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ABSTRACT: Membrane protein (MP) structures and functions are intricately linked to their surrounding membrane environ-
ments and their respective lipid compositions in addition to influences exerted by unique membrane microdomains (i.e., lipid 
rafts). Owing to the complexity of their native environments, MPs pose significant challenges to structural biology due to their 
intrinsic hydrophobic nature rendering them incompatible with aqueous conditions commonly deployed during sample prep-
aration. To overcome these solubility issues, MP studies commonly utilize detergent micelles. In recent years, numerous ef-
forts have been directed toward developing membrane mimetics to facilitate successful solubilization and stabilization of 
MPs. Collision-induced dissociation (CID) can be employed to remove surrounding molecules from MPs during native mass 
spectrometry (nMS) experiments, and such methods can be used to evaluate previously inaccessible MPs. However, the dif-
ferential effects of various membrane mimetics on MP structure and stability remain largely unexplored. In this study, we 
evaluate a range of MPs, including both transmembrane and monotopic variants, solubilized in detergent micelles, mixed lipid 
bicelles, and nanodiscs mimetics. Our findings reveal significant differences in collision induced unfolding (CIU) features, sta-
bilities, collision cross-sections (CCS), and RMSD comparisons with values exceeding 26%. These results underscore the im-
portance of considering the choice of membrane mimetics when studying MP structure.  

Introduction  
Membrane Proteins (MPs) constitute a substantial fraction 

(~30%) of the human proteome1 with highly specialized eu-
karyotic membranes estimated to contain up to 70% MPs.2-4 
Not only does the presence of MPs vary considerably within cell 
membranes but also they play numerous critical roles across 
many biological processes including cellular structure, trans-
portation, signaling, and overall cell homeostasis.5,6 As such, 
MPs currently represent approximately 30-40% of human drug 
targets particularly aimed at ion channels, enzymes, and recep-
tors.7 Despite these crucial roles in human biology, MPs ac-
count for only 3% of unique structures in the protein data bank 
(PDB).6 This disparity between the significance of MPs and the 
limited structural information available underscores the ongo-
ing challenges surrounding MP structure determination.  

MPs are naturally found either embedded (integral) or on 
the surface (peripheral) of cellular membranes. At first glance, 
membranes appear to consist of amphipathic lipids wherein 
polar head groups and hydrophobic lipid tails associate in a 
manner to form a hydrophobic lipid-tail core.8 In reality, mem-
branes exhibit a much greater complexity of highly specialized 
compositions tailored for specific cellular functions, such as 
those found in the cytosol, mitochondria, endoplasmic reticu-
lum, Golgi apparatus, and other organelles.5,8-11 Due to their 
complex native environments and intrinsic hydrophobicity, the 
extraction and purification of MPs require the use of solubiliza-
tion agents and often result in low MP yields and limited long-

term stability.12-14 Consequently, acquiring information to ad-
dress functional questions regarding MPs has proven challeng-
ing and oftentimes hinders ongoing efforts to enhance under-
standing of diseases and subsequent therapeutic develop-
ments. Further, the function and structure of MPs have been 
shown to be sensitive to the solubilization technique used,15-17 
leading to increased utilization of higher fidelity membrane mi-
metics. A substantial effort in the last 20 years has been focused 
on the development and implementation of membrane mimet-
ics capable of more faithfully replicating the cellular environ-
ment of MPs, thereby facilitating the study of MPs within a 
more biologically relevant context.18  

Native mass spectrometry (nMS) has emerged as a useful 
technique in the structural biology toolkit, capable of analyzing 
MPs from various solubilization methods to reveal structural 
and functional information.19,20 In nMS workflows, MPs are 
transferred into the gas phase via nano-electrospray ionization 
(nESI).21-22 During this process, MPs remain encapsulated in 
the membrane mimetic in which they were solubilized until 
collisional heating causes the surrounding molecules to disso-
ciate from the MP.23 While much of the work in this field has 
focused on liberating gas-phase MPs from detergent mi-
celles,24-32 nMS has successfully detected MPs housed in vari-
ous membrane mimetics, including amphipols,33-35 bicelles,36,37 
nanodiscs,38-42 styrene maleic acid lipid particles 
(SMALPS),43,44 and membrane vesicles.45-49 Overall, nMS used 
in combination with  these membrane mimetics has provided 
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Figure 1. CIU comparisons between GDX 6+ ions and PMP22 L16P 13+ ions released from micelles vs bicelles.  A) Averaged finger-

prints (n=3) of the monomer 6+ charge state of GDX liberated from DDM detergent micelles show 3 features when liberated from the 
micelle and 4 features when liberated from the bicelle. B) Feature detection reveals significant differences (**** p < 0.0001) between 
F1-F3. C) CIU50 analysis shows significant differences (** p < 0.001) in the CIU 50-1 as well as in the CIU50-2 (* p < 0.01) protein 
stabilities. D) Pairwise RMSD analysis reveals global CIU differences between GDX from a micellar environment vs a bilayer mixed 
detergent and lipid environment.  E) Averaged fingerprints (n=3) of the 13+ charge state of L16P dimer liberated from C12E8 deter-
gent micelles show 2 features when liberated from the micelle and 3 features when liberated from the bicelle. F) Feature detection 
reveals significant differences (**** p < 0.0001) between F1-F2. G) CIU50 analysis shows significant differences (** p < 0.001) in the 
CIU 50-1 protein stability. H) Pairwise RMSD analysis reveals global CIU differences between L16P 13+ dimer released from micelles 
vs. mixed detergent and lipid environment. 

