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ABSTRACT:  Machine learning models for predicting IR spectra of molecular ions (infrared ion spectroscopy, IRIS) have yet to be 

reported owing to the relatively sparse experimental datasets available. To overcome this limitation, we employ the Graphormer-IR model 

for neutral molecules as a knowledgeable starting point, then employ transfer learning to refine the model to predict the spectra of gaseous 

ions. A library of 10,336 computed spectra and a small dataset of 312 experimental IRIS spectra is used for model fine-tuning. Nonspecific 

global graph encodings that describe the molecular charge state (i.e., (de)protonation, sodiation), combined with an additional transfer 

learning step that considers computed spectra for ions, improved model performance. The resulting Graphormer-IRIS model yields spectra 

that are 21% more accurate than those produced by commonly employed DFT quantum chemical models, while capturing subtle phenomena 

such as spectral red-shifts due to sodiation. Dimensionality reduction of model embeddings demonstrate derived “chemical intuition” of 

functional groups, trends in molecular electron density, and the location of charge sites.  Our approach will enable fast IRIS predictions for 

determining the structures of unknown small molecule analytes (e.g., metabolites, lipids) present in biological samples. 

Introduction 

   Mass spectrometry (MS) is an invaluable tool in chemical 

analysis with application in areas such as metabolomics, 

environmental monitoring, and forensics.1–3 Traditionally, 

targeted MS analyses have been employed for analyte 

detection and quantification, but in recent years the 

development of non-targeted approaches has become a 

priority for the community.4,5 In a typical non-targeted MS 

workflow, signals are labelled with, e.g., exact ion mass, 

isotope patterns, tandem MS fragmentation patterns (i.e., 

MSn), and liquid chromatographic retention times (or a 

subset of these parameters), and analytes are annotated based 

on matches to a library or agreement with the predictions of 

a model.6,7 For unambiguous assignment, the measured 

parameters must match those of an internal standard.8,9 This 

approach, of course, is limited by the availability of chemical 

standards and the chemical coverage of MS libraries.10,11 

Consequently, novel compounds such as previously 

uncharacterized natural products and “dark metabolites” 

typically cannot be identified using these routine 

approaches.12,13 Further to this, the mechanisms of 

fragmentation (e.g., cyclization, neutral losses) observed via 

MSn methods are often unclear and it can be challenging to 

distinguish closely related isomeric species from one 

another.14 As a result, traditional mass spectrometric 

measurements (viz. MSn methods) are often insufficient for 

complete experimental characterization of molecular 

structure. This limitation is reflected in the performance of 

top de novo methods, which identify the correct molecular 

structure as the best candidate less than 30% of the time.13,15 

    Experimentalists have turned to orthogonal techniques to 

improve structural elucidation of small molecules. A key 

challenge in this regard is the separation and isolation of 

analytes from complex mixtures. For example, traditional 

benchtop Fourier transform infrared (FT-IR) spectroscopy 

measures simultaneously the IR spectrum for all components 

in a mixture, which results in spectra that are the convolution 

of the components in the mixture, often leading to non-

detection of low-abundance species.16 By coupling MS with 

infrared ion spectroscopy (IRIS), one can overcome this 

hurdle by mass-selecting analytes of interest prior to 

spectroscopic interrogation.16,17 Selected ions that absorb IR 

photons can be internally heated to induce 

photofragmentation, thereby providing a measurable change 

in the MS signal.17  Owing to the sensitivity of the MS 

detector, this form of action spectroscopy overcomes the 

limitation of absorption measurements for which the number 

density of the absorbing analyte must be several orders of 

magnitude higher than is common in a mass spectrometer.18 

By monitoring ion fragmentation efficiency as a function of 

IR excitation wavelength, one can generate a vibrational 

spectrum wherein the vibrational frequencies may be 

directly related to the molecular structure .  

