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This study investigates the impact of incorporating stereochemical information, a crucial aspect of
computational drug discovery and materials design, in molecular generative modelling. We present
a comprehensive comparison of stereochemistry-aware and conventionally stereochemistry-unaware
string-based generative approaches, utilizing both genetic algorithms and reinforcement learning-
based techniques. To evaluate these models, we introduce novel benchmarks specifically designed to
assess the importance of stereochemistry-aware generative modelling. Our results demonstrate that
stereochemistry-aware models generally perform on par with or surpass conventional algorithms
across various stereochemistry-sensitive tasks. However, we also observe that in scenarios where
stereochemistry plays a less critical role, stereochemistry-aware models may face challenges due to
the increased complexity of the chemical space they must navigate. This work provides insights into
the trade-offs involved in incorporating stereochemical information in molecular generative models
and offers guidance for selecting appropriate approaches based on specific application requirements.

I. Introduction

Generative models have become increasingly prominent
in the fields of inverse design and molecular discovery,
offering a computational approach to explore vast chemi-
cal spaces efficiently [1–10]. These models employ ma-
chine learning techniques to generate novel molecular
structures with targeted properties, potentially expedit-
ing the traditionally lengthy and resource-intensive pro-
cess of molecular design [11–14]. Generative models can
propose new and potentially viable compounds, adher-
ing to specified criteria. Methods such as genetic algo-
rithms define heuristics for exploring the space of chem-
icals, while deep-learning methods learn the chemical
space distribution from molecular databases. The lit-
erature presents a diverse array of approaches in this
domain, including but not limited to variational autoen-
coders (VAEs) [1, 15–18], generative adversarial networks
(GANs) [4, 19, 20], reinforcement learning (RL) [21–26],
genetic algorithms (GAs) [27–30], and transformer-based
architectures [31–34]. These methodologies have demon-
strated utility across various applications in drug dis-
covery and materials science, facilitating rapid in silico
screening and optimization of molecular structures [35].

The evaluation and benchmarking of generative models
for molecular discovery initially focused on determining
the goodness of the reproduction of the structures in the
dataset chemical space—generation not conditioned on
the functional properties of the molecules. These met-
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rics typically emphasize distribution learning, examin-
ing the model’s ability to capture and reproduce the
underlying distribution of the training data [3, 36–38].
Other evaluation criteria include the (1) novelty of gener-
ated molecules, which measures the proportion of unique
structures not present in the training set; (2) diversity,
which assesses the structural variation among the gen-
erated molecules; and validity, which ensures that the
proposed structures adhere to chemical feasibility con-
straints (e.g., valid Lewis structures and valency con-
straints) [18, 39].

While these metrics provide insights into a model’s gen-
erative capabilities, there is a growing recognition of
the need for more realistic and task-specific benchmarks
[40–43]. The emphasis on general distribution learn-
ing, while important, may not fully capture the model’s
performance in addressing specific chemical challenges.
Additionally, performances on task-oriented benchmarks
based on simple heuristic fitness functions, such as penal-
ized log water-octanol partition coefficient [1, 44], sim-
ilarity/rediscovery tasks [18, 39], or quantitative esti-
mate of drug-likeliness (QED) [45], are handily maxi-
mized by modern generative models [46–48], and even
trivially satisfied by randomly inserting carbon atoms
into the molecules [49]. These simplistic fitness func-
tions often fail to capture chemical constraints, allowing
models to exploit failure modes by reward hacking, and
generate molecules with high scores but undesirable prop-
erties, such as chemical instability or synthetic infeasibil-
ity [50, 51]. As the field advances, there is an increasing
demand for benchmarks that are more closely aligned
with real-world applications in drug discovery, materi-
als design, and other domains of chemistry [52]. This
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shift towards more targeted evaluation methods would
provide a more nuanced and practically relevant assess-
ment of generative models, potentially accelerating their
adoption and impact in real-world molecular discovery
scenarios.

