.3 2.9± 0.4
CodeT5 5.9± 0.5 0.9± 0.2 5.4± 0.4 3.1± 0.7 1.8± 0.3 3.6± 0.2

LIPO
GPT2 1.1± 0.1 1.2± 0.0 1.2± 0.0 0.7± 0.0 1.0± 0.1 1.0± 0.0
Mistral 0.9± 0.2 1.5± 0.2 1.2± 0.0 0.5± 0.1 1.2± 0.0 1.1± 0.0
CodeT5 1.0± 0.2 1.0± 0.0 0.9± 0.1 1.0± 0.0 1.1± 0.0 1.0± 0.1
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rosynthesis. These results suggest that simply increasing model size does not enhance the

ability to generalize between SMILES and IUPAC representations or improve performance

in reaction prediction tasks.

Impact of data size. For GPT2, increasing the training dataset size from 80k to 1M

led to substantial improvements in both consistency and accuracy for forward reaction pre-

diction and retrosynthesis. The increase in overall consistency aligns with the improvement

in accuracy, indicating that the larger dataset enhances the model’s ability to make correct

predictions for both SMILES and IUPAC inputs. However, the gap between overall consis-

tency and false consistency widened, suggesting that the additional data results in limited

improvement in false consistency.

Adding sequence-level KL divergence loss

Figure 4: Consistency and accuracy of LLMs in (a) forward reaction prediction and (b)
retrosynthesis prediction with the addition of KL divergence loss. Overall consistency (red)
and false consistency (blue) are overlaid. All models are fine-tuned on an 80k dataset subset.
Error bars represent the standard deviation across training runs with varying random seeds.

In this section, we examined the impact of adding sequence-level KL divergence loss

during training on three models: GPT2, Mistral 7B, and CodeT5 Small, for forward reaction
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prediction, retrosynthesis, and property prediction. The results are summarized in Figure 4,

Table 1 and Table 2. Key observations are summarized below.

Consistency Improvements. Adding KL divergence loss led to notable improvements

in consistency across all models and tasks. Specifically, for forward reaction prediction and

retrosynthesis, false consistency increased, and the gap between overall and false consistency

narrowed, contrasting with the trends observed when increasing dataset size. These results

confirm that KL divergence loss enhances consistency by aligning predictions across input

representations.

Accuracy Unchanged. Despite improvements in consistency, accuracy remained largely

unchanged across models and tasks. This suggests that the gains in consistency do not com-

promise accuracy but also highlights the orthogonality of these two metrics – improving one

does not inherently lead to improvements in the other.

Analysis

Consistency transition with KL divergence Loss

To explore how KL divergence loss improves consistency, we analyzed forward reaction pre-

diction as a representative task, focusing on reactions where consistency transitions after

adding KL divergence loss.

Out of 300 reactions in the test set, 47 reactions transitioned from inconsistent to consis-

tent predictions after adding KL divergence loss. These reactions were categorized into five

groups (Figure 5) and listed in Scheme 1, and in Supporting Information Schemes 2-11:

1. Complicated reactions: More than half of the reactions (25/47) fall into this category,

which require a good understanding of chemistry and substantial manipulation of sym-

bolic representations. For instance, hydroquinone oxidation by cerium(IV) ammonium

nitrate requires recognizing the hydroquinone structure and the oxidant. Besides, the
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Scheme 1: Examples of reactions transitioning from inconsistent to consistent predictions
after adding KL divergence loss. Incorrect fragments are highlighted in red. For correct
predictions, only the label “correct” is written without drawing the chemical structure.
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Figure 5: Summary of reactions that transition from inconsistent without KL divergence
loss to consistent with KL divergence loss. (Left) Reactions are categorized into five groups:
complicated reactions, position inconsistencies, minor mistakes, reaction-step inconsistencies,
and reaction-type inconsistencies. (Right) Complicated reactions are further subdivided
into six types: redox reactions, coupling reactions, cyclization reactions, addition reactions,
condensation reactions, and nucleophilic aromatic substitution (SNAr) reactions.

product’s SMILES string differs from the reactant’s SMILES string in multiple posi-

tions (Scheme 1, first entry).