   IRIS has been employed successfully to characterize 

numerous interesting chemical systems,16,19–22 and 

researchers continue to actively advance its application in 

new areas. For example, experimental and computed IR 

spectra have shown promise as discriminators in self-driving 

labs for probing chemical reactivity; this could be extended 

to incorporating IRIS in high-throughput MS screening 

workflows.23,24 As another example, Martens et al. 

demonstrated the use of IRIS to characterize individual 

components of complex samples as they are separated using 

hybrid liquid chromatographic (LC) MS workflows.22,25–27  

By comparing the measured “fingerprint” spectra to 

calculated reference spectra (typically computed using 

electronic structure theory methods),28 researchers can 

precisely differentiate chemically similar moieties, 

including isomeric species, without the need for chemical 
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standards.19,22 IRIS workflows have been applied in 

lipidomics,1,29,30 proteomics,31–33 metabolomics,1,21,28,34,35 

and small molecule applications;19,20,22 for example, IRIS 

has shown utility in characterizing sugars,36,37 polymers,38 

and environmental pollutants.39–42   Maitre et al. have also 

described the use of IRIS for the structural characterization 

of post-translational modifications of proteins (e.g., 

phosphorylation, glycosylation), which often initiate 

signaling processes for downstream physiological 

function.33  

   The success of IRIS as a tool for improved structural 

annotation of unknown analytes depends strongly on the 

quality and speed of the computational tool used to generate 

reference spectra. The conventional approach to computing 

reference spectra involves quantum chemical calculation of 

harmonic vibrational frequencies and integrated intensities 

followed by empirical scaling to correct for anharmonicity 

of vibrational potentials.28 One can improve harmonic 

frequency predictions by calculating anharmonic 

corrections, but the cost of these calculations are much 

higher than those using the harmonic approximation and 

they scale rapidly with molecular size, requiring substantial 

time and computational resources for even moderately sized 

molecules. Moreover, quantum chemical methods compute 

absorption spectra, which differ subtly from IRIS spectra, 

where intensities are associated with IR absorption cross 

section, as well as the efficiency of anharmonic coupling 

between normal modes (leading to intramolecular 

vibrational energy redistribution; IVR) and coupling to 

dissociation thresholds.17  

   By enabling a learned understanding of peak position and 

mode-coupling, deep learning might provide a solution to 

the challenges of quickly and accurately predicting IRIS 

spectra. Further, trained machine learning (ML) models can 

produce predicted IRIS spectra for thousands of molecules 

in seconds – much faster than can be achieved by quantum 

chemical methods for all but the smallest molecules. To date, 

ML models of IR absorption spectra have been developed 

using Message Passing Neural Networks (MPNNs),43 Graph 

Attention Networks (GATs),44 graph transformers,45 and 

other frameworks.46–50 The success of these models is in part 

due to the large training datasets of absorption IR spectra 

(tens of thousands) available in online repositories.51–53 

However, no large compendium of IRIS spectra for model 

training exists. Consequently, to the best of our knowledge, 

a predictive model for IRIS spectroscopy is yet to be 

reported.  

   In this work, we describe a ML model for predicting IRIS 

spectra from chemical structure. This model is based on the 

Graphormer architecture, which extends graph neural 

networks (GNNs) via transformers.54,55 Graphormer has 

already been applied successfully to chemical systems, 

having won the 2021 Open Catalyst challenge and achieving 

state-of-the-art predictions across a variety of (bio)chemical 

domains.45,56–59 Using a multi-staged transfer learning 

scheme inspired by the psychology of human learning and 

natural language processing (NLP), we show how different  

spectral libraries offer distinct contributions (e.g., 

anharmonic scaling, denoising) to the final model’s 

understanding of experimental IRIS measurements. Further, 

we utilize a flexible description of molecular charge (i.e., 

(de)protonation, sodiation) and explainability techniques to 

show that Graphormer-IRIS successfully derives “chemical 

intuition” from transfer learning and a highly contextual 

understanding of molecular charge and bulk thermodynamic 

behavior.    