Despite the advances in generative models for molecular
design, the incorporation of stereochemical information
remains a significant challenge. Molecular stereochem-
istry, the 3D arrangement of atoms within a molecule,
significantly influences its chemical properties and bio-
logical activity [53]. Many current methods either ig-
nore stereochemistry entirely or consider it as a post-
processing step after molecule generation. This approach
is suboptimal, as stereochemistry plays a crucial role in
determining a molecule’s properties and biological ac-
tivity. The importance of stereochemistry is particu-
larly evident in drug discovery, where the spatial ar-
rangement of atoms can significantly influence a com-
pound’s pharmacological properties [54, 55]. Properties
such as binding affinity to target proteins, metabolic sta-
bility, and toxicity can be profoundly affected by stereo-
chemistry. For example, the synthesis of methadone pro-
duces racemic mixtures of enantiomers—molecules that
are mirror images of each other—R-methadone, and S -
methadone. While R-methadone acts as an opioid for
pain relief, S -methadone has been identified to bind to
the hERG protein and can lead to severe side-effects,
such as heart attacks or cardiac arrest [56]. In materi-
als science, stereochemistry can impact crystal packing,
optical properties, synthesis, and reactivity [57–60]. By
not explicitly accounting for stereochemistry during the
generative process, models may overlook critical aspects
of molecular behaviour, potentially leading to inefficien-
cies in the discovery pipeline and missed opportunities for
identifying optimal candidates for a given application.

In our work, we study the effects of stereochemistry on
string-based generative models. We evaluate the mod-
els, both with and without stereochemistry-awareness,
on a variety of molecular design tasks that are sensi-
tive to the stereochemistry of molecules. Additionally,
we explore different string representations of molecular
graphs, and create a workflow for benchmarking the mod-
els, which includes a novel fitness function based on the
circular dichroism spectra of molecules. We find that
stereo-aware models perform as well as, or better than
non-stereo models, but the performance increase of the
stereo models are dependent on the sensitivity of the
task to stereochemistry. The models and the fitness
functions are all available at https://github.com/aspuru-
guzik-group/stereogeneration.

II. Methods

To study the effects of stereochemistry on molecular
generative models, we implement RL and GA meth-

ods, which have been shown to be strong baselines for
molecular generation tasks [24, 30, 40]. We modify
the REINVENT [21, 22] and JANUS [29] models to per-
mit the representation of stereochemical information.
In these models, the molecular graphs are represented
as strings, where REINVENT uses Simplified Molecular-
Input Line-Entry System (SMILES) [61], and JANUS uses
SELF-Referencing Embedded Strings (SELFIES) [62], or
GroupSELFIES [63]. We choose to use string-based gen-
erative models due to their expressiveness and flexibility
in exploring chemical space when compared to graph-
based methods [37], and their native support of stereo-
chemical string tokens. By directly comparing the models
with and without the stereochemistry-awareness across
the various tasks, we can elucidate the effect of stereo-
chemistry in the molecular generation process.

A. Stereochemistry

We focus on two primary forms of stereoisomerism: E/Z
geometric diastereomers, arising from restricted rota-
tion around double bonds, and R/S diastereomers and
enantiomers, determined by the arrangement of sub-
stituents around chiral centres. Enantiomers are non-
superimposable mirror images of each other and often
have different optical activity and physical properties.
Diastereomers, stereoisomers that are not mirror images
of each other, also often exhibit different physical and
chemical properties.

While we incorporate E/Z and R/S isomerism, we do not
explicitly account for axial chirality, a type of chirality
arising from hindered rotation around single bonds [64],
or ring isomers. This omission limits our model’s ability
to generate and differentiate atropisomers, a specific class
of axially chiral molecules.

B. String representations

SMILES were initially created as a compact represen-
tation of molecular graphs for purposes of database re-
trieval, and substructure searching. When used in gener-
ative models, SMILES of generated molecules can some-
times violate the grammar of the representation, result-
ing in invalid SMILES. To address this, SELFIES made
use of overloaded tokens, and local definitions of rings
and branches to create a robust representation that will
always translate to a valid molecular graph. Group-
SELFIES further extended SELFIES by allowing for cus-
tom tokens which can encode groups with specified at-
tachment points. For more details on string representa-
tions of molecules, we direct the readers to Krenn et al.
[65]. We also note that there are other string represen-
tations that incorporate stereochemistry which are not
explored in this work [66].

