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ABSTRACT  

 

Enzymes are the quintessential green catalysts, but realizing their full potential for biotechnology 

typically requires improvement of their biomolecular properties. Catalysis enhancement, however, 

is often accompanied by impaired stability. Here, we show how the interplay between activity and 

stability in enzyme optimization can be efficiently addressed by coupling two recently proposed 

methodologies for guiding directed evolution. We first identify catalytic hotspots from chemical 

shift perturbations induced by transition-state-analogue binding and then use 

computational/phylogenetic design (FuncLib) to predict stabilizing combinations of mutations at 

sets of such hotspots. We test this approach on a previously designed de novo Kemp eliminase, 

which is already highly optimized in terms of both activity and stability. Most tested variants 

displayed substantially increased denaturation temperatures and purification yields. Notably, our 

most efficient engineered variant shows a ~3-fold enhancement in activity (kcat ~1700 s-1, kcat/KM 

~4.3·105 M-1s-1) from an already heavily optimized starting variant, resulting in the most proficient 

proton-abstraction Kemp eliminase designed to date, with a catalytic efficiency on a par with 

naturally occurring enzymes. Molecular simulations pinpoint the origin of this catalytic 

enhancement as being due to the progressive elimination of a catalytically inefficient substrate 

conformation that is present in the original design. Remarkably, interaction network analysis 

identifies a significant fraction of catalytic hot-spots, thus providing a computational tool which 

we show to be useful even for natural-enzyme engineering. Overall, our work showcases the power 

of dynamically guided enzyme engineering as a design principle for obtaining novel biocatalysts 

with tailored physicochemical properties, towards even anthropogenic reactions. 

 

Keywords: Kemp Eliminase • NMR-Guided Directed Evolution • FuncLib • Computational 

Protein Design • Enzyme Conformational Dynamics 
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INTRODUCTION 

 

Enzymes have important and diverse applications as catalysts for organic synthesis, 

bioremediation and biochemical industrial reactions.1, 2 Enzymes contribute in fact to superseding 

traditional industrial processes that were both often inefficient in terms of the use of natural 

resources and environmentally unfriendly in general, and overall promote sustainable chemistry. 

3, 4 Most applications of enzymes require their optimization in terms of the relevant biomolecular 

properties. Developing methodologies for enzyme enhancement is therefore a goal with major 

economic impact. However, while increasing enzyme activity is obviously desirable for many 

industrial applications, so is ensuring sufficient enzyme stability. That is, low stability may 

facilitate irreversible enzyme denaturation and thus limit the total turnover of the enzyme under 

the conditions of the application. It may also simply preclude the use of high temperatures in the 

process, which may be required to warrant sufficient substrate solubility and to prevent microbial 

growth or simply to lead to even higher catalytic rates.5, 6 Unfortunately, most mutations that are 

capable of modulating enzyme function are destabilizing,7 which explains why activity-stability 

trade-offs are often found in enzyme optimization studies.8 Certainly, it is plausible that a few 

mutations (or combinations of mutations) modulate activity without impairing stability. However, 

these mutations (or combinations thereof) are unlikely to be found through the screening of large 

random variant libraries. While this can to some extent be offset by the use of laboratory directed 

evolution, which is the most useful and broadly applicable methodology for protein engineering,9 

this process is typically sluggish, and many rounds of time-consuming library screening are often 

required to reach the required levels of the targeted biomolecular properties.10 These challenges 

are obviously a reflection of the fact that the protein sequence space is vast and that most sequences 

do not encode for proteins with industrially desired biophysical properties. In view of this, 

considerable effort has been devoted in recent years to the development of general methodologies 

to design small focused libraries for guided directed evolution.11-20 

 In the present work, we show how the interplay between activity and stability in enzyme 

optimization can be efficiently addressed through the combination of two recently proposed 

methodologies to guide directed evolution.18, 19 Our combined approach involves, first, the use of 

NMR to determine positions in the protein sequence at which mutations are likely to affect 

catalysis (catalytic hotspots). In this context, recent work19 has demonstrated that such catalysis 
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hotspots can be identified from the chemical shift perturbations induced by the binding of a 

transition-state analogue to the targeted enzyme. This is important, as focusing directed evolution 

to catalytic hotspots bypasses one of the main factors that contributes to the ineffective screening 

of large random libraries, namely, that only certain regions of the enzyme structure are linked to 

the catalytic cycle and, therefore, that the screening of a random library involves the useless and 

time-consuming probing of large numbers of mutations that in fact do not affect catalysis. 

However, as we demonstrate in this work the process can be further optimized, by avoiding the 

preparation of random (saturation or combinatorial) libraries at the determined hotspots (as would 

be the standard practice). Rather, following recent work,18 we use FuncLib,21 a novel 

computational methodology that combines Rosetta design with phylogenetic analysis, to rank 

enzyme variants with multiple mutations according to predicted stability. This approach has been 

successfully used in a wide range of protein design applications.21-26 Specifically, we use here 

predictions from the FuncLib webserver to target sets of NMR-determined catalysis hotspots in 

such a way that the predicted variants may be expected to modulate enzyme activity without 

impairing stability. The use of FuncLib bypasses another major factor that contributes to making 

non-guided directed evolution inefficient, namely that since most mutations in a protein are 

destabilizing27 or even disruptive, screening of a random library with a significant mutational load 

involves the probing of variants with impaired stability which, in many cases, may not even fold 

properly.  

As a protein system to test our combined approach, we have selected a de novo enzyme 

capable of catalysing Kemp elimination through a classical proton-abstraction mechanism.18, 20, 28 

Kemp elimination has been widely used as benchmark for de novo enzyme engineering.18, 20, 28-33 

These studies obtained (at times substantial) improvement in Kemp eliminase activity over 

catalytically modest starting points. In contrast, in this work, the specific Kemp eliminase we are 

targeting here for further engineering is already substantially optimized in terms of both, stability 

and catalysis. That is, as a result of previous engineering efforts,18, 20, 28 it displays high catalysis 

levels, approaching in fact those of the best proton-abstraction Kemp eliminase to date which was 

the outcome of 17 rounds of directed evolution.32 Furthermore, it is a stable protein with a high 

denaturation temperature of 80 ºC, reflecting in part the fact that the original scaffold for the 

engineering was a resurrected ancestral lactamase with high stability.18, 28 Based on these facts, 

overall, further optimization of our target Kemp eliminase appears a priori difficult. Yet, we find 
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that a rather limited screening of just 25 variants predicted by our combined NMR/computational 

approach leads to a variant with ~3-fold improved activity (from an already very high starting 

point), with activities of the variants spanning a ~50-fold range, and without impairing protein 

stability. In fact, most of the predicted variants display substantially enhanced denaturation 

temperatures and purification yields. Moreover, we reach a catalytic efficiency ~4·105 M-1s-1 with 

catalytic rate constant well above 1000 s-1, i.e. above most reported values for engineered de novo 

enzymes and modern natural enzymes,4, 34 making our Kemp eliminase the most efficient 

engineered Kemp eliminase catalysing this reaction through proton abstraction. Finally, molecular 

dynamics and empirical valence bond simulations of the optimized variants, compared to the 

“wild-type” GNCA4-W229/F290W28 and computationally optimized GNCA4-12 variants18 

indicate the importance of conformational plasticity in creating a pre-organized active site for 

efficient catalysis, both through conformational enrichment of catalytically productive 

conformations of the active site tryptophan, W290, which is in turn important for substrate 

stabilization in the active site, as well as through elimination of non-reactive substrate binding 

conformations. This mirrors observations from de novo designed Kemp eliminases35, 36 but on an 

enzyme with a de novo active site generated using a minimalist design involving a single 

mutation,28 that may mimic the actual emergence of new enzymes during natural evolution. 

Finally, and remarkably, non-covalent interaction network analysis appears to be able to predict 

~50% of hotspots in both our designed Kemp eliminase as well as two naturally evolved proteins. 

Also, we demonstrate that further evaluation based on evolutionary conservation of interaction 

networks not only rationalizes experimental engineering outcomes but also acts as a tool to filter 

viable vs. non-viable hotspot residue predictions from our interaction network analysis. Taken 

together, these tools provide a fully computational alternative to NMR for hotspot prediction for 

systems where NMR analysis is not viable.  

 

RESULTS AND DISCUSSION 

 

 De novo Kemp eliminases used in this work. Kemp elimination (Figure 1A) is a simple 

reaction that has been used as a common benchmark in de novo enzyme engineering studies.18-20, 

28-32, 37 As shown in Figure 1A, Kemp elimination is a classical model reaction for base-catalyzed 

proton abstraction from carbon, although there are increasing examples in the literature of redox 
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mediated Kemp elimination.19, 33, 38 Kemp elimination is, in principle, an “easy” reaction that 

requires a very simple catalytic machinery, i.e., a catalytic base to remove the proton. Yet, it is not 

straightforward to reach high levels of catalysis for Kemp elimination, since the transition state 

(Figure 1A) is geometrically and electronically similar to the substrate and, therefore, achieving 

preferential stabilization of the former is challenging.39 This is for example evidenced by the only 

modest contribution of an oxyanion hole to catalysis in the highly proficient HG3.17 designed 

Kemp eliminase,32 as demonstrated by Hilvert and coworkers.40 Several Kemp eliminases from 

our previous work18, 20, 28 are used in this work to test our protein design workflow. These are 

summarized in Table S1 and described in more detail below. 