Results and Discussion  

Model Performance. Using the datasets described in 

reference 28 (see Figures S1-S3), models (see Figure S4) 

were trained using ten-fold cross validation to determine the 

optimal transfer learning strategy (see Figure 1 and Table 

S1), encodings (see Tables S1 and S2), and hyperparameters 

(see Table S3). The best performing model obtained a 

spectral similarity score of SISμ = 0.6823 ± 0.0343 (ten-fold 

cross validation, c = 10, Table 1, Ablation #10).43 

Histograms showing performance for all test splits (c = 10) 

are depicted in Figure 2. Detailed results showing all training 

strategies are shown in Table 1 and are discussed in more 

detail below. For 195 molecular ions, DFT-computed and 

experimental IRIS spectra were available; we calculated the 

SIS score for the DFT-computed spectra using the same pre-

processing method as was used for our ML model. This 

DFT/IRIS comparison yielded 𝑆𝐼𝑆𝜇= 0.5616. Although the 

DFT/IRIS comparison is not perfect due to differences in the 

composition (e.g. molecular, charge state) and the number of 

spectra in the two evaluation sets, this benchmark suggests 

that Graphormer-IRIS (using only a small training dataset) 

is approximately 21% more accurate than conventional 

quantum-chemical methods for predicting IRIS spectra. 

Graphormer-IRIS predictions are also completed in seconds 

on GPUs, in contrast to the hours-to-days timescale for 

common DFT workflows (see Supporting 

Information:Model Training).28 

   The best performing transfer learning strategy started with 

a pretrained Graphormer-IR model,45 followed by finetuning 

on DFT-computed spectra, and finally training on the 

experimental IRIS spectra. For DFT and IRIS finetuning, the 

first layer of the graph encoder was frozen. This model 

utilized the novel phase encodings for the global charge node 

described in the Supporting Information: Charge Encoding 

section for the IRIS and DFT spectra. As shown in Figure 2, 

the best performing model yielded 𝑆𝐼𝑆𝜇= 0.6823 ± 0.0343 

(c = 10) for spectra of all species, 𝑆𝐼𝑆𝜇= 0.6683 (n = 164) 

for spectra of protonated species, 𝑆𝐼𝑆𝜇= 0.6782 (n = 80) for 

spectra of deprotonated species, and 𝑆𝐼𝑆𝜇= 0.7209 (n = 68) 

for spectra of sodiated species.  

   Figure 3 compares the predictions for nine molecules in 

the test split with their respective experimental spectra – 

three for each charge state. Figures 3A-C show predictions 

that are well below the average SIS, Figures 3D-F show 

predictions of average accuracy, and Figures 3G-I show 

predictions with above average SIS scores. In general, 

Graphormer-IRIS performs best for organic molecules that 

have common organic functional groups/structural motifs 

(e.g., carboxylic acids, ethers). 
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Figure 1. Schematic showing the datasets, transfer learning workflow, and model architecture utilized in this study. The plotted 

spectra are associated with xanthine, which is depicted as a graph structure in the top right. 

However, given the relatively sparse chemical diversity of 

the IRIS dataset, we cannot make any comprehensive claims 

regarding broad molecular generalizability. We also 

acknowledge that a limitation of the small experimental 

dataset is that some species contain similar scaffolds (e.g., 

the agrochemical depicted in Figure 3H). In future work, 

splitting via a Murcko scaffold may be useful to assess the 

extent that this structural similarity impacts model 

performance.60 The below average IRIS spectral predictions 

shown in Figure 3A-C highlight that the underrepresentation 

of functional groups in the IRIS dataset impacts model 

predictions even if similar features are well represented in 

pretraining datasets (e.g., IR, DFT). This effect is most 

obvious in the IRIS spectra of 4-bromo aniline(Figure 3C) 