All three representations natively encode stereochemi-
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FIG. 1. Example of isomeric molecule encoded with
SMILES, SELFIES, and GroupSELFIES. Stereoinfor-
mation is labelled and highlighted in the structure and in the
corresponding stereochemical tokens in each representation.
Note that SELFIES tokens are denoted by [·].

cal information (Figure 1). SMILES encode counter-
clockwise and clockwise chirality with “@” and “@@” to-
kens, respectively. E-Z stereoisomers are denoted with
“\” and “/” before the characters to indicate the position
of a bond relative to an adjacent double bond. The same
characters are used in the SELFIES stereochemical to-
kens, while also maintaining the robustness of the repre-
sentation. GroupSELFIES defines E-Z stereoisomers in
the same way as SMILES and SELFIES, but defines chi-
rality through unique tokens for each chiral centre and for
all possible attachment points. The attachment points
directly encode the chirality of the chiral centre, with
different attachment indices in the tokens specifying the
order of substituents around the chiral centre.

For all experiments, we use a subset of the ZINC15
database that was randomly sub-sampled by Gomez-
Bombarelli et al. [1, 67]. This dataset is com-
posed of about 250,000 commercially available drug-
like molecules. Stereoinformation is defined for most
molecules in the dataset. Any molecules with ambigu-
ous stereochemistry are assigned stereochemistry by ran-
domly selecting from a list enumerating all unspeci-
fied stereo-centres using RDKit cheminformatics software
[68]. For the non-stereo experiments, the stereoinforma-
tion is discarded, and duplicates resulting from the loss of
stereoinformation are removed. Subsequently, the unique
string tokens are collected to create an alphabet, with
stereo and non-stereo alphabets for each representation.
The GroupSELFIES representation has an additional es-
sential set of chiral tokens, which are appended to the
alphabet generated from the dataset.

C. Generative models

REINVENT is an RL algorithm that uses a recurrent neural
network (RNN) pretrained on a dataset of SMILES as a
chemical language model agent [21, 22, 24]. When pro-
vided a token from a SMILES string, the RNN is trained
to generate a conditional distribution of the subsequent
tokens in the sequence. A memory state is passed into the
model as well, retaining information about previous to-

kens of the sequence observed by the model. The RNN is
first pretrained on the initial ZINC dataset, allowing it to
learn the grammar of the stereo and non-stereo SMILES
in the dataset, producing 94% and 91% average valid-
ity of generated SMILES, respectively. During the RL
optimization, the prior RNN is fine-tuned after each gen-
eration by a loss function augmented by the fitness score
achieved by the molecule S ∈ [0, 1], with good candidates
scoring S = 1, and poor candidates and invalid SMILES
scoring S = 0. With each iteration, the RL algorithm
will aim to optimize the molecules to maximize the fit-
ness function. Note that SELFIES can also be used with
REINVENT, but previous studies have demonstrated that
the RNN model is sufficiently capable of generating valid
SMILES, and no significant performance gain is observed
for SELFIES-REINVENT [40].

On the other hand, JANUS admits only SELFIES-based
representations. Leveraging the robustness of SELF-
IES representation, JANUS can perform mutation and
crossover operations, as defined in the STONED algo-
rithm [69]. JANUS maintains two separate populations
for exploration and exploitation of chemical space. The
exploration set is generated by mutation and crossover
operations within the entire population, while the ex-
ploitation set is generated through a series of mutations
on the fittest molecules. The best candidates found in the
exploitation set are then exchanged with the worst candi-
dates in the exploration set. At each iteration, selection
pressure from the fitness function allows the model to
converge toward the optimum.

In our workflow, we implement the GroupSELFIES ver-
sion of JANUS, dubbed GroupJANUS, which operates in
the same fashion as JANUS. In order to isolate the ef-
fect of the stereochemical tokens, only the chiral group
tokens are used in GroupJANUS; no other groups are
encoded in the GroupSELFIES grammar. For both
JANUS and GroupJANUS, the mutation operations de-
pend on the random sampling of tokens in the alpha-
bet. For both models, the inclusion of stereochemical to-
kens greatly increases the size of the alphabet, and struc-
tural tokens which are responsible for encoding molec-
ular rings and branches are less likely to be sampled.
To account for this imbalance, structural tokens—such
as [RingX], [BranchX] and the GroupSELFIES specific
[pop] tokens—are weighted such that they are sampled
with the same probability as in the non-stereo alphabet.