 
Figure 1. (A) Base-catalyzed Kemp elimination of 5-nitrobenzioxazole. A proposed structure for 

the transition state is shown. (B) Schematic representation of the minimalist approach used to 

generate a de novo active site for Kemp elimination. Replacing a partially buried tryptophan 

residue (left) in a b-lactamase scaffold with an aspartate generates a cavity with the approximate 

shape of the Kemp reactant and a catalytic base at the bottom of the cavity (right; note that a 

transition-state analogue is shown in the cavity).  

 

As a starting point, we recently28 used a minimalist design strategy (Figure 1B) to generate 

in b-lactamase scaffolds a completely new active site capable of catalysing Kemp elimination. 

This design approach involved replacing a large hydrophobic residue (a tryptophan) with an 
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aspartate, in such a way that both, a cavity potentially capable to bind the Kemp substrate and a 

catalytic base potentially capable of performing proton abstraction, were generated through a 

single mutation. For this very simple design approach to be successful, the protein scaffold targeted 

for de novo active site generation must be able to tolerate a destabilizing disruptive mutation. 

Furthermore, since the cavity produced upon mutation does not exactly match the shape of the 

substrate molecule, the scaffold must be conformationally flexible, at least in the region of the new 

active site, in order to allow substrate binding, while at the same time not so flexible and solvent 

exposed that the substrate is unable to remain in the active site. Interestingly, while we tested a 

large number of modern (extant) and ancestral b-lactamases as scaffolds for potential Kemp 

elimination activity, the approach was only successful on proteins encoded by reconstructed 

ancestral b-lactamases sequences, obtained through ancestral sequence reconstruction.  

Initially, the best Kemp eliminase obtained through this approach28 involved a single 

W229D mutation in the GNCAMP scaffold, i.e., in the protein encoded by the most probabilistic 

sequence at the GNCA ancestral node (last common ancestor of various Gram-negative bacteria). 

This Kemp eliminase had a catalytic efficiency of 45 M-1s-1 although its catalytic rate constant, 

kcat, could not be accurately determined. Further improvements in activity were achieved by 

introducing an additional mutation (F290W) at the de novo active site and by screening several 

alternative reconstructions at the GNCA node as scaffolds for engineering. This Kemp eliminase 

will henceforth be referred to as GNCA4-WT, as it provided the baseline variant for our subsequent 

optimization effort.18 It is important to note that the same design approach did not generate Kemp 

eliminase activity when implemented on 10 different modern b-lactamases of moderate stability 

that were conformationally rigid.28 Introduction of the additional F290W mutation let us reach a 

catalytic efficiency of ~5·103 M-1s-1 with a catalytic rate constant as high as ~10 s-1 for Kemp 

elimination by GNCA4-WT.28 It is also worth noting that the natural activity of b-lactamases is 

the degradation of b-lactam antibiotics, such as penicillin.41, 42 Our design approach generated a 

de novo active site that is both chemically distinct and spatially separated from the natural 

antibiotic degradation active site. 

 We then further optimized GNCA4-WT28 using the FuncLib server21 on the basis of the 

screening of a small ultra-focused library randomizing 11 positions, that included variants with 

multiple active-site mutations at the top of the stability ranking predicted by FuncLib. This resulted 

in a Kemp eliminase with a catalytic efficiency of ~2·104 M-1 s-1, a catalytic rate constant of ~100 
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s-1 and a denaturation temperature of 76 oC, as determined by scanning calorimetry. We shall refer 

to this variant as GNCA4-12, in line with our prior work.18 Finally, GNCA4-12 was further 

enhanced on the basis of the inclusion of an extra polypeptide segment at the carboxyl terminus 

(Figure S1). The rationale behind this approach was that the extra polypeptide segment could 

generate new interactions at the adjacent de novo active site and that these interactions could 

perhaps be tapped for catalysis enhancement. In order to do so, a library including all combinations 

of the 20 amino acids at three positions in the extra segment was prepared. This combinatorial 

library spanned 8000 variants, of which ~800 were screened for Kemp elimination activity. The 

best variant thus obtained had a catalytic efficiency of ~2·105 M-1 s-1, a catalytic rate constant of 

~600 s-1 and a denaturation temperature of 80 oC. We shall refer to this variant simply as V4, 

following the terminology used in the original work.20 Note that the approach based on the 

inclusion of an additional polypeptide segment does not rely on features specific to Kemp 

elimination or to the protein scaffolds we use for de novo enzyme engineering. It appears thus 

reasonable that the approach is general to a substantial extent, although additional studies on other 

enzyme systems will be required to confirm this statement. 

 This Kemp eliminase variant, V4, resulting from previous studies described above, 

provides the starting point for the current work. It is already highly optimized in terms of both 

stability and catalysis. Its denaturation temperature value, 80 oC, is, for instance, much higher than 

that for the prototypical TEM1 b-lactamase (55 oC).42 Regarding de novo Kemp eliminase catalysis 

on this scaffold, the catalytic parameters for V4 (kcat ~600 s-1 and kcat/KM ~2·105 M-1s-1) are similar 

to those of the best proton-abstraction Kemp eliminase reported to date (HG3.17 kcat = 700 s-1, 

kcat/KM = 2.3·105 M-1s-1 32), which was the result of 17 rounds of directed evolution starting with a 

rationally designed background with a low activity. We note here that a recent even more efficient 

Kemp eliminase has been designed with a catalytic rate constant of ~3600 s-1; however, this 

enzyme does not use a conventional proton-abstraction mechanism and is a redox-mediated 

enzyme based on using myoglobin as a starting point.19 It is clear overall that further optimization 

of V4 appears a priori to be a challenging prospect. This challenge is why we chose the V4 variant 

as an engineering target to stress-test our approach. Experiments performed as part of the current 

study and aimed at further enhancing the V4 variant are described below. 
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 Determination of catalysis hot spots from NMR chemical shift perturbation 

experiments. Recent work19 has suggested that catalytic hotspots for focusing directed evolution 

experiments can be determined from NMR spectroscopy. The rationale behind this proposal is 

that, since enzyme action is based upon transition state stabilization, residue positions linked to 

catalysis will display changes in chemical shift upon the binding of a transition-state analogue. 

The approach has been shown to have the potential to identify even hotspots that are distant from 

the active site, and, due to this distance, are likely modulating activity through dynamical effects 

that are not apparent in the static 3D-structure.  

 Our goal in this work is to use NMR-guided directed evolution combined with 

computationally focused library screening to optimize the V4 Kemp eliminase (the best Kemp 

eliminase from our previous work20). As our starting point, we initially aimed at obtaining NMR 

chemical shift perturbations (CSP) with this variant. However, the inclusion of the extra 

polypeptide segment (Figure S1) in this variant makes it prone to slowly aggregate in solution, 

which makes V4 unsuitable for long-time NMR experiments. As a substitute for this, we 

performed NMR experiments and subsequent computational optimization using the GNCA4-12 

Kemp eliminase, under the reasonable assumption that the hotspots thus determined could also be 

used for V4 optimization due to the sequence similarity between the two enzymes (which only 

differ in the presence of the additional segment in V4). Following previous work in the field, we 

used 5(6)-nitrobenzotriazole (Figure 2A) as an analogue of the transition state for Kemp 

elimination. 

As described by by Korendovych and colleagues,19 we quantified chemical shift 

perturbations by calculating Z-scores from the differences in the 1HN and 15N chemical shifts of 

the GNCA4-12 Kemp eliminase upon binding the transition-state analogue (see the Experimental 

Section for details). This requires the unequivocal assignment of all the cross-peaks present in the 

2D 1H, 15N HSQC spectrum of the free GNCA4-12 Kemp eliminase (see Figure S2) followed by 

experiments in the presence of increasing amounts of the transition state analogue. In the case of 

the unligated GNCA4-12 Kemp eliminase, these assignments were done by comparison with the 

related and previously assigned GNCAMP Kemp eliminase variant28 combined with the analysis of 

triple resonance experiments (3D HNCO and 3D HNCA, see the Experimental Section). In this 

way, the chemical shifts for the backbone 1HN, 15N, 13C’ and 13Ca atoms (listed in Table S2) were 

obtained for about 78% of the protein residues, except for the 12 prolines, the 4 N-terminal residues 
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and 5 C-terminal residues. Cross-peaks for the latter terminal residues could not be unequivocally 

identified likely because signal overlap and/or broadening or disappearance caused by exchange 

of the 1HN amide protons with the water. The helices and strands deduced from the chemical shifts 

are in concordance with those present in the crystalline structure of the GNCAMP variant28 (Figure 

S3), supporting that the GNCA4-12 variant maintains the structure characteristic of our previous 

Kemp eliminases based on ancestral lactamase scaffolds. 

 
 
Figure 2. (A) 5(6)-nitrobenzotriazole, the transition-state analogue used in this work. (B) 

Representative example of perturbation of 1H,15N HSQC spectra upon transition-state analogue 

binding. The spectrum of unliganded GNCA4-12 is shown (black contours), together with spectra 

of GNCA4-12 in the presence of the transition-state analogue at the following protein/analogue 

ratios: 1:0.1, 1:0.14; 1:0.2; 1:1.1 and 1:2.1 (red contours). Some cross-peaks are labelled. The 

strong perturbation of the cross-peak assigned to A248 is visually apparent. (C) CSP Z-scores as 

a function of residue number. Bars corresponding to CSP Z-scores ³1 are colored in red. (D) 

Structural sets defined by the 16 hotpots from our NMR chemical shift perturbation experiments 

that could be unequivocally assigned to specific residue positions. The positions in each set are 

shown and labelled. The location of the de novo active site is indicated by bound transition-state 

analogue. 