and (8-chloro-6-(2-fluorophenyl)-4H-benzo[f]imidazo[1,5-

a][1,4]diazepin-1-yl)methanol (Figure 3D), where 

Graphormer-IRIS predicts poorly the C-Br, C-Cl, and C-F 

stretching frequencies at ca. 600–800 cm-1. Although 

halogenated species with similar stretching frequencies are 

represented in the experimental IR absorption database that 

was used for pretraining, these frequencies are poorly 

represented and predicted in the IRIS dataset. These 

prediction errors indicate that the IRIS dataset would benefit 

from expansion to improve the representation and diversity 

of chemical moieties.  

Charge State Encodings. We introduce a global charge 

node to all molecular graphs for IRIS spectra (see 

Supporting Information: Charge Encodings) so that 

Graphormer-IRIS could obtain a contextual understanding 

of molecular charge. While training on IRIS spectra without 

a description of charge, Graphormer-IRIS yields 𝑆𝐼𝑆𝜇 =

 0.4749 ± 0.0228 for predictions of IRIS spectra (Table 1; 

row #2). Upon transfer learning using the IRIS dataset but 

signifying that the molecules are in the gas phase using the 

global node (and the encoding from the Graphormer-IR 

study),45 scores improve to 𝑆𝐼𝑆𝜇 =  0.5491 ± 0.0329 (Table 

1; row #3). Introducing an explicit global node description 

of molecular charge state yielded 𝑆𝐼𝑆𝜇 =  0.6259 ± 0.0400 

(Table 1; row #4), which is ~50% improved over the naïve 

Graphormer-IR evaluation. 

 

Figure 2. Graphormer-IRIS performance for ten test folds (c = 10) 

using the best performing model (SISμ = 0.6823 ± 0.0343). SIS 

distribution for (A) all IRIS spectra, (B) protonated molecules, (C) 

sodiated molecules, and (D) deprotonated molecules. Associated 

mean SIS scores (μ) and standard deviations (σ) for the 

distributions are reported in each panel. The variable n indicates the 

number of spectra of that type included in the IRIS spectra library.   
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 Table 1. Results of the ablation study for the Graphormer-IRIS models. A checkmark indicates that the feature is present in the 

trained model. Uncertainty is described by the standard deviation of the 10-fold cross validated results (i.e., c = 10).  

# 
Train on IRIS 

Spectra 

Train on  

IR Spectra 
Charge Graph 

Encodings 

Train on 

DFT Spectra 

Freeze Graph  

Encoder  

Freeze Feature 

Encoder 

Test 𝑺𝑰𝑺𝝁 

(c = 10) 

1.  ✓     0.4219 ± 0.0337 

2. ✓      0.4749 ± 0.0228 

3. ✓ ✓     0.5491 ± 0.0329 

4. ✓ ✓ ✓    0.6259 ± 0.0400 

5. ✓ ✓ ✓  ✓  0.6336 ± 0.0396 

6. ✓ ✓ ✓  ✓ ✓ 0.6285 ± 0.0485 

7.   ✓ ✓   0.4777 ± 0.0329 

8. ✓  ✓ ✓   0.5080 ± 0.0434 

9. ✓ ✓ ✓ ✓   0.6811 ± 0.0339 

 10. ✓ ✓ ✓ ✓ ✓  0.6823 ± 0.0343 

DFT-Computed Spectra 0.5616* 

*Note that DFT spectra do not overlap with the entire training/test dataset and scores cannot be cross validated. 

 

Figure 3. Graphormer-IRIS test predictions (red/green/blue) 

overlaid on experimental spectra (black). Predictions include 

below-average (A-C), average (D-F), and above-average (G-I) 

errors for protonated (A,D,G, red), deprotonated (B,E,H, green), 

and sodiated (C,F,I, blue) analyte spectra.  