D. Experiments

We perform three stereochemistry-sensitive generative
experiments to benchmark the models. We study
REINVENT, JANUS, and GroupJANUS with SMILES, SELF-
IES, and GroupSELFIES representations, respectively.
While the stereo models will output specific stereoiso-
mers, non-stereo models are unable to distinguish be-
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FIG. 2. Structures of proteins with native ligands. The
structures are from the Protein Data Bank [71]. The native
ligand in the binding pocket is shown inside a bounding box.

tween different isomers with the same molecular graph
connectivity. Non-stereo SMILES are randomly assigned
stereochemical information before fitness evaluation, en-
suring that stereochemical information is assigned but
not passed to the generative model.

1. Stereoisomer rediscovery task

Rediscovery tasks in molecular generative modelling
benchmarking aim to evaluate a model’s ability to recre-
ate the structure of known molecules. The structural sim-
ilarity is measured by the Tanimoto similarity of molecu-
lar fingerprints—typically, extended circular fingerprints
(ECFPs), bit vectors based on the topological features of
a certain radius in the molecular graph [70]. The model
successfully rediscovers a target when the similarity is
1.0. While rediscovery tasks are not useful in practice,
since the target molecules are known a priori, they serve
as useful baselines to study the generative capabilities of
the models in directly optimizing molecular structures,
rather than chemical function. Previous benchmarking
rediscovery tasks ignore the stereochemistry of the molec-
ular structures [39]. We include the stereoinformation as
part of the target through the use of isomeric ECFPs.
For this, we chose to perform rediscovery of (R)-albuterol
(used in asthma treatment) and mestranol (used as es-
trogen medication for hormone therapy), with one and
five chiral centres, respectively.

2. Protein-ligand docking task

Protein-ligand interactions are associated with the bioac-
tivity of drug molecules. Ligands are molecules that bind
inside the protein binding pockets, forming intermolecu-
lar interactions with the amino acids of the protein, ac-
tivating or inhibiting biological functions of the protein.
For the benchmark, we use the high-throughput dock-
ing score implemented in the Tartarus benchmark [43],
which uses the smina software to simulate the protein-
ligand binding affinity [72].

Because the scoring function takes in a 3D conformer
of the molecules, a conformer search is performed using
RDKit to find the lowest energy conformer, respecting
all specified stereoinformation, followed by energy relax-
ation with the Merck Molecule Force Field 94 (MMFF94)
[73]. The molecule is placed inside the binding pocket to
sample binding poses; the resulting docking score is max-
imized. The binding pocket is defined as the bounding
box encompassing the volume occupied by the protein’s
native ligand with 3Å padding.

We perform the protein-ligand docking task for three dif-
ferent targets, visualized in Figure 2 with their respective
bounding boxes. Both 1SYH and 6Y2F are targets from
Tartarus: 1SYH is associated with neurological diseases,
and 6Y2F is responsible for the translation of the SARS-
CoV-2 virus RNA. We also include the 1OYT protein,
which is associated with blood coagulation [74], and has
a binding pocket with a volume between those of 1SYH
and 6Y2F.

3. Circular dichroism task

We finally developed a task based on circular dichro-
ism (CD), which directly probes the chirality of struc-
tures, making it the ideal task for studying the effects of
stereoinformation in molecular generation. CD produces
spectra of the absorption of left- and right-handed polar-
ized light in chemical species, and can be used to study
folding structures in proteins [75], or chiral optical prop-
erties of materials, which have light manipulation and
photonics applications [57, 76–78].

In this task, like before, the molecules are 3D embed-
ded with RDKit. The conformer search and geometry
optimization is performed using crest [79–81] and semi-
empirical extended tight-binding (xTB) [82] at the GFN2
level of theory [83].

The xTB calculation quickly produces orbitals and or-
bital energies, which can be treated using simplified
Tamm-Dancoff approximated (sTDA) time-dependent
density functional theory (TD-DFT). This workflow,
sTDA-xTB, produces CD spectra of the lowest energy con-
formers relatively quickly, even for molecular systems
with hundreds of atoms [84, 85]. A peak score is defined
as the signed area under the spectrum for wavelengths
450–550nm, a region where small organic molecules can
have CD signals, and is also within the visible range
for possible materials applications. Maximizing the peak
score produces chiral optically active materials within the
blue region of visible light.