A                               B

C

D

Transition state
analogue

Active-site set                          -set                                           -set
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 Upon stepwise addition of the transition state analogue, most cross-peaks in the 2D 1H, 
15N-HSQC spectra of GNCA4-12 either remain unaffected or slightly shifted, having CSP Z-scores 

lower than unity. A number of cross-peaks were gradually shifted, as illustrated with the residue 

A248 in Figure 2B. Such gradual shifts indicate that the binding of the transition state analogue 

occurs in the fast exchange regime. CSP-Z scores can be determined and unequivocally attributed 

to specific residues and thus to specific locations in the 3D-structure, provided that the cross-peaks 

are assigned in both the free GNCA4-12 and GNCA4-12 with the bound transition-state analogue. 

Out of 256 non-proline amino acid residues present in the GNCA4-12 scaffold (note that prolines 

are not observable in 1H, 15N HSQC spectra), a total of 189 CSP Z-scores could be unequivocally 

identified. Their position in the GNCA4-12 sequence is shown in Figure 2C. 16 of these assigned 

Z scores were ³1 and were thus considered to identify potential catalysis hotspots. Hence, we 

decided to focus experimental protein engineering to these 16 positions. 

 
 Structural description of NMR-determined catalysis hotspots. Remarkably, the 16 

hotpots from our NMR chemical shift perturbation analysis that could be unequivocally assigned 

to specific residue positions conform to clear structural patterns on the protein scaffold. In fact, as 

described below in some detail, they can be grouped in three different sets: 

 The three hot spots at positions 48, 50 and 225 are located close to the transition-state 

analogue in a 3D-structure of the GNCA4-12 variant (Figure 2D). These positions are effectively 

located at the Kemp elimination active site, and we will thus refer to them collectively as the 

“active-site set”.  

 The three hot spots at positions 280, 283 and 284 are located in the long 271-289 a-helix. 

Position 289 at the end of the helix is the original location of the carboxyl terminus, although in 

most variants a tail for purification of for activity enhancement (in the V4) has been attached there. 

Position 289 and neighbouring residues are reasonably close to the de novo active site. However, 

the hotspot positions 280, 283 and 284 appear close to each other in a section of the a-helix that 

is removed from the Kemp elimination active site. Chemical shift perturbations (high Z scores) at 

these positions upon binding of a transition state analogue suggests, therefore, long-distance 

communication linked to catalysis. We will refer to positions 280, 283 and 284 collectively as the 

“a-set”. 
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 The ten hotspots at positions 49, 51, 58, 230, 232, 248, 251, 257, 260 and 262 form a well-

defined cluster with interesting structural features. All of them are located in the b-strand that 

forms a “wall” of the de novo active site. Therefore, many of them could be considered as “active 

site” residues, except for the fact that in all cases the side chains are pointing in the opposite 

direction, i.e., away from the active site (Figure 2D). Chemical shift perturbation of these residues 

upon binding of transition-state analogue may simply reflect small changes in the shape of the de 

novo active site. For this reason, mutations at these hotspot positions, even if they do not involve 

active-site side chains, may plausibly alter the active-site shape and in doing so affect catalysis. 

We will refer to positions 49, 51, 58, 230, 232, 248, 251, 257, 260 and 262 collectively as the “b-

set”. 

 

 Exploration of the active-site hotspot set for Kemp elimination activity. Effects of 

mutations at the active site on enzyme activity may be related with very specific interactions of 

the mutated side chains. Therefore, we deemed convenient to perform screening of saturation 

mutagenesis libraries at the three positions of the active-site set, 48, 50 and 225 (Figure S4). We 

did not find any significant enhancement in Kemp eliminase activity at either of the three positions, 

a result which supports that the active site region has been already optimized to a large extent in 

previous engineering efforts.  

 
 Exploration of the a-set for Kemp elimination activity. Following our previous success 

with this approach, we used the FuncLib webserver to computationally search the sequence space 

corresponding to the three hotspot positions of the a-set. The residues at the hotspot positions in 

the background V4 variant are A280, A283 and R284. FuncLib identified only a limited available 

sequence space as being available at those positions (Table S3 and Supplementary Data Table 1): 

alanine was fixed at position 280; alanine and threonine were allowed at position 283, and alanine, 

lysine and arginine at position 284. More importantly, FuncLib predicted that all variants in the 

available sequence space for the a-set were destabilizing, with worse Rosetta scores than the initial 

sequence by between 4-10 kcal mol-1 (Table S4 and Supplementary Data Table 1). Despite this, 

we decided to prepare and determine the Kemp eliminase activity of these variants in order to test 

prediction of the NMR chemical shift perturbation experiments. The five variants displayed 

substantially diminished Kemp elimination activity with respect to the V4 background (Figure S5). 
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Clearly, the screening of the a-set on the basis of FuncLib predictions does not lead to enzyme 

optimization. It is important to note, however, that it does confirm the capability of chemical shift 

perturbation experiments to identify long-distance communication pathways that are relevant to 

enzyme catalysis, even if in this case the impact of perturbing those pathways was detrimental. 

 
 Exploration of the b-set for Kemp elimination activity. The b-set includes 10 hotspot 

residues, many of them located in the active-site b-strand but with their side chains pointing away 

from the active site. Position 260 in this set was optimized to some substantial extent in our 

previous work.18 Therefore, we focused our FuncLib analysis to the remaining nine hot spots. 

Unlike the case of the a-set described above, FuncLib found that the available sequence space for 

the b-set was comparatively broad (Table S5) and that many of that many of the variants in that 

sequence space were predicted to be stabilizing, at least by a few kcal mol-1, based on calculated 

Rosetta scores (Supplementary Data Table 2). We prepared and determined Michaelis profiles of 

rate versus substrate concentration for the 20 variants at the top of the predicted stability ranking 

(Table S6 and Supplementary Table 2). Remarkably, we found a large (~50-fold) range of 

modulation in rate across the designed variants (Figure 3), thus confirming the prediction of our 

chemical shift-perturbation NMR experiments that positions bearing side chains outside the active 

site may affect catalysis upon mutation.  

 
Figure 3. (A) Plots of rate vs. substrate concentration for the variants predicted by the FuncLib 

webserver (Table S6) for the b-set (Figure 2). [E]0 is the total enzyme concentration and v stands 

for the initial rate. The continuous lines represent the best fit of the Michaelis-Menten equation. 

The profiles for the V4 variant used as background and for the best variant, V4-4, are highlighted 

in blue and red. (B) Plots of rate versus substrate concentration for the background and best 

variants, V4 and V4-4. For each variant data obtained with two different protein preparations are 
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shown (circles and squares). The lines are the best fits of Michaelis-Menten equation, and the 

kinetic parameters derived from the fits are shown alongside the lines. (C) Plot of logarithm of 

catalytic rate constant versus logarithm of catalytic efficiency including the background V4 

protein, and the variants based on the a-set and the b-set that have been studied experimentally in 

this work. The excellent linear correlation observed supports that ~50-fold range in catalytic 

efficiency seen in our designs results mainly from changes in catalysis, rather than from changes 

in substrate binding. All data in this figure were obtained at pH 8.5.  

 

Several features of the large range of rates achieved across our variants are worth noting: 

 

1. Although many of the variants display diminished activity compared with the background V4 

variant, several variants are significantly more active (Figure 3). In particular, variant V4-4 shows, 

at pH 8.5, a catalytic efficiency, kcat/KM, of (4.3±0.1)·105 M-1s-1, and a catalytic rate constant, kcat, 

of 1700±230 s-1. We emphasize that this is actually a very high kcat value that is above most 

reported kcat values for engineered/evolved de novo enzymes and modern natural enzymes. 4, 34 

 

2. The activity range across the designed variants (which spans impaired and improved activity) is 

~50-fold. It is important for design purposes to emphasize that this ~50-fold change in activity is 

not achieved through active site redesign or through impairment of the catalytic machinery. Rather, 

it is achieved through mutating side-chains that are outside the active-site, and this difference is 

significant. Certainly, non-active-site mutations could impair activity if they are disruptive and 

prevent proper folding to the functional 3D-functional structure. However, our combinations of 

mutations are not disruptive: they are stabilizing, in fact, as shown in Figure 4. Therefore, the 

reported 50-fold modulation in rate supports that large effects on activity may be achieved by 

targeting distant hot spots, which is an important and non-intuitive result. The overall activity 

enhancement with respect to the background variant used in our study is smaller, at ~3-fold, but 

this only reflects our choice of selecting as background an already highly active enzyme that had 

been previously extensively optimized (larger enhancements could have likely been obtained with 

a less optimized background). 
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3. Over the ~50-fold modulation range, there is a good correlation between the catalytic efficiency, 

kcat/KM, and the catalytic rate constant, kcat, meaning that the modulation reflects changes in 

catalysis, rather than changes in substrate binding. This is relevant because, while a high value of 

the catalytic efficiency can be in principle achieved on the basis of tight substrate binding (i.e., a 

low KM value), many practical applications of enzymes employ comparatively high substrate 

concentrations at which the rate is mainly determined by the kcat value. Enzyme optimization 

approaches are therefore expected to specifically target the catalytic rate constant.43 

 

 
 
Figure 4. Plots of catalytic rate constant (A) and catalytic efficiency (B) vs. denaturation 

temperature including the background V4 protein, and the variants based on the a-set and the b-

set that have been studied experimentally in this work. Denaturation temperature values were 

determined by differential scanning calorimetry (Figure S6). The plots reveal the absence of a 

stability-activity trade-off. The lines connect the data for the non-dominated variants, i.e., the 

Pareto subset or Pareto front, which represents the set of optimum solutions for a multi-objective 

optimization problem. A variant is non-dominated if no other variant is better in terms of, 

simultaneously, all the features targeted for optimization (activity and stability in this case). 