   Figure 4 further emphasizes the importance of an explicit, 

contextual, global description of charge for predicting IRIS 

spectra generated from our ML architecture. Figure 4 panels 

A, B, and C show the IRIS spectra for phenylacetylglycine 

as measured and predicted for the deprotonated, protonated, 

and sodiated charge states, respectively. Similarly, Figure 4 

panels D, E, and F show the measured and Graphormer-IRIS 

spectra for L-aspartic acid in the same charge states. By 

inspection, Graphormer-IRIS clearly captures the dramatic 

differences in IRIS spectra as a function of charge state, 

yielding high-quality predictions. In the case of 

phenylacetylglycine, several vibrational bands are at similar 

wavenumbers from one charge state to another, such as those 

associated with the C=C aromatic stretching frequency at 

~1,650 cm-1, but the IRIS spectrum of the deprotonated 

species (Figure 4A) exhibits fewer peaks than the protonated 

and sodiated species. Furthermore, the IRIS spectrum of 

protonated phenylacetylglycine (Figure 4B) exhibits 

relatively intense bands below 750 cm-1, which are very 

weak or absent from the spectra of the sodiated and 

deprotonated charge states. The IRIS spectrum for the 

deprotonated charge state of L-aspartic acid (Figure 4D) 

demonstrates another interesting phenomenon that is 

captured by Graphormer-IRIS – molecules that contain 

multiple hydrogen bonding moieties can exhibit significant 

broadening of some spectral features. Interestingly, this band 

broadening is not observed experimentally for the 

protonated or sodiated forms of L-aspartic acid (Figures 4E 

and 4F), and Graphormer-IRIS also predicts these spectra 

reasonably well. For L-aspartic acid (Figure 4E), protonation 

occurs on the amine moiety and an intramolecular hydrogen 

bond can form to either of the carboxyl groups. Due to the 

asymmetry of the amine group along the carbon backbone, 

the C=O vibrational frequencies of the different hydrogen-

bonded conformers are not equivalent, and one observes a 

pair of peaks at ca. 1,750 cm-1. Graphormer-IRIS 

successfully captures this subtle interaction, likely owing to 

the robust pretraining steps. Moreover, Graphormer-IRIS 

can capture the variable red shifting of the carboxylic acid 

(Figure 4B: ca. 1,780 cm-1, Figure 4C: ca. 1,736 cm-1; 

Δ𝜈 = 44 cm-1) and amide (Figure 4B: ca. 1,682 cm-1, Figure 

4C: ca. 1,650 cm-1; Δ𝜈 = 24 cm-1) stretching frequencies 

upon sodiation. The ability to capture this subtle effect is a 

testament to the model’s contextual understanding of charge 

provided by the global node.  

Transfer Learning Strategies. Given the relative paucity 

of the IRIS spectral library (n = 312), the success of 

Graphormer-IRIS hinges on effectively transferring 

knowledge from models trained on IR absorption and DFT-
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computed spectra. As discussed in the Supporting 

Information:Transfer Learning, transfer learning can be 

seen through the lens of human learning, where analogies 

(e.g., learning to eat yogurt compared to learning to eat soup) 

and easier versions of tasks (e.g., walking compared to 

running) can improve model performance. In the context of 

IRIS, the task of predicting IR spectra for neutral species 

(i.e., Graphormer-IR’s large training set) can be thought to 

teach the model structure-to-vibration analogies. The DFT 

spectra data set, on the other hand, represents an “easier” 

version of gas phase ion spectra (i.e., harmonic modes, no 

noise) that allows learning on a gradient. Finetuning the 

best-performing Graphormer-IR model on IRIS spectra (i.e., 

no intermediate DFT pretraining step) resulted in a  

 
Figure 4. IRIS spectra of phenylacetylglycine in its (A) deprotonated (B) 

protonated, and (C) sodiated state, and of L-aspartic acid in its (D) 

deprotonated, (E) protonated, and (F) sodiated state. Graphormer-IRIS 

predictions are plotted in colour, experimental data are plotted in black. SIS 

scores for the various predicted spectra are reported in the appropriate 

panels. 