 
direct insights into MP purity,50 MP oligomeric states,36,48,51 

MP-ligand interactions,29,31,52,53 stabilities,31,36,54,55 modifica-
tions,56 and complex formation for both peripheral and trans-
membrane MPs.47  

The coupling of ion mobility (IM) separation to nMS (nIM-
MS) allows for the measurement of the orientationally aver-
aged size of gas phase MPs,57 and enables collision-induced un-
folding experiments (CIU). In CIU, protein ions are collisionally 
activated by incrementally increasing an accelerating potential, 
or collision voltage (CV), resulting in ion heating and subse-
quent protein ion unfolding. The CIU pathway adopted by pro-
tein ions can be tracked through IM separation, and automated 
workflows for the analysis of CIU fingerprints are supported 
through widely-available software tools to provide stability 
and structure information.58 Although many studies have em-
ployed nIM-MS and CIU to reveal structural changes and stabil-
ities of MP complexes,25, 31, 59-62 CIU analysis of MPs has 

predominantly focused on those solubilized using a single mi-
metic, lacking a thorough examination of the consequences of 
mimetic choice on nIM-MS data, and the information that re-
sults from such analyses.  

Here, we employ nIM-MS and CIU to systematically investi-
gate MPs reconstituted within multiple categories of solubiliza-
tion agents, including detergent micelles, bicelles, and nano-
discs (NDs). We employ nIM-MS to assess the ability of CIU to 
discern the differences in MP structure associated with the sol-
ubilization agents used to encapsulate MPs before analysis. We 
accomplish this by collecting CIU fingerprints for a range of 
model MP systems solubilized using at least two different 
methods, such as detergent micelles, sphingomyelin and cho-
lesterol-rich (SCOR) bicelles,37 POPC-DDMB bicelles, and POPC 
lipid NDs. Our selection of three model protein systems (the 
monotopic cytochrome P450 3A4 (CYP3A4), the dimeric L16P 
variant of the integral peripheral myelin protein 
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Figure 2. CIU comparisons of CYP3A4 released from OG micelles, SCOR bicelles, and POPC nanodiscs, respectively. A) Averaged 

fingerprints (n=3) of the monomer 16+ holo charge state of CYP3A4 liberated from OG detergent micelles and bicelles reveals 4 
features while CYP3A4 released from NDs reveals 5 features. B) Feature detection reveals significant differences (**** p < 0.0001) 
between F1-F4. C) CIU50 analysis shows significant differences (**** p < 0.0001) in the CIU 50-2 as well as in the CIU50-3 protein 
stabilities. D) Heat plot of RMSD analysis reveals significant differences between CYP3A4 from a micellar environment vs a bilayer 
environment. 

 
(PMP22 L16P), wild type PMP22 which contains an 11 kDa 

soluble tag (PMP22 WT Tagged), and the small multidrug re-
sistance transporter (GDX)) aims to represent a variety of MP 
structures. Due to the significant and varying levels of chemical 
noise encountered in our nIM-MS data, we developed a feature-
focused denoising strategy that dramatically improves the 
quality of CIU information obtained for MPs. We find evidence 
of significant differences across all CIU datasets collected for 
these MPs as a function of the solubilization agents used in their 
preparation. These findings underscore the importance of 
carefully evaluating solubilization agents and their impact on 
MP structure during nIM-MS workflow development and for 
MP structural biology campaigns more broadly. We further dis-
cuss the broader implications of the local environment on MP 
structure and stability and address the existing challenges and 
limitations associated with certain membrane mimetics in con-
junction with nIM-MS. Finally, we propose future experiments 
aimed at elucidating the role of solubilization agents in shaping 
structural MS data targeting MPs.  

Materials and Methods  
Membrane Protein Sample Preparation: CYP3A4 was ex-

pressed in E. Coli and purified using protocols described else-
where.63-64 PMP22 WT tagged and the L16P mutant variant 
were expressed in E. coli. using protocols adapted from Schle-
bach et al.65 For tagged WT PMP22, the protein did not undergo 
the final thrombin cleavage step. GDX-Clo (Clostridiales bacte-
rium oral taxon 876) was expressed in E. coli and purified using 