These reactions span six types: redox, coupling, cyclization, nucleophilic aromatic

substitution (SNAr), addition, and condensation. Their distribution is shown in Fig-

ure 5 (right pie chart). Additional examples are provided in Scheme 1 and Supporting

Information.

2. Position inconsistency: The second-largest group consists of reactions whose predicted

products are inconsistent in reaction sites or the positions of functional groups between

SMILES and IUPAC inputs.

3. Reaction type inconsistency: SMILES and IUPAC inputs lead to predicted products

of different reaction types.

4. Reaction step inconsistency: SMILES and IUPAC inputs result in predicted products
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involving different numbers of reaction steps.

5. Minor inconsistency: Reactions with minor errors in either SMILES or IUPAC repre-

sentations, such as mislabeling a nitrogen atom as carbon.

Interestingly, the reverse transition – from consistent to inconsistent predictions – follows

a similar pattern. Out of 300 test reactions, 6 reactions became inconsistent with KL diver-

gence loss: 3 were complicated reactions, and 3 exhibited position inconsistency (reactions

listed in Supporting Information Schemes 12 and 13).

The analysis reveals that while KL divergence loss enhances consistency, it does not

improve the model’s understanding of intrinsic chemistry. For complicated reactions, models

often make inconsistent and incorrect predictions without KL divergence loss, and while

consistency improves with KL divergence loss, the predictions remain incorrect.

In contrast, for reactions where the model makes correct predictions in one representation

(e.g., SMILES) but minor mistakes in the other, KL divergence loss helps align predictions,

enabling correct outputs across both representations.

The results suggest that KL divergence loss effectively addresses surface-level inconsis-

tencies, but it falls short of achieving both accuracy and consistency. Advanced techniques

will be required to capture the deeper intrinsic chemistry and achieve the ultimate goal of

accurate and consistent predictions across all representations.

Orthogonality between consistency and accuracy

To explicitly analyze the relationship between consistency and accuracy, we examined the

forward reaction prediction task using the GPT2 small model with various random seeds.

We used false consistency instead of overall consistency to exclude cases where both repre-

sentations produce correct predictions, and to provide a clearer measure of consistency.

We plotted consistency versus accuracy for models finetuned with and without KL diver-

gence loss (Figure 6). In both cases, there was minimal correlation between false consistency
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Figure 6: False consistency versus accuracy of the GPT2 model in forward reaction pre-
diction, shown without KL divergence loss (blue squares) and with KL divergence loss (red
circles) across different random seeds in training. A linear fit of the data demonstrates min-
imal correlation between consistency and accuracy.

and accuracy, confirming their orthogonality. Linear regression of the data yielded slopes of

-0.29 (with KL divergence loss) and 0.08 (without KL divergence loss), further demonstrat-

ing that improvements in accuracy do not directly lead to better consistency. These findings

highlight the need for distinct strategies to enhance both metrics independently.

Conclusions

This work explores whether large language models (LLM) truly understand the intrinsic

chemistry of molecules. To investigate this, we evaluated the consistency of LLMs across

chemistry tasks using different molecular representations, such as SMILES strings and IU-

PAC names. Our findings reveal that LLMs exhibit low consistency between these represen-

tations, even when trained on carefully controlled one-to-one mapped data.

Incorporating sequence-level KL divergence loss improved surface-level consistency by

aligning predictions across representations. However, it does not enable the models to cap-

ture deeper intrinsic chemical properties. Further analysis revealed the orthogonality of con-
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sistency, demonstrating that improvements in one do not inherently lead to enhancements

in the other.

These findings underscore the limitations of current LLM architectures and the pressing

need for advanced models capable of understanding the intrinsic chemistry of molecules. Such

advancements are crucial for achieving both accurate and consistent predictions in chemistry

tasks, bridging the gap between symbolic representations and true chemistry understanding.
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Supporting Information Available

Implementation details

Software and hardware

In this work, we use Python 3.10. The major Python packages we used are Transformers

4.43.4, PyTorch 2.1.0, RDKit 2023.3.3.

We train the models using Nvidia A100 or H100 GPU. We use one GPU for GPT2 small,

GPT2 medium, GPT2 large, and CodeT5 small models, and two GPUs for GPT2 XL and

Mistral 7B models.