 

4. The large ~50-fold modulation in rate upon introducing mutations is not accompanied by 

impairment in stability. The opposite is true in fact. All the 20 variants tested are more stable than 

the background V4 variant, as inferred from the denaturation temperature values determined by 

differential scanning calorimetry (Figures 4 and S6), revealing, therefore, the absence of 
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stability/activity trade-offs for the studied set. Furthermore, several variants display both enhanced 

stability and catalysis. Certainly, the overall observed enhancements with respect to the 

background used are moderate. Yet, these enhancements are relevant because we purposedly 

selected a very difficult target for optimization. Our background scaffold thus comes from 

ancestral sequence reconstruction, a methodology known to lead in many cases to proteins with 

enormously enhanced stability, and shows, in fact, a denaturation temperature many degrees above 

that of a modern homolog. Furthermore, our background already displays a level of activity 

towards Kemp elimination similar to the best proton-abstraction Kemp eliminase previously 

reported in the literature, which required 17 rounds of optimization by directed evolution, and has 

a kcat of 700 s-1 and a kcat/KM of 2.3 x 105 M-1 s-1. Against this backdrop, the absolute activities 

obtained in this work are tremendous. Our best engineered variant has a kcat of 1700 s-1, and a 

kcat/KM of 4.3 x 105 M-1 s-1 and it is not impaired in terms of stability. Rather, its denaturation 

temperature is a few degrees higher than that of the highly stable background used. 

 

 5. The enzyme enhancement addressed in this work is a two-objective problem, which precludes 

the identification of a unique “best” variant. The reason is obviously that each variant is given two 

scores (related to stability and catalysis) and there is no single variant that simultaneously displays 

the highest values for the two scores. Therefore, it is of interest in this context to briefly discuss 

how variant selection would be carried out when several properties are relevant for an intended 

application. In general, for multi-objective optimization problems, a global optimum cannot be 

generally identified. However, the Pareto front is a fundamental concept in engineering, including 

enzyme engineering, that, at a very basic level, provides a criterium to decide which variants within 

a set need to be considered for a practical application in a multi-objective optimization problem. 

A solution (enzyme variant in our case) belongs to the Pareto front if there is no other variant 

within the set experimentally characterized with better scores in all the targeted objectives.44 The 

Pareto front identifies the subset of variants to be explored for a practical application. This is so 

because variants within the set experimentally characterized that do not belong to the Pareto front 

will be worse than those in the front in terms of both properties and, therefore, are not worth 

considering. For illustration, we highlight in Figure 4 the catalysis/stability Pareto fronts for the 

set of 20 b-set Kemp eliminase variants studied in this work.  
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6. Most Kemp eliminase variants show a more efficient expression as compared with the V4 

background, as least as reflected in the amount of protein obtained (Table S7). This result is 

interesting because expression level and purification yields are biotechnologically relevant 

parameters which may reflect not only stability but also folding rate and, more generally, the 

folding landscape.45 
 

 
Figure 5. Effect of pH on the catalytic parameters for the best Kemp eliminase achieved in this 

work (variant V4-4) and the background protein V4. Values of catalytic rate constant and catalytic 

efficiency have been determined from the fitting of the Michaelis-Menten equation to profiles of 

rate versus substrate concentration obtained at different pH values (Figure S7). Error bars are 

standard deviations from the fittings of the Michaelis-Menten equation and are no not shown when 

they are smaller than the size of the data points. The dependence of logarithm of the catalytic rate 

constant with pH (left) is linear. Profiles of logarithm of catalytic efficiency versus pH are well 

described by equation 1 in the main text; fittings are shown with continuous lines in panel on the 

right. The pKa of the catalytic aspartic acid residue is shown. Note that the change in trend in the 

plot occurs at pHs close to the pKa values (see vertical dashed lines) 

 
 

pH-dependence of the de novo catalysis. In order to gain further insight into the origin of 

the obtained enhancement in catalysis, we have determined Michaelis profiles of rate vs. substrate 

concentration at different pH values for, both the V4 background variant and the V4-4 variant 
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(Figure S7) which shows the highest level of catalysis among the variants derived from the b-set. 

In principle, the pH-dependence of the rate parameters (Figure 5) is expected to be determined by 

the protonation of the catalytic base, which in our case is the aspartate side chain. Normal 

(unperturbed) pKa values for aspartic acid are about 4. Therefore, any significant pH effect on rates 

observed at pH values above 6 (as in Figure 5) necessarily implies highly perturbed pK values for 

the active-site aspartic acid residues. This is, of course, reasonable as a buried aspartate in a mostly 

hydrophobic cavity is expected to display a perturbed pKa value substantially above 4, and 

elevating the pKa value of the catalytic base (e.g. through desolvation) is a common engineering 

strategy to enhance catalysis in Kemp eliminases and other enzymes. As discussed below, while 

the pH-dependence of the catalytic efficiency can be reasonably explained assuming a single 

perturbed pK value, that of the catalytic rate constant points to an ensemble of perturbed pKa 

values, in congruence with the computational analysed reported further below which suggest 

enhanced conformational diversity in the Michaelis complex. 

 A simple theoretical analysis based on the pre-equilibrium interpretation of the Michaelis-

Menten equation (see the Supplementary Discussion) suggest the following equation: 

 

𝑙𝑜𝑔!"𝑃 = 𝑙𝑜𝑔!"𝑃" + 𝑙𝑜𝑔!"
!"("#$"%&)

!#!"("#$"%&)
            (1) 

 
 

where P is a catalytic parameter (either the catalytic efficiency, kcat/KM, or the catalytic rate 

constant, kcat), P0 is the value of the catalytic parameter at a sufficiently high pH and pKa refers 

specifically to the pK of the (conjugate acid of the) catalytic base. This equation assumes a single 

pKa value for the catalytic base, which, when P is catalytic efficiency, would describe ionization 

in the free enzyme while, when P is the catalytic rate constant, would describe ionization in the 

Michaelis complex (see the Supplementary Discussion). 

 Equation 1 predicts that, for pH>>pKa, the catalytic parameter will reach a plateau, 

log10P=log10P0, while, for pH<<pKa, log10P=log10P0+pH-pKa, and the dependence of the logarithm 

of the catalytic parameter with pH is a line of slope unity. Consequently, according to equation 1 

the pKa value should be visually apparent in profiles for the pH-dependence of the logarithm of 

rate parameter as the approximate pH value at which the change of trend is observed (i.e., the pH 

value for the “kink” in the profile). The catalytic efficiency versus pH profiles can be in fact 
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adequately described by equation 1 with a perturbed pK of about 7, as shown in the left panel of 

Figure 5. On the other hand, the profiles for the pH-dependence of the logarithm catalytic rate 

constant do not show a plateau but are reasonably well described by straight lines (Figure 5). It 

would seem that the pK of the catalytic base in the Michaelis complex is highly perturbed and 

clearly above the studied pH range (i.e., above 8.5). However, such interpretation in terms of a 

single pK value does not hold because the slopes of the log10kcat vs. pH lines are clearly below 

unity. A more reasonable interpretation is perhaps that the Michaelis complex exist in an ensemble 

of conformations with different pK values (see the Supplementary Discussion). Of course, there 

may be other factors that could contribute to the seemingly anomalous of the pH-dependence of 

kcat, among that the equilibrium of formation of the Michaelis complex is not established. Yet, the 

contribution of an ensemble of conformations in the Michaelis complex is reasonable and it is 

supported by our molecular dynamics simulations (see “Computational characterization of the 

altered catalytic activity of the Kemp eliminase variants”). 

 Finally, it is interesting that the linear profiles of log10kcat vs. pH suggest that even higher 

values of kcat could be reached at more basic pH values. However, reliability of the determination 

of catalytic parameters at very basic pH is compromised by the catalysis of Kemp elimination by 

hydroxyl ion and the consequent very high blank corrections. Therefore, catalytic parameters have 

only been determined up to pH 8.5, as shown in Figure 5. 

 
Computational characterization of the altered catalytic activity of the Kemp 

eliminase variants. To computationally probe the molecular origins for the enhanced chemical 

activities of the GNCA4-WT, GNCA4-12, V4-4 variants, as our starting point, we performed 

molecular dynamics simulations of each variant in complex with the substrate 5-

nitrobenzisoxazole, as described in the Experimental Section. In the case of the GNCA4-12 

variant, we also performed simulations for its V4 variant, which presents an additional polypeptide 

segment,20 in order to probe the impact of this polypeptide segment on catalysis. Analysis of these 

simulations give rise to two major observations, that align well with prior studies of de novo 

designed Kemp eliminases. The first of these (Figure 6) is that the W290 side chain, which was 

inserted into the GNCA4-WT to improve stability and activity, is actually conformationally 

diverse and can take on a range of different side chain conformations. Upon optimization of the 

eliminase, in the V4-4 variant, we observe two discrete metastable conformations of the W290 
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side chain with a clear loss of a third (likely catalytically unfavorable) conformation of the 

tryptophan observed in GNCA4-WT. In this conformation, the tryptophan points out of the active 

site and away from the substrate (conformation I, Figure 6). Importantly, the addition of the extra 

peptide from GNCA4-12 to V4 variant further results in a decrease in mobility of the W290 side 

chain, which might be related with the catalytic improvement of the enzyme. This is analogous to 

similar observations in the de novo designed Kemp eliminase KE07, where evolutionary 

conformational selection allowed for the emergence of multiple active site conformations 

(including multiple conformations of a key active site tryptophan) during directed evolution of this 

enzyme.35 However, in the case of KE07, this was a de novo active site based on a computational 

design involving a substantial number of mutations; in the current case, we now observe this effect 

on an enzyme with a de novo active site generated using a minimalist design involving a single 

mutation, that may mimic the actual emergence of new enzymes during natural evolution.28 

 

 
 
Figure 6. Joint distribution of the conformational space sampled by the χ1 dihedral angle of the 

D229 side chain, and the χ2 dihedral angle of the W290 side chain, in simulations of the GNCA4-

WT, GNCA4-12, V4 and V4-4 variants. As can be seen from this data, in the GNCA4-WT variant, 

we observe three distinct metastable conformations of the W290 side chain, which are illustrated 

in the panel to the right (conformation I in gold at the top, II in grey in the middle, and II in purple 

at the bottom). 
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The second crucial observation from our simulations is the conformational flexibility of 

the substrate (Figure 7). Our de novo active site is built into a hydrophobic pocket originally 

evolved to stabilize a hydrophobic tryptophan side chain.28 While there is shape congruence 

between the substrate for Kemp elimination and the tryptophan side chain, the polar NO2 group of 

5-nitrobenzisoxazole is unlikely to want to remain in this hydrophobic pocket. In fact, we see that 

the ligand gets pushed out of the active site for part of the simulation time, taking both an “IN” 

conformation which is similar to the conformation originally observed in the GNCA4-WT in 

complex with a transition state analogue, and an “OUT” conformation where the NO2 group points 

out of the hydrophobic pocket.  