III. Results

We evaluate optimization performance by looking at the
optimization trace, which plots the cumulative top-1

https://doi.org/10.26434/chemrxiv-2024-tkjr1 ORCID: https://orcid.org/0000-0002-8470-6515 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-tkjr1
https://orcid.org/0000-0002-8470-6515
https://creativecommons.org/licenses/by-nc/4.0/


5

score achieved as a function of the generation of the cam-
paign. We do this across the models, stereo and non-
stereo aware, on the aforementioned tasks. For all tasks,
the models are allotted 1000 fitness oracle calls. The GAs
run 50 generations with population size of 200 molecules,
while REINVENT runs 100 generations of 100 molecules to
allow for more policy updates throughout the optimiza-
tion. Experiments were repeated with 10 times, and sta-
tistical significance was determined by Student t-test.

Additionally, we use the area-under-curve (AUC) of the
optimization traces as a quantitative measure of the op-
timization performance. For the AUC calculation, the
number of generations is normalized from 0 to 1. For
the rediscovery tasks, the similarity score and the AUC
are both bounded by 0 and 1. For the docking and CD
tasks, there is no maximum achievable score. Therefore,
we normalize the AUC scores by the best score in the ini-
tial ZINC dataset. Higher AUC indicates the generation
of higher scoring molecules, and also earlier discovery of
such molecules. The AUC scores are found in Table I.

Tasks REINVENT JANUS GroupJANUS

N
o
n
-s
te
re
o

(R)-albuterol rediscovery 0.487 ± 0.058 0.790 ± 0.105 0.840 ± 0.109
Mestranol rediscovery 0.292 ± 0.034 0.633 ± 0.031 0.672 ± 0.032
1SYH docking 0.900 ± 0.020 1.033 ± 0.031 1.084 ± 0.053
1OYT docking 0.954 ± 0.013 1.064 ± 0.028 1.068 ± 0.028
6Y2F docking 0.987 ± 0.015 1.068 ± 0.052 1.067 ± 0.029
CD spectral peak score 0.413 ± 0.117 2.007 ± 0.352 2.066 ± 0.761

S
te
re
o

(R)-albuterol rediscovery 0.403 ± 0.053 0.931 ± 0.044 0.923 ± 0.035
Mestranol rediscovery 0.280 ± 0.032 0.843 ± 0.087 0.918 ± 0.074
1SYH docking 0.887 ± 0.011 1.065 ± 0.031 1.106 ± 0.070
1OYT docking 0.940 ± 0.021 1.099 ± 0.027 1.059 ± 0.035
6Y2F docking 0.979 ± 0.023 1.088 ± 0.043 1.065 ± 0.042
CD task 0.385 ± 0.111 2.884 ± 1.009 2.198 ± 0.563

TABLE I. AUC of optimization traces for all tasks, for
stereo and non-stereo aware models. The mean and
standard deviation are reported. Statistically significantly
better (higher) AUC scores between the non-stereo and stereo
variants are bolded.

A. Stereoisomer rediscovery task

The optimization traces for the rediscovery tasks are
shown in Figure 3. The higher number of chiral centres
in mestranol make it a more difficult target for redis-
covery. This is clearly shown in the optimization traces
of the REINVENT models—mestranol rediscovery does not
achieve similarity higher than the initial dataset. When
compared to rediscovery in other studies [26, 39, 40],
REINVENT optimization performance is greatly reduced
when stereochemistry is introduced. There are no statis-
tically significant differences in the performance of REIN-
VENT when comparing stereo and non-stereo models.

The stereo-aware JANUS and GroupJANUS models signif-
icantly outperform the non-stereo-aware models, indi-
cating the ability of the stereo model in learning spe-
cific stereochemistries in molecular structures. For (R)-
albuterol, both stereo GAs successfully rediscover the

FIG. 3. Optimization traces for rediscovery tasks. The
cumulative top-1 similarity score to the target molecule as a
function of generation of optimization. Shaded regions indi-
cate the 95% confidence interval. The dashed line is the best
score found in the starting dataset.

structure for all runs, with no significant differences be-
tween JANUS and GroupJANUS. For mestranol, the use
of GroupSELFIES slightly improves the optimization for
the stereo-aware model, when compared to JANUS with
SELFIES.

B. Protein-ligand docking task

Moving beyond simple structural reproduction, the
protein-ligand docking task assesses the practical utility
of generative models in a drug discovery context. The
optimization traces for the docking tasks are in figure
4. We again observe that REINVENT struggles to improve
upon the results of the ZINC dataset, with the exception
of the 6Y2F protein. There are no differences between
the stereo and non-stereo variants of REINVENT.