protocols previously described.66 Octaethylene glycol mono-
dodecyl ether (C12E8), n-Dodecyl-β-D-Melibioside (DDMB), 
and n-dodecyl-β-D-maltoside (DDM) were purchased from 
Anatrace, Octyl β-D-glucopyranoside (OG), membrane scaffold 
protein 1D1(-), ammonium acetate, sodium chloride, tris(hy-
droxymethyl)aminomethane (tris), sodium azide, and eth-
ylenediaminetetraacetic acid (EDTA) were purchased from 
Sigma Aldrich (St. Louis, MO). The lipids 1-palmitoyl-2-oleoyl-
glycero-3-phosphocholine [POPC], dimyristoylphosphatidyl-
choline [DMPC], egg sphingomyelin [eSM] and cholesterol, 
were purchased from Avanti Polar Lipids (Alabaster, AL). All 
MPs were screened for appropriate detergent conditions.67 
Samples housed in detergent micelles were simultaneously de-
tergent and buffer exchanged using 10 kDa Amicon Ultra-0.5 
centrifugal filter units (MilliporeSigma, Burlington, MA). Start-
ing and ending buffers and detergents conditions before native 
MS are as follows: 50 μM PMP22 was exchanged from 50 mM 
Tris, 0.15% DM, 15 mM imidazole, and 1 mM TCEP, and 0.1% 
DDM, pH 8.0, into 0.02% C12E8 (~4 x CMC), 200 mM ammo-
nium acetate, pH 8.0, 36 μM CYP3A4 was exchanged from 40 
mM potassium phosphate, 20% glycerol, pH 7.4 into 40 mM OG, 
200 mM ammonium acetate, pH 7.4. 50 μM GDX was exchanged 
from 100 mM NaCl, 10 mM HEPES, pH 8.0 buffer with 4 mM DM, 
into 0.3 mM DDM, 200 mM Ammonium acetate, pH 8.0. Samples 
housed in SCOR bicelles were prepared as described in the sup-
plemental methods of Fantin et al.36 and were then buffer ex-
changed using 10 kDa Amicon Ultra-0.5 centrifugal filter  
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Figure 3. PMP22 WT with a soluble tag released from C12E8 micelles, SCOR bicelles, POPC-DDMB bicelles, and POPC nanodiscs, 

respectively.  A) Averaged fingerprints (n=3) of the 9+ charge state of PMP22 WT Tagged liberated from C12E8 detergent micelles, 
SCOR bicelles, POPC-DDMB bicelles, and POPC nanodiscs show 3 features when liberated from the micelle and nanodisc, and 4 fea-
tures when released from the bicelle environments. B) Feature detection reveals significant differences (**** p < 0.0001) between 
F1 and F3, and (**** p < 0.0001 and ** p < 0.01 in F2. C) CIU50 analysis shows significant differences (**** p < 0.0001 and *** p < 
0.0001) in the CIU 50-1 as well as in the CIU50-2 protein stabilities. D) Heat plot of RMSD analysis reveals significant differences 
between PMP22 WT from a micellar environment vs bilayer environment. 

 
units. Bicelle samples were not detergent exchanged and the 

DDMB concentration was held at 1 x CMC to preserve the bi-
celles q ratio (0.33) Specifically, 40 μM PMP22 WT, PMP22 
L16P or GDX in 10 mM acetate buffer (pH 5.0) containing 100 
mM NaCl, 0.2% SCOR bicelle or (PMP22-wt only) 0.2% POPC 
bicelles (q = 0.33), 1 mM EDTA, 5 mM TCEP, and 0.3 mM DDMB 
was exchanged into 200 mM ammonium acetate, 0.3 mM 
DDMB, pH 8.0 using 10 kDa Amicon Ultra-0.5 centrifugal filter 
units. PMP22 WT and GDX were incorporated in MSP1D1 NDs 
and CYP3A4 were incorporated into MSPE3D1 NDs as de-
scribed by the Sligar lab68,69 with the final purification SEC step 
buffer exchanging into 200 mM Ammonium acetate. 

Native IM-MS and CIU Experiments: All nIM-MS and CIU data 
were collected using a Synapt G2 HDMS IM-Q-ToF mass spec-
trometer (Waters, Milford, MA), with a direct infusion nESI 
source set to positive ion mode. Instrument settings were 
tuned for each protein system and mimetic to generate intact 
protein ions while completely dissociating detergents, lipids, 
and scaffold protein before the IM separator, including appro-
priately tuned settings for the source temperature (30-40 °C), 
source gas flow (50 mL/min), and the sampling cone (120 V). 
The traveling wave height and wave velocities in the trap, IM, 
and transfer region, as well as the helium cell flow rate, were 
identical for each protein system across mimetics. For PMP, 
GDX and CYP, trapping cell wave velocity and height were 115 
m/s and 0.1 V, IMS wave velocity and height were 250 m/s and 
15 V, transfer cell wave velocity and height were 300 m/s and 
10 V. An accelerating potential of 70 V in the transfer region 
was used to dissociate empty solubilization agents for all 

systems except CYP in NDs, which only required 10 V. All CIU 
analyses were performed by increasing the trap collision volt-
age at 5 V increments across ranges tuned for each system. All 
data collection was performed in triplicate. 