The difference between these two substrate conformations is effectively a 180o substrate 

flip, and it is not implausible that both conformations are to some extent catalytic. To test this 

possibility, we performed empirical valence bond (EVB) simulations of each of the GNCA4-WT, 

GNCA4-12, V4 (GNCA4-12 with the polypeptide) and V4-4 variants considering both “IN” and 

“OUT” conformations of the substrate (Figure 7C). These calculations were performed using both 

(1) the starting crystal structure (substrate in an “IN” conformation), and (2) snapshots of substrate 

“IN” and “OUT” conformations from our MD simulations. While the simulations initiated from 

the crystal structures give good agreement with experiment (see Figure 7 and Table S8), the 

snapshots from our MD simulations give higher barriers than experiment and calculations initiated 

from the crystal structure. This is in agreement with previous work comparing the impact of pulling 

snapshots from MD simulations from DFT-based QM/MM simulations vs. using the crystal 

structure (see e.g. ref. 46), and is likely due to structural distortion during the MD simulations. 

However, these calculations still allow us to estimate which of the two substrate conformations 

are energetically preferred, as we are averaging over 30 independent trajectories (with 

conformational sampling across the trajectory) per system. Based on these calculations, no 

significant differences are observed in the free energies calculated for “IN” and “OUT” 

conformations for each of the systems when comparing the different variants to each other (direct 

comparison of the same substrate binding across the variants). However, for all the variants the 

energy of the “OUT” conformation is larger than the “IN” one, indicating that the “IN” 

conformation will favor the enzymatic reaction in all variants. This is also the conformation that 

is expected to be catalytically productive based on the positioning of the substrate inside the de 

novo active site. In addition, it is not implausible (see the Supplementary Discussion) that the “IN” 
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conformation promotes catalysis through a higher value of the pKa of the catalytic group, a local-

environment effect that could perhaps be more pronounced in the more active Kemp eliminases. 

Finally, and interestingly, as shown in Figure 7D, similar to the HG3 series where evolution 

eliminates a non-productive substrate binding conformation in the transition from the initial design 

to HG3.17,32 also here, our optimization trajectory from GNCA4-WT through to V4-4 (+ 

polypeptide segment) significantly reduces sampling of the “OUT” substrate conformation 

observed in GNCA4-WT. That is, while this conformation is dominant in the GNCA4-WT 

(although nearly 69/31 split), the proportion of the conformations equilibrates in GNCA4-12 

(44/56). The situation is completely reverted for V4 and V4-4, for which we observe the “OUT” 

conformation in only 34% and 20%, respectively of our simulation time (vs. 70% of simulation 

time in GNCA4-WT). Again, the reduction of the IN/OUT proportion observed from GNCA4-12 

to V4 corroborates the enhancement of the catalytic activity when the polypeptide is added to the 

C-terminus of the enzyme.  

 
Figure 7. (A, B) Representative structures of different stable substrate conformations sampled in 

our simulations of the GNCA4-WT, with the substrate denoted as “SUB”. The “IN” conformation, 

in which the substrate is placed inside the active site pocket, is denoted in green, and the “OUT” 

conformation, in which the substrate points out of the active site pocket, is denoted in salmon. (C) 

Activation free energies (kcal mol-1) for the hydrolysis of 5-nitrobenzioxazole showing a 

comparison of experimental DG‡ derived from the measured kcat values (yellow bar) and the 
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corresponding values calculated using either crystal structures (blue bar) or “IN” and “OUT” 

conformations of the substrate as extracted from molecular dynamics simulations of the 

corresponding variants (see main text). (D)  Percentage of simulation time the substrate spends in 

each of the “IN” and “OUT” conformations during our simulations of each variant, calculated as 

described in the Experimental Section.  

 
 

As shown in Figure S8, the polypeptide segment in V4-4 closes over the active site and is 

held in place by a hydrogen bonding interaction between D229 and the R266 from the polypeptide 

segment. On the one hand, this interaction, which is maintained for 44% of simulation time (at an 

average distance of 2.92 ± 0.24 Å taking snapshots every 10 ps of 5 x 1 μs trajectories) is 

catalytically detrimental as this salt bridge would be expected to stabilize the D229 side chain and 

thus decrease its pKa. However, this detrimental effect appears to be offset by the fact that this 

interaction makes the active site more compact, reducing its volume to 443.21.1 ± 165.7 Å3 in V4-

4 compared to 700.9 ± 143.2 Å3 (for which the D229-R266 interaction is just kept for 2% of the 

simulation time), 651.2.9 ± 115.4 Å3 in GNCA4-12 and 1433.0.0 ± 132.8 Å3 in GNCA4-WT (as 

measured using Pocket Volume Measurer (POVME) 3.0, see the Experimental Section).  

In summary, over the course of the designed trajectory, we observe two jumps in the 

IN/OUT ratio, with enrichment towards the catalytically preferred “IN” conformation. The first of 

these is between GNCA4-WT and GNCA4-12 (Figure 7). GNCA4-12 is the best variant from our 

initial FuncLib study.18 As shown in Figure 5 of ref. 18, the structural changes between GNCA4-

12 and the wild-type enzyme are minimal. However, our analysis of the conformational space of 

W290 (Figure 6) shows enrichment of W290 towards catalytically productive conformations. This 

in turn likely leads to the stabilization of the “IN” conformation in GNCA4-12, with this 

stabilization being further enhanced in V4-4 (which also includes the C-terminal polypeptide 

segment). This segment closes over the active site and restricts its volume contributing to 

stabilization of the “IN” conformation.  

Taken together, our simulations show that conformational enrichment of catalytically 

productive substrate conformations and W290 side chain conformations is likely a major 

contributor to the enhanced activity of the evolved variants. This interplay between conformational 

selection and minimizing loss of electrostatic optimization in turn leads to the observed catalytic 

enhancement of the V4-4 variant, as well as, plausibly, the unusual pH dependence of this enzyme. 
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We find this observation of interest, as such conformational enrichment of productive substrate 

poses has been observed in several natural and engineered enzymes. At a minimum, it has been 

observed in two other series of Kemp eliminases: the HG3 series47 mentioned above, and the KE07 

series.35 We have further observed such enrichment in the transition of chalcone isomerases from 

a solute binding protein to enzymes,48 where the emergence of enzymatic activity on this scaffold 

is correlated with a 180° flip of the substrate from a non-productive conformation in the ancestor 

to a productive conformation in the extant enzyme. Further, conformational selection of the active 

site (not substrate) has been observed during the evolution of a phosphotriesterase to an 

arylesterase in a phosphotriesterase from Pseudomonas diminuta.49 Substrate flipping has also 

been observed during the engineering of a selective halohydrin dehydrogenase, in this case 

impacting enzyme selectivity.50 Our data adds to this body of literature, suggesting it is not an 

obscure phenomenon. 

 

Using interaction networks to predict engineering hotspots. Having established that the NMR 

determined hotspots can be optimized through computational stability design to obtain an 

exceptionally proficient Kemp eliminase, a logical question to ask is whether the process could 

have been performed fully computationally. That is: given the expansion of approaches to predict 

allosteric communication and residue interaction networks computationally,51-55 would a 

computational approach be able to predict dynamically important hotspots that could be targeted 

for further engineering effort? 

To test this, we have applied our recently developed tool, Key Interactions Finder (KIF),56 to 

explore how well KIF is able to predict experimentally determined NMR hotspots (Figure 8). KIF 

calculations were performed by comparing differences in interaction networks between the 

liganded and unliganded forms of the GNCA4-12 β-lactamase,28 that was used for determination 

of the NMR hotspots. As can be seen in Figure 8, several of the residues in the functionally 

important β-set (6/10) have KIF scores >0.1. Further, no residues in the α-set (which did not 

improve function when targeted), and only one residue in the active site set (which was already 

heavily optimized in our prior work28) yield large KIF residue importance scores. 
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Figure 8. Prediction of residues involved in functionally important non-covalent interactions in 

GNCA4-12, using Key Interactions Finder (KIF).56 (A) Scatter plot of KIF-calculated residue 

importance scores, vs. distance to the active site (using the Ca-atom of D229 as a proxy). NMR-

identified hotspots are colored based on the set they are included in. (B) Structure of GNCA4-12 

(PDB ID: 6TXD28), showcasing the different NMR-determined hotspot sets, colored using the 

same color scheme as in panel (A). (C) Projection of residues with KIF scores >0.1 onto the 

GNCA4-12 crystal structure (PDB ID: 6TXD28), shown as gray spheres, with NMR-predicted 

hotspots with KIF scores >0.1 highlighted in green. 