Meanwhile, both GAs optimize better than REINVENT.
For JANUS, we observe consistent improvements in opti-
mization performance with stereo-aware models for gen-
erating ligands for 1SYH and 1OYT. The faster opti-
mization of the stereo GAs are also reflected in the AUC
score (Table I). In the case of the 6Y2F target, possessing
a comparatively larger and more flexible binding pocket,
the difference in performance between stereo and non-
stereo models was less pronounced. This observation im-
plies that for certain targets, the impact of stereochem-
istry on binding affinity might be less critical, with other
molecular features playing a dominant role.

C. Circular dichroism task

The results of CD peak score optimization task are shown
in Figure 5. There are no differences between the non-
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FIG. 4. Optimization traces for docking tasks. The cu-
mulative top-1 docking score for protein targets as a function
of generation of optimization. Shaded regions indicate the
95% confidence interval. The dashed line is the best score
found in the starting dataset.

stereo and stereo REINVENT, which are unable to improve
upon the scores of the initial dataset. The GroupJANUS
optimization also shows no difference between the stereo
and non-stereo models. However, the stereo-aware JANUS
is capable of generating molecules with stronger CD sig-
nals than the non-stereo-aware counterpart. The results
indicate that the CD task is a suitably stereochemistry-
sensitive optimization task for molecular generative mod-
elling.

FIG. 5. Optimization traces for CD task. The cumula-
tive top-1 CD peak score as a function of generation of opti-
mization. Shaded regions indicate the 95% confidence inter-
val. The dashed line is the best score found in the starting
dataset.

IV. Discussion

While it may seem intuitive that stereochemistry-aware
models would be capable of generating better molecules
for optimization tasks, the optimization performance
of generative models depends on the stereochemistry-
sensitivity of the task. For explicit optimization of molec-
ular structures, stereo-aware GAs perform better than
non-stereo counterparts. In the docking task, we observe
that stereo GAs boost the optimization performance for
1SYH and 1OYT. In the case of 6Y2F, the generated lig-
and molecules are larger, in order to fit in the bigger pro-
tein binding pocket. Larger structural changes such as
additional of fragments and functional groups allow the
models to more quickly traverse the permitted molecule
space, while slight changes in stereochemistry only result
in small changes in the docking score. In these tasks,
stereo models still perform as well as non-stereo mod-
els. The CD spectra task directly probes the effects of
chirality, and the spectra is less related to specific molec-
ular size or functional groups. In this task, stereo JANUS
outperforms non-stereo JANUS.

Except for the rediscovery tasks, unlike JANUS, the stereo
and non-stereo variants of GroupJANUS perform similarly.
This may be due to inefficiencies of the GroupSELFIES
representation of stereochemistry. The addition of stere-
ochemistry tokens increase the alphabet size by almost
3 times. Also, all additional tokens and group tokens
are overloaded to ensure robustness. We hypothesize
that the increased number of tokens interferes with the
decoding of stereoisomeric GroupSELFIES, truncating
molecules at rings and branches.

Additionally, GAs perform better than the REINVENT
model for the same number of oracle calls, results which
are consistent with previous studies [30]. The evolution-
ary approach of GAs will always select the members of
the population that maximize the fitness, meaning the
GA cannot perform worse than the previous (or initial)
generations. GAs are also not encumbered by the prior
chemical space distribution of the training set, unlike
deep learning methods like REINVENT, allowing the gener-
ation of more diverse molecules. Due to the prior model,
the REINVENT agent requires more oracle calls and more
frequent retraining to condition for higher rewards. In
this study, we limit the models to 1000 oracle calls, as
opposed to 5000 in [43] or 10,000 in [40]. No improve-
ment was observed for stereo REINVENT. The expanded
alphabet increases the number of possible actions the RL,
requiring the model to learn a more complex policy which
may have impeded stereo REINVENT.

V. Conclusion

This study presents a comprehensive investigation into
the incorporation of stereochemical information within
molecular generative models, focusing on established
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techniques such as string-based RL and GAs. We aim
to provide a nuanced understanding of the impact of
stereochemistry awareness by employing a suite of eval-
uation metrics, including both conventional benchmarks
and newly designed tasks specifically tailored to assess
the role of stereochemistry. A key contribution of this
work is the introduction of a novel CD-based task, which
proved to be suitable for probing the effects of chirality
in the generated molecules.