Data Processing and Statistical Analysis: nIM-MS data were 
analyzed in DriftScope and Masslynx V4.1 software (Waters, 
Milford, MA). CIU data from selected charge states were ex-
tracted into a text-based format using TWIMExtract,70 then 
processed and analyzed using CIUSuite 2.3.58,71 Data processing 
included two or three rounds of 2D Savitzky-Golay smoothing 
with a window of five bins and interpolation of the collision 
voltage axis by a factor of four. TWCCSHe experimental collision 
cross-section conversions were performed using IMSCal soft-
ware and carry an error of ~2-3%.72 Where possible, theoreti-
cal CCSs were calculated from crystal structures73 and homol-
ogy models74,75 using IMPACT.72,76 In the case of PMP22 L16P 
dimers, no structural data on PMP22 oligomers has been pre-
viously reported. PMP22 L16P experimental CCS values were 
applied as restraints in computational docking experiments89 
to generate a dimer homology model from the PMP22 mono-
mer homology model structure.74 The resultant simulations 
generated 10,000 structures with corresponding Rosetta 
Scores, and theoretical CCS values were calculated for the high-
est-scoring structures. 

The data were recorded and graphed using GraphPad Prism 
10.2.1. The statistical analysis was conducted using 2-way or 3-
way ANOVA tests, with statistical significance indicated by a p-
value <0.05. Šidák multiple comparison corrections were ap-
plied where applicable. Feature-focused denoising (FFD) is 
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employed to address significant chemical noise present in all 
CIU data resulting from membrane mimetics. This chemical 
noise, attributed to excess detergent or lipid molecules, partic-
ularly affects regions of lower and higher drift times ranging 
from 5-100 V. Each solubilization method yields distinct signal-
to-noise (S/N) profiles, with variations in background noise 
across CIU fingerprints obscuring certain features and hinder-
ing CIU50 stability analysis. Consequently, low confidence in 
root-mean-square deviations (RMSD) analyses arises due to 
the difficulty in distinguishing CIU features associated with 
MPs. To ensure unbiased analysis, noise is first removed from 
the text-based TWIM files before analysis in CIUSuite 2.3, ena-
bling robust cross-comparisons of MP CIU data obtained across 
diverse mimetics. 

Feature Focused Denoising: The FFD workflow employs user-
defined rectangular masks to selectively preserve identified 
CIU features during preliminary feature detection analysis. 
Subsequently, these masks are applied to reprocess the data, 
focusing on retaining apex values of arrival time distributions 
at each collision voltage under standard feature detection 
mode. The rectangular masks enclose points for the feature-
length within an allowed width correlated to feature intensi-
ties, effectively eliminating noise from non-protein areas while 
emphasizing and prioritizing protein features without compro-
mising signal intensity. We validated this novel denoising 
workflow by comparing CIU analysis before and after noise re-
moval (Figure S7). The results showed no significant differ-
ences in reported features and CIU50 values. Additionally, con-
fidence in feature detection and CIU50 measurements doubled 
with the associated reduction in standard deviation values.  

Results and Discussion 
Comparing CIU of Transmembrane Protein Complexes Liber-

ated from Detergent Micelles and Bicelles. We began our CIU-
MP-mimetic screening with the small multidrug resistance 
(SMR) transporter protein GDX, which has previously been 
crystallized bound to a monobody.73 SMRs are distinguished by 
their unique dual-topology antiparallel dimers. Among the 
more extensively studied SMRs is EmrE; past reports have 
identified EmrE in monomer-dimer equilibria and have 
demonstrated the influence of the membrane environment on 
dimerization.77 To our knowledge, GDX-CLO has not been stud-
ied previously using nIM-MS. The nIM-MS spectra of GDX yield 
multiple ion populations corresponding to the monomer and 
dimer forms upon liberation from DDM micelles (Figure S1 A) 
and exclusively monomers upon liberation from POPC-DDMB 
bicelles (Figure S1 B). When liberated from DDM micelles, a 
charge state distribution (CSD) between 4+ to 10+ corre-
sponded to the monomer, while a CSD of 8+ to 11+ corre-
sponded to the dimer. Conversely, For GDX liberated from 
POPC-DDMB bicelles, signals for lower charge states of mono-
mer between 4+ to 8+ predominate. We selected GDX 6+ mono-
mer ions for CIU analysis due to their intensity and minimal 
overlap with chemical noise signals. Interestingly, CIU data col-
lected for 6+ GDX monomers in the micelle environment exhibit 
three features (16.37 ± 0.13, 18.61 ± 0.17, and 25.32 ± 0.13 ms, 
respectively), while CIU data extracted from the same ions, but 
released from bicelles, exhibit four features (18.30 ± 0.13, 
20.12 ± 0.26, 23.86 ± 0.22, and 26.97 ± 0.13 ms, respectively) 
(Figure 1A, B). These findings illustrate that GDX adopts dis-
tinct conformations and oligomeric states when released from 
differently constructed membrane mimetic environments. 