performance increase of nearly 50%; SIS improved from 

𝑆𝐼𝑆𝜇= 0.4219 ± 0.0337 (Table 1; row #1) to 

𝑆𝐼𝑆𝜇= 0.6259 ± 0.0400 (Table 1; row #4). We also found 

that freezing the first layer of the graph feature encoder 

offered a small (but not statistically significant) 

improvement in model performance 𝑆𝐼𝑆𝜇 = 0.6336 ± 0.0396 

(Table 1; row #5). Moreover, freezing the graph feature 

encoder offered no further improvement to model 

performance, yielding 𝑆𝐼𝑆𝜇 = 0.6285 ± 0.0485 (Table 1; row 

#6). 

DFT Spectra Pretraining. The DFT spectral library 

consists of spectra generated from ionic structure ensembles 

that have been explicitly (de)protonated/sodiated and then 

optimized using DFT methods.28 More details are available 

in the Supporting Information: Computed DFT Spectra 

section. Because the original Graphormer-IR models have 

minimal awareness of charge state (See Supporting 

Information: Charge Encodings), we used the DFT-

computed spectral library developed in reference 28 to 

improve the model’s understanding of the charge state 

encodings. Since the DFT spectra dataset contains ionic 

conformers, we hypothesized that models pretrained on this 

dataset might gain a sense of (de)protonation/sodiation. Of 

course, the potential downside of using DFT-computed 

spectra in training purposes is that peak positions, which are 

computed within the harmonic oscillator approximation and 

corrected with a uniform scaling factor, are possibly 

different from those observed experimentally and so might 

be detrimental to model accuracy. When pretraining on the 

DFT spectra (after already pretraining on the experimental 

IR library for neutral species), then finetuning on 

experimental IRIS spectra, the model similarity score 

improves to 𝑆𝐼𝑆𝜇= 0.6811 ± 0.0339 (Table 1; row #9). This 

accuracy is a substantial improvement over the DFT-

prediction performance benchmark of 𝑆𝐼𝑆𝜇= 0.5616. The 

improvement in performance as a function of DFT 

pretraining suggests that the difference between 

experimental and DFT-computed peak positions might not 

be especially detrimental to model learning. When 

transferring knowledge of vibrational frequencies from the 

model for predicting experimental IR spectra to the DFT-

refined model and, ultimately, to the experimental IRIS 

model, the transformer architecture might be better able to 

focus on robust anharmonic frequency correction and IRIS 

band intensity correction in the final step, having already 

gained some understanding for the impact of charge state via 

the intermediate DFT spectra pretraining step. To explore 

this notion, we examined model predictions made at 

intermediate stages of transfer learning. Figure S5C 

highlights an additional explanation for the positive effect of 

the DFT spectra finetuning procedure, which might act as a 

“cleaning” step in our workflow.  Experimental IR spectra 

can contain noise and impurities, leading to extemporaneous 

signals that the model can learn during the training phase and 

subsequently introduce into predictions. By pretraining on 

DFT spectra before training on the IRIS spectra, the model 

learns to eliminate these “noisy” peaks from predictions and 

consider only “real” vibrational features. We also trained an 

uninitialized model (i.e., one not pretrained on absorption IR 

spectra of neutral molecules) on only the DFT library using 

the global charge encoding. Doing so yields 

SISμ = 0.4777 ± 0.0329 (Table 1; row #7). Further 

finetuning of this model (as opposed to evaluating) on the 

experimental IRIS spectra improves the similarity score to 

SISμ = 0.5080 ± 0.0434 (Table 1; row #8). This result 

indicates that training solely on the DFT spectra is not 
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sufficient to yield an accurate IRIS model. Instead, it is 

necessary to first pretrain on experimental IR spectra for 

neutral species.  