Our findings highlight the importance of considering
task-specific requirements when deciding whether to in-
clude stereochemical information within the generative
process. In cases where different stereoisomers can sig-
nificantly influences the desired molecular properties,
the inclusion of stereochemistry led to improved perfor-
mance. Specifically, we observed that stereochemistry-
aware GA JANUS consistently outperformed their non-
stereo counterparts in generating molecules for stereoiso-
mer rediscovery, docking to proteins 1SYH and 1OYT,
and CD spectra peak optimization.

However, our results also suggest that the benefit of in-
corporating stereochemistry is less pronounced in tasks
where other molecular features, such as size or functional
group presence, may play a more dominant role. This
was evident in the protein-ligand docking task for tar-
get 6Y2F, where the impact of stereochemistry was less
substantial due to the larger and less constrained bind-
ing pocket. This observation underscores the need for a
considered approach when deciding on the necessity of
stereochemical information in generative models.

This work provides insights into the capabilities and
limitations of current string-based generative models in
capturing and leveraging stereochemical information for
molecular design. While the incorporation of such in-

formation can be beneficial, particularly for applications
where 3D molecular structure is critical, the decision
should be guided by a careful assessment of the task-
specific requirements and the trade-offs associated with
increased model complexity. Further investigation into
more efficient and robust representations of stereochem-
istry, for example through graph-based representations,
is a direction for future research.

Data Availability

The code and data, including the imple-
mented models and benchmarking tasks, are
available at https://github.com/aspuru-guzik-
group/stereogeneration under the MIT license.
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Québec (MESI) and le Fonds de recherche du Québec–
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Yann Gaston-Mathé. Molecular assays simulator to un-

ravel predictors hacking in goal-directed molecular gen-
erations. Journal of Chemical Information and Modeling,
63(13):3983–3998, 2023.

[51] Jiankun Lyu, John J Irwin, and Brian K Shoichet. Mod-
eling the expansion of virtual screening libraries. Nature
Chemical Biology, 19(6):712–718, 2023.

[52] Andreas Bender, Nadine Schneider, Marwin Segler,
W Patrick Walters, Ola Engkvist, and Tiago Rodrigues.
Evaluation guidelines for machine learning tools in the
chemical sciences. Nature Reviews Chemistry, 6(6):428–
442, 2022.

[53] Naveen Chhabra, Madan L Aseri, and Deepak Padman-
abhan. A review of drug isomerism and its significance.
International Journal of Applied and Basic Medical Re-
search, 3(1):16–18, 2013.

[54] Jonathan McConathy and Michael J Owens. Stereochem-
istry in drug action. Primary care companion to the Jour-
nal of Clinical Psychiatry, 5(2):70, 2003.

[55] Rebecca U McVicker and Niamh M OBoyle. Chirality
of new drug approvals (2013–2022): trends and perspec-
tives. Journal of Medicinal Chemistry, 67(4):2305–2320,
2024.

[56] Silas W Smith. Chiral toxicology: it’s the same thing
only different. Toxicological Sciences, 110(1):4–30, 2009.

[57] Stephan Guy, Laure Guy, Amina Bensalah-Ledoux, An-
tonio Pereira, Vincent Grenard, Olivier Cosso, and
Teophile Vautey. Pure chiral organic thin films with high
isotropic optical activity synthesized by uv pulsed laser
deposition. Journal of Materials Chemistry, 19(38):7093–
7097, 2009.

[58] Erick M Carreira and Lisbet Kvaerno. Classics in stere-
oselective synthesis. John Wiley & Sons, 2009.

[59] Gianluigi Albano, Gennaro Pescitelli, and Lorenzo
Di Bari. Chiroptical properties in thin films of π-
conjugated systems. Chemical Reviews, 120(18):10145–
10243, 2020.

[60] Audrey Cuvellier, Robrecht Verhelle, Joost Brancart,
Bram Vanderborght, Guy Van Assche, and Hubert
Rahier. The influence of stereochemistry on the reactivity
of the diels–alder cycloaddition and the implications for
reversible network polymerization. Polymer Chemistry,
10(4):473–485, 2019.

[61] David Weininger. Smiles, a chemical language and in-
formation system. 1. introduction to methodology and
encoding rules. Journal of Chemical Information and
Computer Sciences, 28(1):31–36, 1988.
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Supplementary Information:

Stereochemistry-aware string-based molecular generation

A. Fitness functions

The targets of the rediscovery tasks are shown in Figure S1. For the docking tasks, the native ligands for the protein
targets are shown in Figure S2. Samples of CD spectra generated using sTDA-xTB for some example stereoisomers are
shown in Figure S3.