To further quantify the global structural differences in the 
CIU fingerprints of GDX from micelles vs. bicelles, RMSD anal-
yses were conducted (Figure 1D). The RMSD values obtained 

indicate a significant difference in the higher-order structures 
(HOS) GDX monomers. The RMSD value of 31.9% generated in 
this comparison is 3.6-6.8 times the baseline of the micelle and 
bicelle replicates (4.7 ± 0.7% and 8.9 ± 3.8%, respectively). 
Shifting our focus to assessing differences in CIU50 stabilities 
between GDX liberated from DDM micelles vs POPC-DDMB bi-
celles, CIU50 analyses reveal that GDX from DDM micelles un-
dergoes complete unfolding at lower collision voltages com-
pared to GDX from the bicelle environment. Specifically, CIU50-
1 values corresponding to the first transition are recorded at 
16.67 ± 0.54 V for the micelle and 19.97 ± 0.73 V for the bicelle 
environment. Similarly, CIU50-2 values confirm the destabiliz-
ing effects of the micelles on GDX monomer ions, resulting in 
19.63 ± 0.62 V compared to 21.57 ± 0.53 V from the bicelle en-
vironment (Figure 1C). Interestingly, similar bicelle-related 
stabilizing effects have been reported for another SMR MP, 
EmrE.77  

Conversion of IM drift times to CCS values also highlights 
conformational differences (Figure S6 A) across our GDX sam-
ples. A CCS analysis of 6+ GDX monomers indicates that GDX lib-
erated from POPC-DDMB bicelles has a CCS of 1404 Å2, whereas 
the same ions prepared in DDM micelles have a CCS value of 
1350 Å2. Notably, when compared to the theoretical CCS value 
(1476 Å2) calculated from the crystal structure (6WK8) of mon-
omer GDX,73 which was modified to convert the dimer into a 
monomer utilizing CHARMM-GUI78 and remove the bound 
monobody and small molecule ligands. While our analysis does 
not include a molecular dynamics step to compact our GDX 
monomer model, we note that CCS measurements recorded for 
GDX released from the bicelle environment are closer to the un-
compressed GDX monomer model than those CCS values ob-
served for GDX ions liberated from other membrane mimetics. 
This result suggests that the bicelle environment may induce a 
more native-like conformation that is more stabilizing to GDX. 

Next, we shifted our focus to a transmembrane MP solubil-
ized in micelles and bicelles. For these experiments, we utilized 
PMP22, a protein involved in the myelination of neurons. Pre-
vious studies have reported that PMP22 L16P, a pathogenic 
mutant associated with Charcot-Marie-Tooth disease, forms a 
greater amount of dimer when solubilized in bicelles compared 
to micelles.36 Here, we evaluated differences in the CIU data 
recorded for PMP22 L16P when released from different mem-
brane environments to further evaluate the role of detergent 
bicelles and micelles in stabilizing various MP structures. The 
nIM-MS spectra recorded for L16P released from micelles and 
bicelles are shown in Figure S1 C, D. When released from C12E8 
micelles, monomer and dimer signals are observed. We detect 
monomer ion populations with a CSD between 6+ to 10+ and a 
dimer ion population with a CSD between 10+ to 15+. PMP22 
L16P released from SCOR bicelles results in a monomer CSD 
between 5+ to 10+, and a dimer CSD between 10+ to 15+. We 
elected to perform CIU analysis on 13+ dimeric L16P PMP22 
ions due to the intensity and minimal noise overlap of the sig-
nals detected (Figure S1 C, D).  

The CIU data presented in Figure 1E for PMP22 L16P dimer 
13+ ions reveals distinct features and CIU50 transitions for 
samples prepared in micelles and bicelles. PMP22 L16P dimer 
released from C12E8 micelles reveals two features (15.10, ± 
0.13 and 23.81 ± 0.13 ms, respectively), while the MPs released 
from the SCOR bicelle environment reveals three features 
(17.26 ± 0.13, 21.17 ± 0.13, and 25.44 ± 0.13 ms, respectively; 
Figure 1F). In contrast to our GDX dataset, a comparison of 
CIU50 values indicates that L16P PMP22 dimers released from 
micelles are stabilized when compared to their bicelle-encap-
sulated analogs, with CIU50-1 shifting from 28.67 ± 0.82 V from 
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the micelle to 19.83 ± 0.26 V in the bicelle (Figure 1G). Addi-
tionally, RMSD comparisons of the averaged micelle and bicelle 
replicates result in a 27.6% difference (Figure 1H), over twice 
the average RMSD baseline of the micelle (12.6 ± 4.3%) and the 
bicelle (3.8 ± 0.5%). 

A CCS analysis of the 13+ dimer liberated from C12E8 mi-
celles resulted in a CCS value of 2953 Å2, while the same ion 
liberated from the bicelle environment resulted in a CCS value 
of 2654 Å2 (Figure S6 B). Similarly to GDX, the CCS values rec-
orded for PMP22 L16P ions released from bicelles more closely 
agreed with the theoretical CCS estimates (2615 Å2) From 
these CCS analyses, we can conclude that L16P released from 
the C12E8 micelles environment is more compact in structure 
when compared to PMP22 L16P released from bicelles. In con-
trast to the GDX data discussed above, PMP22 L16P dimers ap-
pear stabilized in micelle rather than bicelle environments, de-
spite their greater abundance in the presence of the latter mi-
metic. However, taken together, our CCS and CIU data indicate 
that bicelle and micelle environments promote significantly 
different structures in transmembrane MPs, underscoring the 
importance of the selected membrane mimetic on transmem-
brane MP structure. 