UMAP: Uniform Manifold Approximation and 

Projection for Dimensionality Reduction.  To explore why 

pretraining steps are necessary to achieve optimal model 

performance (i.e., what knowledge is passed to Graphormer-

IRIS from transfer learning), we perform dimensionality 

reduction on model embeddings. Figure 5A shows the 

UMAP projection (See Supporting Information: Universal 

Manifold Approximation and Projection) of node 

embeddings generated by Graphormer-IR, illustrating some 

of the “chemical first principles” that might be passed to 

Graphormer-IRIS. This figure exhibits well-defined clusters 

based on atom type and hybridization, demonstrating a 

sophisticated understanding of local chemical environments 

and allowing us to draw three conclusions. First, the 

clustering of specific node level embeddings demonstrates 

that the Graphormer-IR model (i.e., the first pretraining step) 

derives an understanding of the emergent “concept” of 

functional groups without explicit annotation of these 

geometric motifs and their properties. For instance, in Figure 

5A, the embeddings of both the sp2 oxygen (light red) and 

sp2 nitrogen (light blue) moieties are clustered in the vicinity 

of one another on the UMAP plot. Secondly, the embeddings 

for moieties with dissimilar encodings but similar 

vibrational frequencies tend to be clustered. For example, 

the halogens (R-F R-Cl, R-Br, R-I) which produce similar 

vibrational frequencies (ca.550 – 850 cm-1) have similar 

embeddings in the UMAP space (see Figure 5A). Likewise, 

1,3 dipolar species including azides (R-N3), isocyanates (R-

N=C=O), and thiocyanates (R-N=C=S) have similar 

embeddings, which is likely due to the model’s 

understanding of the similar stretching frequencies (ca. 

2,250 cm-1). Lastly, we observe that the UMAP x-dimension 

acts as a proxy for the extent of electron delocalization in 

each molecular ion. At the coarsest grain, the embeddings in 

the most negative x-direction consist largely of sp2-

hybridized carbon moieties and highly conjugated systems 

like pyridines, nitro groups, and aromatic species. Molecules 

in the most positive x-direction largely consisting of alkanes, 

silicon derivatives, and halogenated species. At a finer grain, 

this trend continues where conjugated R-N=C=O moieties 

(e.g., R = benzyl groups) have embeddings shifted to the 

“delocalized” x-direction, relative to those that are not 

conjugated (e.g. R = alkyl groups). At their core, these 

phenomena speak to the derived “chemical intuition” of the 

foundational Graphormer-IR model and demonstrate the 

analogous chemical principles and structure-to-vibrational 

frequency relationships that are being passed to 

Graphormer-IRIS in the transfer learning process. 

  Figure 5B shows UMAP performed for embeddings 

generated by the best performing IRIS model (Table 1, 

Ablation #10). These embeddings cluster similarly to 

Graphormer-IR, but with lower diversity due to the smaller 

IRIS dataset. Figure 5B highlights specific node embeddings 

made for predictions of (E)-hex-2-enoylglycine and 

exemplifies Graphormer-IRIS’s high contextualization of 

charge. The embedding for the carboxylic acid hydroxyl 

group oxygen atom for a deprotonated analyte (circled in 

green, Figure 5B) exhibits a much larger relative shift 

compared to the same hydroxyl moiety in sodiated and 

protonated charge states.

 

Figure 5. UMAP projections for (A) the best performing Graphormer-IR model and (B) the best performing Graphormer-IRIS model. 