Hyperparameters

We train all models using the AdamW optimizer29,30. We use random seeds of 42, 123, 999,

1234, 2024, 2718, 4321, 5678, 8080, 31415, and 98765. The other hyperparameters for each

model are summarized in the table below.

Table 3: Hyperparameters used to finetune LLMs.

Model Learning rate Batch size Accumulation #Epochs
GPT2 small 1e-4 32 1 20
GPT2 medium 1e-4 16 1 20
GPT2 large 1e-4 8 1 20
GPT2 XL 1e-4 8 2 20
CodeT5 small 1e-4 32 1 20
Mistral 7B 1e-5 8 2 10

Input and output examples

We provide some examples of input and output sequences for model finetuning and evalua-

tion.
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1. Evaluation of state-of-the-art LLMs: We provide a simple instruction specifying the

input and output representation in the inquiry sent to the API. The molecules are

separated by comma (“.”) For example:

Input in SMILES: “Based on the SMILES strings of reactants and reagents, predict

the SMILES string of the product. Please output the product directly.

<SMILES> COc1ccc2c(c1)C(=O)c1ccccc1CC2.[BH4-].[OH-].[Na+].CCO<SMILES>”

Target output in SMILES:

“COc1ccc2c(c1)C(O)c1ccccc1CC2”

Input in IUPAC: “Based on the IUPAC names of reactants and reagents, predict the

IUPAC name of the product. Please output the product directly.

<IUPAC> 5-methoxytricyclo[9.4.0.03,8]pentadeca-1(15),3(8),4,6,11,13-hexaen-2-one.

boranuide.hydroxide.sodium(1+).ethanol <IUPAC>”

Target output in IUPAC:

“5-methoxytricyclo[9.4.0.03,8]pentadeca-1(15),3(8),4,6,11,13-hexaen-2-ol”

2. Finetuning of LLMs: We append a flag in the end to the input sequence to specify the

output representation, “S” for SMILES and “I” for IUPAC. For example:

Input in SMILES expecting output in SMILES:

“COc1ccc2c(c1)C(=O)c1ccccc1CC2.[BH4-].[OH-].[Na+].CCO.S”

Target in SMILES:

“COc1ccc2c(c1)C(O)c1ccccc1CC2”

Input in SMILES expecting output in IUPAC:

“COc1ccc2c(c1)C(=O)c1ccccc1CC2.[BH4-].[OH-].[Na+].CCO.I”

Target in IUPAC:

“5-methoxytricyclo[9.4.0.03,8]pentadeca-1(15),3(8),4,6,11,13-hexaen-2-ol”
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KL divergence loss

Here we show the loss function for the sequence-level KL divergence: DKL(P ||Q) and

DKL(Q||P ). We take the KL divergence DKL(P ||Q) as an example to demonstrate the

calculation.

The gradient ofDKL(P ||Q) is (here we simplify Pθ(y|xS) as Pθ(y), and Qθ(y|xI) as Qθ(y)):

∇θDKL(P ||Q) =
∑
y∈Y

∇θ(Pθ(y) log
Pθ(y)

Qθ(y)
)

=
∑
y∈Y

∇θ(Pθ(y)) log
Pθ(y)

Qθ(y)
+ Pθ(y)∇θ(

Pθ(y)

Qθ(y)
)

(10)

Using the trick ∇θ(Pθ(y)) = Pθ(y)∇θ(log(Pθ(y))):

∇θDKL(P ||Q) =
∑
y∈Y

Pθ(y)∇θ(log(Pθ(y))) log
Pθ(y)

Qθ(y)
+ Pθ(y)∇θ(

Pθ(y)

Qθ(y)
)

= Ey∼Pθ(y)[∇θ(logPθ(y)) log
Pθ(y)

Qθ(y)
+∇θ(log

Pθ(y)

Qθ(y)
)]

(11)

Therefore, we can define the KL loss corresponding to the KL divergence DKL(P ||Q):

KL loss ≡ Ey∼Pθ(y)[logPθ(y) log
Pθ(y)

Qθ(y)
.detach + log

Pθ(y)

Qθ(y)
] (12)

However, the expectation is untractable, so we use a Monte Carlo to estimate it by

sampling M sequences {y1, ..., ym} from Pθ(y) and pass them through the models Pθ(y) and

Qθ(y):