Tracking the Influence of Membrane Mimetics on a Monotopic 
Membrane Protein. While previous nMS reports have primarily 
focused on multi-pass integral MPs, recent endeavors have ex-
tended these techniques to monotopic proteins.79 Monotopic 
proteins possess large aqueous domains in addition to regions 
that interact with but do not traverse, the lipid bilayer. This 
dual nature often complicates their biophysical characteriza-
tion.80 Consequently, single-pass and monotopic MPs, which 
are embedded in the membrane with a single alpha helix, are 
often investigated in truncated forms that exclude the mem-
brane-associated components.80 However, to study the role of 
the membrane on the structure and function of such MPs, mi-
metics are needed to replicate the lipid bilayer found in cellular 
membranes, thereby preserving the overall structure of mono-
topic MPs. CYP3A4 has been previously studied in NDs, with 
multiple incorporation protocols published.16,81  

The CYP family of proteins comprises enzymes crucial for 
drug metabolism.64 They exhibit binding affinity for a diverse 
range of drugs and have previously been observed to also bind 
detergent molecules.82 Therefore, we conducted a thorough de-
tergent screen67 to identify detergent conditions that prevent 
the formation of CYP-detergent complexes. This screen led to 
the selection of OG for subsequent nIM-MS analyses. The nIM-
MS spectra of CYP3A4 liberated from OG micelles, SCOR bi-
celles, and CYP3A4 in POPC NDs are shown in Figure S2 A-C. 
CYP3A4 released from OG detergent micelles exhibits a CSD 
that includes 13+ to 17+ ions. While the MS signals appear broad 
relative to soluble systems of comparable size,83 no distinct de-
tergent binding is observed. Deconvolution of these peaks pro-
duces an intact mass that corresponds to CYP3A4 plus its heme 
cofactor, indicating the detection of the holo protein state un-
der these conditions (Table S1). Upon release from SCOR bi-
celles, a CSD including 14+ to 18+ ions is observed, with the 
holo, heme-bound, and POPC lipid-bound states discernable. 
Finally, the liberation of CYP3A4 from POPC NDs, assembled 
using the MSP3ED1 scaffold protein via a microfluidic device,63 
yields a CSD including 13+ to 17+ ions. Signals associated with 
CP3A4 released from NDs exhibit significantly enhanced mass 
resolution compared to the detergent conditions, enabling the 
identification of apo, holo CYP3A4, and POPC lipid-bound 
states. All three nIM-MS datasets reveal monomodal and short 
IM drift times indicative of native-like CYP ions.  

The CYP3A4 holo 16+ ion was chosen to further explore the 
impact of membrane mimetics on CYP structure under these 
conditions. Following CIU experiments of the 16+ ions (Figure 
2A), the CIU data reveals four features from CYP3A4 ions re-
leased from both the micelle and bicelle environments, while 
five features are observed from ions ejected from NDs. When 
CYP3A4 is released from OG micelles, we observe CIU features 
at 17.74 ± 0.13, 20.75 ± 0.13, 24.60 ± 0.13, and 28.52 ms, re-
spectively (Figure 2B). When released from the bicelle environ-
ment, we see all four features within a 1.3 ms drift time vari-
ance when compared to CYP3A4 ions released from micelles 
(16.46, 20.84, 24.68, and 27.34 ± 0.13 ms, respectively). Exam-
ining CYP3A4 released from NDs, similar features are observed 
with the addition of an additional feature (16.55 ± 0.26, 19.11 
± 0.13, 20.84 ± 0.22, 24.14 ± 0.40, and 27.43 ± 0.22 ms, respec-
tively) (Figure 2B). Although there are minimal differences in 
the CIU features we record for CYP3A4 across all three mimetic 
conditions, significant differences are observed in the CIU50 
values observed for CYP3A4 ions released from each mimetic. 
For example, CYP3A4 from OG micelles exhibits CIU50 values 
of 25.83 ± 0.39, 74.87 ± 0.31, and 83.83 ± 0.31 V, while CYP3A4 
released from SCOR bicelles produces CIU50 values of 29.70, 
37.83 ± 0.41, and 70.93 ± 4.00 V, respectively. Meanwhile, 
CYP3A4 liberated from the POPC NDs exhibits CIU50s of 23.0 ± 
2.00, 31.27 ± 1.61, 38.20 ± 0.57, and 47.83 ± 0.50 V (Figure 2C). 
These results highlight the extent of the differences in CYP3A4 
structure when liberated from micelles, bicelles and NDs, de-
spite retaining similar CIU features across the data collected 
here. 