FIG. S1. Rediscovery targets. The chemical structures of the rediscovery targets (R)-albuterol and mestranol. (R)-albuterol
has a single chiral centre, while mestranol has five.

FIG. S2. Structure of native ligands. The structures of the native ligands of the proteins.

FIG. S3. Examples of CD spectra. Example of CD spectra generated from sTDA-xTB. Mirror opposite stereoisomers produce
spectra that are inverted with respect to each other. Highlighted region is the region of interest for the peak score.
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B. Additional results

A table of maximum achieved scores, analogous to Table I, is found in Table S2. The best molecules generated by
each model for each task are found in the Figures S4 to S9.

REINVENT JANUS GroupJANUS

N
o
n
-s
te
re
o

(R)-albuterol rediscovery 0.796 ± 0.184 0.882 ± 0.124 0.905 ± 0.122
Mestranol rediscovery 0.349 ± 0.050 0.683 ± 0.043 0.703 ± 0.042
1SYH docking 10.900 ± 0.377 12.170 ± 0.615 12.850 ± 0.792
1OYT docking 11.960 ± 0.246 13.480 ± 0.565 13.350 ± 0.528
6Y2F docking 9.780 ± 0.244 10.350 ± 0.519 10.510 ± 0.357
CD spectral peak score 1622 ± 432 6883 ± 1700 7043 ± 2937

S
te
re
o

(R)-albuterol rediscovery 0.730 ± 0.201 1.000 ± 0.000 1.000 ± 0.000
Mestranol rediscovery 0.339 ± 0.045 0.925 ± 0.121 0.982 ± 0.056
1SYH docking 10.810 ± 0.423 12.340 ± 0.564 13.040 ± 1.041
1OYT docking 11.770 ± 0.309 14.040 ± 0.477 13.470 ± 0.677
6Y2F docking 9.870 ± 0.497 10.710 ± 0.621 10.580 ± 0.439
CD spectral peak score 1400 ± 390 9533 ± 3351 6845 ± 1931

TABLE S2. Maximum achieved score for all tasks, for stereo and non-stereo aware models. The mean and standard
deviation are reported. Statistically significantly higher scores between the non-stereo and stereo variants are bolded.

https://doi.org/10.26434/chemrxiv-2024-tkjr1 ORCID: https://orcid.org/0000-0002-8470-6515 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-tkjr1
https://orcid.org/0000-0002-8470-6515
https://creativecommons.org/licenses/by-nc/4.0/


S3

FIG. S4. Top molecules found for (R)-albuterol rediscovery. Top 5 compounds across all runs on (R)-albuterol
rediscovery for each the non-stereo and stereo versions of REINVENT, JANUS, and GroupJANUS. Only the best of duplicates are
retained.
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FIG. S5. Top molecules found for mestranol rediscovery. Top 5 compounds across all runs on mestranol rediscovery for
each the non-stereo and stereo versions of REINVENT, JANUS, and GroupJANUS. Only the best of duplicates are retained.

https://doi.org/10.26434/chemrxiv-2024-tkjr1 ORCID: https://orcid.org/0000-0002-8470-6515 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-tkjr1
https://orcid.org/0000-0002-8470-6515
https://creativecommons.org/licenses/by-nc/4.0/


S5

FIG. S6. Top molecules found for 1SYH docking task. Top 5 compounds across all runs on 1SYH docking for each the
non-stereo and stereo versions of REINVENT, JANUS, and GroupJANUS. Only the best of duplicates are retained.
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FIG. S7. Top molecules found for 1OYT docking task. Top 5 compounds across all runs on 1OYT docking for each the
non-stereo and stereo versions of REINVENT, JANUS, and GroupJANUS. Only the best of duplicates are retained.
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FIG. S8. Top molecules found for 6Y2F docking task. Top 5 compounds across all runs on 6Y2F docking for each the
non-stereo and stereo versions of REINVENT, JANUS, and GroupJANUS. Only the best of duplicates are retained.
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FIG. S9. Top molecules found for CD spectra task. Top 5 compounds across all runs on CD spectra task for each the
non-stereo and stereo versions of REINVENT, JANUS, and GroupJANUS. Only the best of duplicates are retained.
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