KL loss(PQ) ≈ 1

M

M∑
m=1

[logPθ(y
m) log

Pθ(y
m)

Qθ(ym)
.detach + log

Pθ(y
m)

Qθ(ym)
] (13)

Similarly, we can calculate the loss for the KL divergence ofQθ(y) from Pθ(y) (DKL(Q||P ))

25

https://doi.org/10.26434/chemrxiv-2024-lnvbz ORCID: https://orcid.org/0000-0001-7874-725X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-lnvbz
https://orcid.org/0000-0001-7874-725X
https://creativecommons.org/licenses/by/4.0/


and the Monte Carlo estimation by sampling N sequences {y1, ..., yn} from Qθ(y):

KL loss(QP ) ≡ Ey∼Qθ(y)[logQθ(y) log
Qθ(y)

Pθ(y)
.detach + log

Qθ(y)

Pθ(y)
]

≈ 1

N

N∑
n=1

[logQθ(y
n) log

Qθ(y
n)

Pθ(yn)
.detach + log

Qθ(y
n)

Pθ(yn)
]

(14)

Dataset

Here we list the statistics of the datasets used to fine-tune LLMs. There are three tasks:

forward reaction prediction, retrosynthesis, and property prediction. These datasets are all

one-to-one mapped between SMILES and IUPAC inputs.

Table 4: Statistics of the datasets used to finetune LLMs.

Task #Train #Valid #Test
Forward reaction prediction (full) 963,567 1,956 300
Forward reaction prediction (subset) 76,379 1,956 300
Retrosynthesis (full) 932,616 2,004 300
Retrosynthesis (subset) 76,471 2,004 300
Property - BBBP 1,521 188 189
Property - ClinTox 1,063 127 131
Property - HIV 32,864 4,104 300
Property - SIDER 21,800 2,540 300
Property - ESOL 888 111 112
Property - LIPO 3,358 385 300

Consistency transition

Here we list all of the reactions that transit either from inconsistent to consistent predictions,

or from consistent to inconsistent predictions.

Consistent-to-inconsistent transitions

Here we list all of the 47 reactions that transition from inconsistent to consistent predictions

between SMILES and IUPAC inputs after adding KL divergence loss.
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Scheme 2: Complicated redox reactions that transition from inconsistent to consistent pre-
dictions after adding KL divergence loss
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Scheme 3: Complicated coupling reactions that transition from inconsistent to consistent
predictions after adding KL divergence loss

Reactants & reagents Target product Predicted product (w/o KL)
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Scheme 4: Complicated cyclization reactions that transition from inconsistent to consistent
predictions after adding KL divergence loss
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Scheme 5: Complicated SNAr reactions that transition from inconsistent to consistent pre-
dictions after adding KL divergence loss

Reactants & reagents Target product Predicted product (w/o KL)
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Scheme 6: Complicated condensation reactions that transition from inconsistent to consistent
predictions after adding KL divergence loss
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Scheme 7: Complicated addition reactions that transition from inconsistent to consistent
predictions after adding KL divergence loss
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Scheme 8: Position-inconsistent reactions that transition from inconsistent to consistent
predictions after adding KL divergence loss

Reactants & reagents Target product Predicted product (w/o KL)
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Scheme 9: Reaction type-inconsistent reactions that transition from inconsistent to consis-
tent predictions after adding KL divergence loss

Reactants & reagents Target product Predicted product (w/o KL)

SMILES IUPAC
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Scheme 10: Reaction step-inconsistent reactions that transition from inconsistent to consis-
tent predictions after adding KL divergence loss

Reactants & reagents Target product Predicted product (w/o KL)
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Scheme 11: Minor inconsistent reactions that transition from inconsistent to consistent pre-
dictions after adding KL divergence loss

Reactants & reagents Target product Predicted product (w/o KL)

SMILES IUPAC
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Here we list the six reactions that transition from consistent to inconsistent predictions

between SMILES and IUPAC inputs after adding KL divergence loss.

Scheme 12: Complicated reactions that transition from consistent to inconsistent predictions
after adding KL divergence loss
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Scheme 13: Position inconsistent reactions that transition from consistent to inconsistent
predictions after adding KL divergence loss

Reactants & reagents Target product Predicted product (w/o KL)
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