 

As Kemp elimination is an anthropogenic activity, for which we have engineered a de novo 

active site, we also wanted to test how well KIF would be able to predict hotspots in naturally 

occurring enzymes where key functionally important hotspots are known. To address this, we 

extended our KIF analysis to simulations of two additional systems: a chalcone isomerase ancestor 

inferred from ancestral sequence reconstruction48 (CHI ancCC, Figure S10) and a bacterial 

phosphotriesterase from Pseudomonas diminuta49 (PTE, Figure S11). 

Prior work on chalcone isomerase has shown that both substrate flipping and active site 

conformational dynamics are crucial for the evolution of CHI from a non-catalytic solute binding 

ancestor to extant proficient isomerases.48 Finally, laboratory evolution of the phosphotriesterase 

from Pseudomonas diminuta (PTE) caused an activity switch to an arylesterase;9,57-59 structural 

and dynamical characterization of this trajectory highlighted the role of protein dynamics in 

allowing for the functional switch.49 Taken together, these three systems all show examples of 

cases where substrate or scaffold dynamics is important for function, and where hotspot residues 
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controlling function have been identified through either laboratory evolution or NMR 

characterization. They thus provide excellent test cases for the ability of KIF to predict such 

functionally important positions. 

 As can be seen from the scatter plots shown in Figures 8, S10 and S11, encouragingly, KIF is 

able to predict a large number of hotspot residues in all systems (38% in GNCA4-12, 70% in CHI 

and 42% in PTE), with KIF importance scores of >0.1. This is particularly encouraging in the case 

of PTE, where we see an importance score of >0.8 assigned to His254 in the initial R0 variant of 

this enzyme (basically, wild-type PTE), given that the mutation of His254 to arginine was the first 

mutation along the PTE evolutionary trajectory to fixate in the evolution towards arylesterase 

activity.57 KIF’s ability to predict ~50% of experimentally known hotspots across these three 

systems is significant, both because one does not necessarily expect all hotspots to lie along residue 

communication networks, but also, because at this hit rate, KIF is able to predict key residues on 

which to focus directed evolution efforts, which is particularly valuable in systems where complete 

determination of NMR hotspots is not possible (for instance due to system size, as one example).  

We note here that KIF by design predicts important residues and interactions across the entire 

protein scaffold, and not just at known mutational hotspots. While any of these are potentially 

targets for design effort, it would be helpful to have a means to filter hotspots to subject to further 

optimization and not have to test the full KIF-predicted set. In this context, in prior work, we 

computed detailed residue interaction networks to calculate evolutionary conservation of such 

interactions in Class A β-lactamases.60,61 To test the efficacy of KIN as a tool for filtering hotspots, 

we have compared our KIF calculated hotspots against evolutionarily conserved positions 

predicted using KIN (Figure 9). This analysis provides two important observations: (1) with two 

exceptions, interactions involving the ten hotspot residues that are part of the NMR-determined β-

set also have low KIN evolutionary conservation scores, indicating that they would be good targets 

for design, as evidenced by our successful optimization of these positions. Further, (2) a number 

of NMR-determined α-set residues have non-negligible KIN scores, indicating that these positions 

are less likely to be amenable to successful optimization, again consistent with our unsuccessful 

attempts to improve activity when targeting these positions.  
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Figure 9. Predicting the evolutionary conservation of non-covalent interactions in Class A β-

lactamases, using Key Interactions Newtwork (KIN).60,61 (A) Visualization of evolutionarily 

conserved interactions in the TEM-1 β-lactamase (PDB ID: 1M4093), which was used as a 

reference for the KIN analysis, using a 50% simulation retention cut-off for the analysis. A 

transition state for the β-lactamase reaction present in the TEM-1 crystal structure used 

(pinacol[[2-amino]-α-(1-carboxy-1-methylethoxyimino)-4-thiazoleacetyl]amino]methaneborate) 

is shown in orange, and the substrate for Kemp elimination (5-nitrobenzisoxazole, placed manually 

in the de novo active site location for illustration) is shown in cyan, to indicate the position of the 

two active sites relative to each other. Blue lines denote hydrogen bonds, and yellow lines donate 

salt bridges. The relative conservation of the interaction is indicated by cylinder size. (B) 

Projection of per-residue KIN evolutionary conservation scores, with each residue's Cα-atom 

shown as spheres (relative conservation indicated by sphere size). NMR identified hotspots are 
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colored based on the set they are included in, using the same coloring as in Figure 8. (C)  Per 

residue KIN scores, with NMR identified hotspot residues highlighted and colored based on the 

set they are included in. 

 

These two observations are particularly interesting, as the interaction networks calculated by 

KIN are based on evolutionary information across Class A β-lactamases, which have been 

evolutionary optimized to support the antibiotic degradation activity of this scaffold, and not the 

de novo Kemp eliminase activity. Despite this, KIN provides an effective tool at filtering hotspots, 

and we posit that positions that have both high KIF scores and low KIN conservation scores will 

be effective targets for optimization. Taken together, we believe this would be a viable pathway to 

perform hotspot prediction and optimization fully computationally prior to experimental testing, 

leading to highly efficient enzymes. On this premise, we suggest a simplified computational 

workflow to use KIF to guide experimental or computational protein optimization: (1) Use KIF to 

identify key interaction networks and/or residues with importance scores above a user-defined 

threshold. (2) Apply filtering, for instance through multiple sequence alignment, or tools like our 

partner tool Key Interaction Networks (KIN),60 to identify evolutionary conserved positions or 

interactions. Modifications at these positions will likely be highly detrimental to activity. (3) Once 

a manageable number of hotspots have been filtered, these can be subject to randomization using 

computational tools such as FuncLib,21 to predict promising variants, which can finally (4) be 

subjected to further experimental design and/or testing. In this way, steps 1 and 2 could, in 

principle, replace the NMR component of the design process. 

 

CONCLUDING REMARKS 

 

Enzyme optimization for biotechnological applications is challenging. Standard directed evolution 

is typically sluggish and time-consuming.10 Furthermore, simultaneous enhancement of several 

crucial biomolecular features is rarely achieved in enzyme engineering.8 These two common 

experimental scenarios obviously reflect that the protein sequence space is vast and that most 

sequences do not encode for proteins with the desired properties.   

Here, we have combined two recently proposed strategies of guided directed evolution to 

enhance a previously engineered de novo enzyme capable of catalysing a non-natural reaction. The 
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two strategies are fundamentally different and target different protein features. Yet they 

complement each other synergistically and lead to a laboratory evolution protocol that is highly 

efficient in terms of both, the very limited amount of screening required, and the pattern of multi-

property optimization achieved.  

Our two-pronged approach (computational design of stabilizing variants targeting NMR-

determined catalytic hotspots) sharply focuses screening to the small regions of the sequence space 

in which catalysis is efficiently modulated without compromising stability. In this way, we avoid 

the detrimental catalysis-stability trade-offs that are often observed8 as a result of the fact that most 

mutations in a protein are destabilizing.7 The effectiveness of our approach is highlighted by the 

fact that we targeted for enhancement a de novo Kemp eliminase which had already been highly 

optimized by previous engineering efforts.18, 20, 28 Based on the already high activities of our 

starting enzyme (kcat ~600 s-1 and kcat/KM ~2·105 M-1s-1) one would expect further rate 

enhancements to be challenging if not even impossible. Particularly, our starting variant already 

has activities comparable to HG3.17,32 the best proton abstraction Kemp eliminase to date, kcat = 

700 s-1, kcat/KM = 2.3·105 M-1s-1, which resulted from 17 rounds of directed evolution on an iterative 

design background. Yet, despite this high starting activity, we were able to achieve additional 

optimization and reach de novo biocatalysis levels that are above most reported values for 

engineered de novo enzymes and modern natural enzymes4, 34 while also improving stability, as 

shown by increased denaturation temperature. The only current Kemp eliminase with higher 

activity than ours is redox-mediated and exploits metal ion catalysis; 19 our best variant in this work 

achieves kcat ~1700 s-1, kcat/KM ~4.3·105 M-1 s-1 through classical proton abstraction without the 

need for metal ions. 

 Molecular dynamics simulations and empirical valence bond (EVB) calculations on the 

best Kemp eliminase obtained in this work, together with some of its precursors, provided insight 

into the molecular mechanisms behind the enhancement achieved. Improved de novo activity is 

not linked to modifications in the catalytic machinery but, rather, to shifts in the conformational 

ensembles of both, crucial active-side residues and bound substrate, in such a way that productive 

conformations are promoted, while the population of non-productive conformations is decreased. 

Such conformational diversity at the Michaelis complex would also serve to rationalize the unusual 

pH rate profiles (kcat vs. pH) shown in Figure 5, with slopes of log10kcat vs. pH that are below unity. 

Different metastable substrate conformations would be expected to experience different local 
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environments for the aspartic acid, which in turn could impact the pKa values. We also note that a 

similar conformational selection mechanism has been described for the Kemp eliminases HG3 and 

KE07.32, 35 It must be noted, however, that, unlike HG3 and KE07, the active site of our Kemp 

eliminase was originally generated28 using a single-mutation minimalist design that may mimic 

the actual emergence of new enzymes during natural evolution. Our results therefore suggest the 

relevance of the conformational selection in the evolutionary optimization of primordial enzymes. 