 Further, RMSD analyses reveal significant wholistic differ-
ences across our CYP3A4 CIU data, with the largest differences 
observed between ions released from OG micelles and those 
produced from SCOR bicelles (49.0%), followed by compari-
sons between CYP3A4 ions released from the micelle and nano-
disc environments (45.6%) (Figure S3). Remarkably, the low-
est RMSD value we observe, 28.6%, is observed between the 
ND and SCOR bicelle environments, both of which contain 
POPC lipids in their bilayer constructs (Figure 2D). All RMSD 
values are at least two times greater than all the baseline values 
recorded for technical replicates (RMSDs between 7.1-13.8% 
across all four mimetics, Figure S5). Variations in adduction 
levels across the MS data recorded for ions generated under 
these conditions (Figure S2) are also noted, with prior reports 
indicating that such differences in adduct populations can im-
pact CIU data.84  Finally, modest differences are detected in 
holo CYP 16+ CCS values, with CYP3A4 released from OG mi-
celles resulting in 3451 Å2 and those from NDs having a value 
of 3318 Å2. Our predicted CCS for CYP is 3383 Å2, indicating that 
both conditions produced CYP ions within 3% of predictions 
produced from X-ray data, with NDs producing a more compact 
state (Figure S6 C). 

CIU Data Indicates Structural Changes in PMP22 Liberated 
from Micelles, Bicelles, and Nanodiscs. After observing the dif-
ferences between GDX and PMP22 L16P liberated from mi-
celles and bicelles, our next objective was to compare addi-
tional mimetics and further broaden our survey of transmem-
brane MPs. To achieve this, we introduced POPC-DDMB bicelles 
into our comparative workflows. We opted to continue study-
ing monomeric protein ions to facilitate comparisons across all 
three solubilization techniques and circumvent challenges en-
countered in generating sufficient signal intensities for CIU. 
Hence, we selected a version of PMP22 WT incorporating an 11 
kDa soluble tag, referred to as WT-Tagged PMP22, for our in-
vestigations. The inclusion of this tag rendered WT-Tagged 
PMP22 more amenable to ND sample preparation for nMS. 
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Specifically, the penta-histidine tag included in the sequence 
enabled us to utilize a nickel affinity resin to purify the ND-
associated protein. It is noteworthy that, for this purpose, the 
his tag-free construct of MSP1D1(-) was employed in these ex-
periments. 

WT-Tagged PMP22 can be effectively liberated and detected 
from C12E8 micelles, SCOR bicelles, POPC-DDMB bicelles, and 
POPC MSP1D1(-) NDs. Signals corresponding to 7+ to 15+ ions 
of monomeric WT Tagged PMP22 were observed when the pro-
tein was solubilized in micelles and bicelles (Figure S4 A-C). 
However, when WT Tagged PMP22 was housed within NDs, 
nIM-MS data indicated significant overlap with MSP1D1(-) sig-
nals, resulting in reduced observable charge states to 7+ to 12+ 
(Figure S4 D). Ultimately, after careful analysis, we determined 
that the 9+ charge state of PMP22 WT Tagged was the most suit-
able for CIU analysis due to its minimal overlap with MSP1D1(-
) signals produced from our ND samples. 

CIU fingerprints produced from PMP22 WT Tagged 9+ ions 
released from C12E8 micelles and SCOR bicelles exhibited 
three similar features at approximately 17.0 ms, 20.0 ms, and 
22.0 ms (Figure 3A). However, akin to observations with GDX 
and PMP22 L16P as discussed earlier, an additional feature at 
26 ms was observed from PMP22 WT-Tagged ions when liber-
ated from the bicelle environments. Upon liberation from the 
ND environment, PMP22 WT-Tagged revealed three features at 
19.0 ± 0.25, 22.10 ± 0.22, and 27.20 ± 0.13 ms. Notably, this 
time, feature detection analysis indicates that the micelle and 
nanodisc environments induce the most distinct structural 
conformations in PMP22 WT-Tagged, with all three transitions 
observed at higher drift times, indicative of a more unfolded 
conformation upon liberation from the ND (Figure 3B). 

This information, when combined with the CIU50-1 and 
CIU50-2 values recorded during our experiments, further high-
lights the structural differences in MP structure induced be-
tween the mimetics probed in our survey (Figure 3C). For WT-
Tagged PMP22 liberated from micelles, we record CIU50-1 at 
28.47 ± 0.39 V and CIU50-2 at 44.0 ± 0.08 V. In contrast, when 
released from the NDs, we observe CIU50-1 and CIU50-2 values 
of 29.00 ± 0.42 V and 49.27 ± 1.30 V, respectively. The CIU50-
1, CIU50-2 and CIU50-3 values recorded for PMP22 ions re-
leased from SCOR bicelles are observed to be 24.40 ± 0.45, 
33.97 ± 0.34, and 63.43 ± 1.30 V, respectively. Conversely, 
when PMP22 WT-Tagged is released from POPC-DDMB bi-
celles, CIU50-1-3 values correspond to 24.60 ± 0, 30.87 ± 1.18, 
and 52.33 ± 0.26 V (Figure 3B). Collectively, these results sug-
gest that WT Tagged PMP22 ions liberated from NDs adopt the 
most stabilized conformation from all of the mimetics screened 
here, whilst the bicelles are the most destabilizing in this case. 