 It is also of interest that conformational selection in our Kemp eliminase enzyme is linked 

to the roughly additive effects of interactions generated by an extra polypeptide chain20 and by 

mutations predicted by the FuncLib server21 at catalytic hotspots determined through NMR 

chemical shift perturbation. Remarkably, the residues at such catalytic hotspot positions do not 

bear side-chains at the active site, thus supporting the potential of the NMR approach19 to guide 

directed evolution by identifying useful positions linked to dynamic effects that would not be 

obvious in the enzyme 3D-structure. We note that this NMR-guided approach has been 

successfully coupled with saturation mutagenesis to repurpose a natural enzyme, myoglobin, as a 

redox-mediated Kemp eliminase.19 Here, we extend this approach to a de novo active site, 

replacing saturation mutagenesis with FuncLib analysis.21 We further demonstrate that, in cases 

where NMR analysis is not practical or accessible, hotspots can be effectively predicted using Key 

Interactions Finder (KIF)56 to identify residues involved in functionally important non-covalent 

interactions, and then filtering high scoring residues using Key Interaction Networks (KIN)60 to 

eliminate residues that are involved in highly evolutionarily conserved interactions as hotspots.  

Curiously, our KIN analysis is based on Class A β-lactamases more broadly, i.e. the 

interaction network was evolutionarily optimized for the natural not de novo activity, and yet we 

show (Figure 9) that the KIN scores nevertheless successfully discriminates between catalytically 

productive and non-productive sets of hotspots predicted from the NMR (residues from the β-set, 

which was successfully targeted for optimization, have low KIN evolutionary conservation scores, 

and conversely, residues from the poorly performing α-set have non-negligible KIN scores). 

Similarly, FuncLib predicts mutations based on evolutionary information (phylogenetic analysis), 

and therefore would be expect to work best on naturally occurring enzymes. Yet both here, and in 

our prior work,18 we demonstrate that FuncLib is also a powerful tool for engineering de novo 

active sites. In both cases, it appears that information from natural evolution can be transferred 

also for optimizing a de novo activity. 
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 More generally, the fact that a large modulation of catalysis is achieved through substrate 

conformational selection suggests that the engineering approach proposed in this work could be 

used to stabilize a preferred conformation of the bound substrate that favours a specific outcome 

of the chemical transformation. This suggests the potential of our approach for engineering of 

systems where substrate binding pose is important, including, plausibly, enzyme regio- and stereo-

selectivity. 

 Overall, we show a here enhancement in the biomolecular features of an anthropogenic 

enzyme, from a starting point that had already been heavily optimized through both laboratory 

evolution (using ancestral protein as scaffolds) and protein engineering. Taken together, our results 

both provide insight into the molecular mechanisms of enzyme evolution and demonstrate a highly 

efficient experimental/computational approach to catalysis/stability enhancement that will 

contribute to expand the scope of biotechnological applications of enzymes through targeted 

engineering of protein conformational dynamics.   

 

EXPERIMENTAL SECTION 

 

Protein expression and purification. The various enzymes studied here were prepared as 

described in our previous work.18, 20, 28 Briefly, genes were cloned into a pET24-b with resistance 

to kanamycin and subsequently transformed into E. coli BL21 (DE3). The proteins were purified 

by affinity chromatography taken advantage of a His-tag attached at the C-terminus. Protein stock 

solutions were prepared by exhaustive dialysis. Protein concentrations were determined 

spectrophotometrically using known values of the extinction coefficient. 

 
Determination of rates of Kemp elimination. The kinetic of enzyme-catalysed Kemp 

elimination was studied as we have previously described in detail.18, 20, 28 Briefly, Kemp 

elimination was followed by using absorbance at 380 nm to observe product formation. Rates were 

calculated from the initial slopes of the dependence absorbance with time using an extinction 

coefficient of 15800 M-1 cm-1. All activity values were corrected for a blank determined under the 

same conditions. In all cases, the corrections were small or negligible. Kinetic experiments were 

carried out within the pH range 6-8.5 at 25 oC in HEPES buffer 10 mM with NaCl 100 mM. At 

each pH value, kinetic experiments with different substrate concentrations were carried out. Stock 
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solutions of the Kemp substrate were prepared in acetonitrile. Therefore, variable amounts of 

acetonitrile were added to experiments with different substrate concentrations in order to ensure 

that the final acetonitrile concentration in the reaction mixture was 1% in all cases. Profiles of rate 

vs. substrate concentration were fitted with the Michaelis-Menten equation in order to determine 

the values of the catalytic efficiency (kcat/KM), the catalytic rate constant or turnover number (kcat) 

and the Michaelis constant (KM). Determination of kcat relies on the experimental observation of 

curvature in the plots of rate vs. substrate concentration. Detection of such curvature is often 

difficult in studies of Kemp eliminases because low solubility limits the experimentally available 

substrate concentration range. We note, however, that the reliability of the curvature in the plot of 

rate versus substrate concentration for the best Kemp eliminase reported in this work is clearly 

supported by the excellent agreement between the results of experiments independently performed 

with two different protein preparations (Figure 3B). 

 
Determination of protein stability. Protein thermal stability was assessed by differential 

scanning calorimetry following protocols that we have previously described in detail.42 

Experiments were performed with protein solutions in HEPES 10 mM NaCl 100 mM pH 8.5. In 

all cases, a single calorimetric transition was observed. The denaturation temperature, defined as 

the temperature of the maximum of the calorimetric transition was used as a metric of protein 

stability. 

 
Preparation and screening of saturation libraries. Saturation libraries at the positions 

in the active-site set were prepared using the QuickChange Lighting PCR method (Agilent 

#210518). The codon corresponding to each position was replaced by NNN. Library preparation, 

transformation and quality control of the library were carried as we have previously described in 

detail.20 Library screening was also performed following exactly a protocol that we recently 

described20 and that took advantage of the availability of a Freedom EVO 200 robot from TECAN 

(Männedorf, Schweiz), except for the buffer and the Kemp substrate concentration employed: 

HEPES 10 mM NaCl 100 mM pH 8.5 and 0.06 mM, respectively. About 90 colonies were screened 

for each library to thus ensure a high probability that all of the 20 variants were screened at least 

once. Results are shown in Figure S4. 
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NMR experiments. All NMR experiments were performed at 31.5 oC on a Bruker AV 

NEO 800 spectrometer equipped with a cryoprobe on a 0.4 mM uniformly 13C, 15N-labeled sample. 

Sequence-specific assignments were made using the standard procedures on the basis of the 

following experiments: 2D 1H, 15N HSQC and 3D HNCO and HNCA using a BEST TROSY 

versions.62 NMRPipe63 and NMR View64 were used to process the raw NMR data and to perform 

interactive spectrum analysis, respectively. Chemical shifts were referenced to the water signal as 

an internal reference for 1H using pH and temperature corrections.65,66 15N and 13C chemical shifts 

were referenced indirectly.67  

 The titration experiments were performed by stepwise addition of a concentrated solution 

of the transition-state analogue to a 13C, 15N GNCA4-12 protein sample. After each addition, 

changes in chemical shifts of the protein resonances were monitored in 2D BEST TROSY 1H, 15N 

HSQC spectra. A total of six protein/transition-state-analogue ratios were examined: 1:0.1, 1:0.14, 

1:0.2, 1:0.4, 1:1.1 and 1:2.1. The average amide CSP (Ddavg) were obtained at two-fold molar 

excess of transition-state analogue as Ddavg=((DdN2x0.4+DdH2x2)/2)x0.5, where DdN and DdH are 

the CSP of the amide nitrogen and the proton, respectively. For each observed resonance, the CSP 

Z-score19 was calculated as Z=(Ddavg-µ)/s, where µ and s are, respectively, the average and the 

standard deviation of Ddavg values for a given experiment. 

 
FuncLib Screening of Mutational Hotspots. Mutational hotspots were screened using 

the FuncLib webserver (https://funclib.weizmann.ac.il), as described in ref. 21. Screening was 

performed on each of the α- and β-sets alone (positions 280, 284 and 284, and positions 49, 51, 

58, 230, 232, 248, 251, 257, and 262, respectively) as well as a combination of both the α- and β-

sets from the NMR chemical shift experiments. F260 was kept fixed in these screens. All 

calculations we performed on chain A of the GNCA4-12 variant, PDB ID: 6TXD,18 for consistency 

with the NMR chemical shift experiments. D229 and W260 were identified as essential amino 

acids, and the His tag was retained in the FuncLib predictions. The multiple sequence alignment 

was performed using the default FuncLib parameters, with both runs generating ~1000 predicted 

variants. The top twenty ranked designs, based on their stability score, were retained for further 

experimental characterization. The sequence space randomized and their predicted stability by 

FuncLib is presented in Tables S3, S6 and Supplementary Data Tables 1 and 2. 
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Simulation Setup and Structure Preparation. Four different systems were simulated 

using molecular dynamics (MD) and empirical valence bond (EVB) simulations68 in this work: 

the GNCA4-WT, GNCA4-12, and the V4-4 variant, the latter being simulated both with and 

without the additional polypeptide segment. 20 All simulations were performed in complex with 

the substrate 5-nitrobenzisoxazole, which was manually modelled into all systems based on the 

position of the transition state analogue (TSA) 6-nitrobenzotriazole in the GNCA4-WT structure 

(PDB ID: 5FQK28). In the case of GNCA4-WT and GNCA4-12, available crystallographic 

structures were used as starting points for the simulation (PDB IDs: 5FQK and 6TXD, 

respectively.18, 28 The polypeptide segment of V4 was modelled into the GNCA4-12 construct 

from sequence using Modeller.69 Finally, the V4-4 starting structure was prepared by first 

manually inserting the corresponding mutations into the V4 construct, followed by structure 

optimization using AlphaFold.70 In all cases, the substrate 5-nitrobenzioxazole was manually 

placed in the active site in the position of the transition-state analogue 5(6)-nitrobenzotriazole 

present in the crystal structure. Additionally, His tags were retained in our simulations for better 

direct comparison with experiment. All starting structures employed during this work, and any 

modifications made to them during setup, are summarized in Table S9. Descriptions of system set 

up for additional simulations provided in this work for KIF56 analysis are provided as Supporting 

Information. 

Finally, the pKas of ionizable residues in all systems were predicted using PROPKA 3.071,72 

to identify any amino acid side chains with potentially anomalous pKas. Based on this, in addition 

to the expected elevated pKa of the catalytic base D229, D246 and K234 were both predicted to 

have anomalous pKas (in the range of 8.7-11.0 for D246 and 6.3-6.5 for K234), which was 

confirmed to be reasonable by visual inspection of the local environment of these side chains, and 

thus these side chains were kept in their neutral states throughout our simulations. All other side 

chains were kept in their standard protonation states at physiological pH. All systems were solvated 

in a truncated octahedral water box of OPC water molecules,73 extending 11.0Å from the protein 

in all directions, and all systems were neutralized using Na+ counterions (8 for GNCA4-WT, 9 for 

GNCA4-12, and 10 for V4-4 with and without the polypeptide segment). Finally, all hydrogen 

atoms in the system were scaled using hydrogen mass repartitioning.74  
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Molecular Dynamics Simulations. All MD simulations in this work were performed 

using the CUDA-accelerated version of Amber22,75 using the ff19SB force field,76 and the OPC 

water model.73 Partial charges for the substrate were calculated at the HF/6-31G(d) level of theory 

by restrained electrostatic potential (RESP)77 fitting using Antechamber,78 based on gas-phase 

geometries optimized at the B3LYP/6-31G(d) level of theory, using Gaussian 16 Rev. B.01.79 All 

other force field parameters used to describe the substrate 5-nitrobenzisoxazole were obtained 

using the General AMBER Force Field (GAFF2),80 and all non-standard substrate parameters are 

provided for reference in Table S10, and in the Zenodo data package submitted at 

DOI:10.5281/zenodo.12666978. 

MD simulations of all systems were performed using the same protocol: each replica for 

each system was first energy minimized using the steepest descent algorithm for 100 steps, 

followed by 900 steps of conjugate gradient minimization, with a 100 kcal mol-1 Å-2 restraint 

applied to all solute (protein and substrate) atoms. The complete system was then heated from 50 

to 300 K in an NVT ensemble, using a simulated annealing protocol, in which the system was able 

to reach 300 K in the first 100 ps of heating. This was continued for a total of 1 ns, using a 1 fs 

time step, and Langevin temperature control, with a collision frequency of 1 ps-1. The 100 kcal 

mol-1 Å-2 restraint applied to all solute atoms was retained until this point in the equilibration, and 

then reduced from 100 to 10 kcal mol-1 Å-2 in subsequent equilibration steps. Following this 

heating, a second energy minimization and heating were performed using the prior protocol, with 

positional restraints applied to just the solute heavy atoms. During the subsequent equilibration 

steps, the restraints were progressively reduced from 10 to 1 to 0.1 kcal mol-1 Å-2, until the heavy 

atom restraints were removed in the final step. The final systems with only this distance restraint 

applied were then equilibrated for a final 1 ns in an NPT ensemble (300K, 1 atm), using a 

Berendsen barostat with a 1ps pressure relaxation time, and Langevin temperature control with a 

collision frequency of 1 ps-1. The NPT simulations were again performed using a 1 fs simulation 

time step, and for all simulations the SHAKE algorithm81 was applied to restrain all bonds to 

hydrogen atoms. 

Finally, production MD runs were performed using a 4 fs time step, facilitated by hydrogen 

mass repartitioning74 and the SHAKE algorithm81 to constrain all bonds containing hydrogen 

atoms, an 8Å direct space non-bonded cutoff, Langevin temperature control (collision frequency 

of 1 ps-1), and a Berendsen barostat (pressure relaxation time of 1 ps). Note that in addition to the 
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heavy atom restraints described above, for the duration of our equilibration and production 

simulations, a further 5 kcal mol-1 Å-2 wall restraint was placed on the donor carbon of the substrate 

and the acceptor oxygen atom of the D229 side chain that kicks when the two atoms are 3.0 Å or 

greater apart, in order to prevent substrate dissociation from the active site during our molecular 

dynamics simulations. This application of this restraint also takes into account prior experimental 

studies of enzymatic Kemp elimination (see the Brønsted plot in Supplementary Figure 3 of ref. 
32, which suggests substantive proton transfer to the catalytic base at the transition state for Kemp 

elimination). Equilibration of these trajectories is shown in Figure S9. 

The final production trajectories for all systems were 1 µs in length each, and each system 

was simulated in 5 different replicas, leading to a cumulative 5 µs of simulation time per system 

and 20 µs of simulation time across all systems. 

 
Empirical Valence Bond Simulations. Following our prior work,18, 28 empirical valence 

bond simulations were performed on the GNCA4-WT, GNCA4-12, V4 and V4-4 variants, using 

the protocol and parameters presented in ref. 18. Protonation states of ionizable residues within the 

explicit simulation sphere, as well as histidine protonation patterns (both of which were validated 

by PROPKA 3.071,72 and visual inspection), can be found in Table S11. Note that we subtly updated 

our Morse and van der Waals parameters for the bonds changing during the Kemp elimination 

reaction in order to minimize system instabilities upon reaching the product state (otherwise in 

some replicas, too much force builds up on the proton being transferred leading to a system 

explosion). Sample input files, updated parameter files, starting structures and simulation 

snapshots, have all been submitted to Zenodo, DOI:10.5281/zenodo.12666978, along with the 

corresponding files describing our molecular dynamics simulations.  In brief, each system was 

simulated in 30 replicas of 30 ns equilibration each followed by 10 ns of EVB simulations (200 ps 

window over 51 discrete EVB windows), leading to a cumulative 900 ns of EVB simulation time 

per system (including crystal and IN/OUT EVB calculations), and 3.6 µs of EVB simulation time 

across all systems studied in this work. All EVB simulations were performed using the Q6 

simulation package,82 the OPLS-AA force field,83 the TIP3P water model,84 and the surface 

constrained all atom solvent (SCAAS) model85 to describe solvent. Long range interactions were 

described using the local reaction field (LRF) approach.86 For further simulation details, see our 

prior work. 18, 28 
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Simulation Analysis. Unless specified otherwise in the text, all MD analysis was 

performed using the CPPTRAJ module87 of AmberTools23.88 All analysis is based on extracting 

frames every 10 ps of each simulation trajectory and is presented (where relevant) as averages and 

standard deviations over 5 x 1 µs trajectories per system. In the case of donor-acceptor distance 

and donor-hydrogen-acceptor analysis, the “closest” keyword was used to ensure that distances 

are always being measured to the closest oxygen atom to the donor, due to the possibility of side 

chain rotation. The percentages of different IN/OUT substrate orientations in the active site were 

performed by counting frames, with the substrate orientation being defined by the angle by the Ca 

atom of residue D229, the C and N atoms of the substrate, and the Ca-atom of residue V287. An 

“IN” conformation was defined as a conformation with a dihedral angle in the range of 51–180o, 

and an “OUT” conformation was defined as a conformation with a dihedral angle in the range of 

-180 – 50o. Similarly, the percentage of the hydrogen bond formed by D229 and the arginine of 

the polypeptide segment in the V4-4 variant with polypeptide segment20 and its average value was 

calculated by counting frames defined by the donor (O atom of D229) and acceptor (N atom of the 

arginine of the polypeptide segment), with a distance cut-off of 3.5 Å. Active site volumes for the 

different variants were calculated using Pocket Volume Measurer (POVME) 3.0,89 with snapshots 

taken every 100 ps of the simulations.  Finally, PyMOL was used for visualization analysis.90  

Interaction Network Analysis. Key Interactions Finder (KIF) calculations56 were 

performed using mutual information analysis91,92 to calculate the per residue interaction scores. 

These were obtained by comparing non-covalent interactions in the presence and absence of ligand 

in each system considered. Analysis was performed over 25000 structures per system (extracted 

every 0.02 ns of our MD simulations). All hydrogen bonds, salt bridges and hydrophobic 

interactions in each system were considered for the analysis, and interactions with an occupancy 

of <50% of simulation time were excluded. 

The evolutionary conservation of the non-covalent interactions in the Class A β-lactamase 

family was analyzed using Key Interaction Networks (KIN).60 This analysis built on prior work 

considering the evolution of interaction networks in these enzymes,61 now including also the 

GNCA4-12 variant in the analysis. As in our prior work,60,61 TEM-1 was selected the reference 

structure for projection of the network, owing both to its evolutionary connection to the chosen 

ancestral sequences, and its chemical significance as a catalytic specialist. The KIN calculated 
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conservation network provides a relative conservation score for each interacting residue pair, based 

on how frequently each interaction appears across the structures. A cutoff of 50% conservation 

was used in interaction analysis. From this, per residue KIN evolutionary conservation scores were 

calculated for direct comparison to the KIF analysis. 

 
SUPPORTING INFORMATION 

 

Supplementary Tables, supplementary Figures including computational details and additional 

experimental data, and Supplementary Discussion on the pH-dependence of the Michaelis-Menten 

parameters. Supplementary Data Table 1 and Supplementary Data Table 2 provide the full 

FuncLib prediction set. 
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