To further investigate mimetic-dependent changes in CIU 
fingerprints collected for the monomeric WT Tagged PMP22 9+ 
ions, a comprehensive RMSD analysis was conducted across all 
four CIU datasets as shown in Figure 3D. Notably, WT-Tagged 
PMP22 ions released from the SCOR bicelles and POPC-DDMB 
bicelles exhibited the lowest RMSD difference in our analysis at 
35.0%, indicating relatively similar PMP22 structures. Con-
versely, the micelle and ND environments resulted in the high-
est global differences, with an RMSD difference of 49.4%, ap-
proximately two times greater than the ND baseline for repli-
cate analysis (RMSDs between 4.0-9.7% in all four mimetics) 
(Figure S5). 

A CCS analysis of WT-Tagged PMP22 9+ ions produced from 
samples containing all the mimetics discussed above was found 
to yield similar values. Specifically, the recorded CCS values for 
WT Tagged PMP22 were as follows: micelles: 1932 Å2, SCOR 

bicelles: 1918 Å2, POPC-DDMB bicelles: 1905 Å2, and POPC 
NDs: 1996 Å2 (Figure S6 D). While we observe that WT-Tagged 
PMP22 released from POPC-DDMB bicelles have the most com-
pact CCS values, there is no available high-resolution struc-
ture for the WT-Tagged PMP22 construct to which we can 
accurately compare our CCS values to assess their proximity 
to its native fold. However, CIU data indicate that WT-Tagged 
PMP22 adopts different conformations within these differently 
constructed POPC bilayers. Additionally, detergents may play a 
role in orienting lipids to form a bilayer differently than MSP, 
thereby causing PMP22 to adopt different conformations. 

Conclusions 
MS methods have been extended to directly analyze MPs sol-

ubilized using various techniques, and our study demonstrates 
how nIM-MS and CIU methods can be deployed to evaluate the 
structural consequences of storing MPs in low fidelity mem-
brane mimetics such as detergent micelles or higher fidelity 
membrane mimetics such as mixed lipid bicelles and NDs. Ad-
ditionally, the development of FFD greatly enhanced our ability 
to make quantitative RMSD comparisons between various MPs 
released from different mimetics. Our CIU and CCS dataset co-
vers four different MPs solubilized in detergent micelles, SCOR 
bicelles, POPC-DDMB bicelles, and NDs. We observe minimal 
differences in low energy CCS values of all the MPs studied 
herein, but significantly different CIU fingerprints, highlighting 
the ability of nIM-MS to detect subtle structural differences 
based on MP environments alone. In the case of CYP3A4, we 
observe excess detergent, salt, and glycerol adduction, poten-
tially leading to increased stability as observed by CIU for 
CYP3A4 samples analyzed from micelle samples relative to ND 
samples. Similarly, our results suggest that SCOR bicelles may 
support more compact gas-phase structures than C12E8 mi-
celles for PMP22 L16P dimers. Additionally, GDX produces sig-
nificantly different CIU data when liberated from environments 
containing detergent compared to ions liberated from a lipid-
based environment. Indeed, these data suggest not only com-
paction of the MP but also stabilization. Further, CIU finger-
prints collected across four different mimetics for WT Tagged 
PMP22 ions exhibit differences primarily attributed to varia-
tions in PMP22 conformation promoted in each membrane mi-
metic. 

Overall, extensive CIU and nIM-MS evidence suggests that 
MP structure strongly depends on the solubilization method 
used to house the protein prior to liberation in the gas phase. 
Our data also reveal that solubilization techniques can signifi-
cantly influence the robustness of the nIM-MS data collected. 
However, from our data, we cannot determine whether the dif-
ferences are a function of the lipid composition (SCOR mixed 
lipids versus POPC) or the solubilization methods used (mono-
layer versus bilayer). Despite the ongoing analytical challenges 
associated with the utilization of membrane mimetics necessi-
tating dissociation for the isolation of MPs, advancements in 
ionization and activation techniques,56,85,86 alongside the devel-
opment of detergents engineered to be more compatible with 
nMS,87,88 offer promising prospects for the field. To further ad-
vance the analysis of MP structure using nIM-MS and CIU, stud-
ies should aim to dissect the biophysical contributions of lipid 
composition and mimetic structures to the observed differ-
ences in MP structure and stability. Additionally, there is still a 
need for an empirical characterization of best practice MP-
mimetic sample preparation methods for downstream nIM-MS 
analysis that explore optimized detergent: MP or lipid: MP ra-
tios. Finally, extending this research to a broader array of pro-
tein systems, such as GPCRs, could be crucial for defining the 
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role of nIM-MS in assessing solubilization agents for applica-
tions like MP cryo-EM or pharmaceutical screens. 
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