Embeddings for panel A (1,200 molecules, 17,530 embeddings) were taken from a random sample of the gas- and condensed-phase test set 

from reference 45, and embeddings for panel B are the complete set of IRIS spectra (312 molecules, 4,166 embeddings). The dimensions for 

all plots are the arbitrary UMAP dimensions. Each point is labelled using the atom type and hybridization as encoded at the graph level using 

the DGL and RDkit featurization functions. Note that carboxylic acid hydroxyl moieties are labelled as sp2 hybridized by the DGL 

featurization functions. Functional group and atom labels were determined by plotting the results of individual molecules/atom embeddings 

after UMAP projection
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This relative shift is also not observed for the deprotonated 

versions of the other heteroatoms in the same molecule 

(circled in purple, Figure 5B). Given this embedding shift, 

we can conclude that Graphormer-IRIS has likely identified 

the site of deprotonation in (E)-hex-2-enoylglycine without 

an explicit annotation of deprotonation (other than the 

nonspecific global charge node). This identification of 

charge moiety is impressive given that this information has 

been learned indirectly from only the IRIS and DFT spectra 

prediction tasks. We can thus conclude that the global charge 

embedding succeeds at communicating molecule-wide 

shifts as a function of charge state (see Figure 4) resulting 

from highly specific and localized embedding shifts 

associated with the most probable sites of charge.  

Conclusions 

   This study demonstrates the application of GNN 

transformers with multi-staged transfer learning to create a 

predictive model of IRIS spectroscopy using only SMILES 

codes as input. To create the Graphormer-IRIS model, 

transfer learning was used to refine the Graphormer-IR 

model via two separate steps: (i) pretraining on DFT-

computed spectra and (ii) refining on experimental IRIS 

spectra. DFT-computed spectra for 10,336 ionic molecules 

were accessed from reference 28, and experimental IRIS 

spectra were obtained for 312 molecular ions. A key addition 

to the molecular graph structures that we used as inputs was 

the introduction of a flexible global node connected to all 

other (atom) nodes by a special edge type. This global node 

was used to describe the molecular charge state (i.e., 

(de)protonated, sodiated). Our best-performing IRIS model 

achieved a test 𝑆𝐼𝑆𝜇= 0.6823 ± 0.0343, which is 9.1𝜎 

(t = 15.9) or ~ 44% more accurate than the original 

Graphormer-IR model (𝑆𝐼𝑆𝜇= 0.4749 ± 0.0228; employing 

no transfer learning)  and ~ 21% more accurate than the 

benchmark quantum-chemical methods (𝑆𝐼𝑆𝜇= 0.5616).28 

Moreover, our ML model predictions require seconds on a 

GPU, rather than hours-to-days for the calculation of a single 

DFT spectrum on a high performance cluster. 28  

    Since the IRIS dataset employed in this study is relatively 

small, transfer learning is necessary to improve model 

generalizability. Borrowing from the field of NLP, we 

pretrain models on simplified versions of a task and with 

synthetic/approximate data, or by analogy, to provide the 

models with a more knowledgeable starting point. This 

approach ultimately improves prediction accuracy. Here, we 

explored using experimental IR spectra for neutral species 

and DFT-computed harmonic vibrational spectra for 

molecular ions for pretraining purposes.28 The optimal 

scheme was first pretrained on the experimental IR spectra 

for neutrals, followed by an intermediate refinement step 

that used DFT spectra, then final refinement and transfer of 

information to the IRIS spectral predictions. Fine-tuning 

models on DFT spectra provided Graphormer-IRIS with an 

improved understanding of charge and additional examples 

of metabolite IRIS spectra. This approach might also 

effectively act as an intermediate “cleaning” step, where 

spectral noise found in the gas/condensed IR spectra are 

eliminated. 

     The ability of Graphormer-IRIS to accurately predict the 

(often dissimilar) spectra associated with different charge 

states of the same molecule arises from the richness of the 

description generated by the global charge node. For 

example, Graphormer-IRIS captures subtle effects such as 

shifting band positions due to hydrogen bonding interactions 

and red-shifting of carbonyl frequencies upon sodium 

adduction. The use of UMAP visualization provides 

additional explainability, demonstrating that the initial 

embeddings of the Graphormer-IR model provide a rich 

description of chemical structures, leading to an emergent 

understanding of functional groups and generalized trends in 

how electron density impacts IR frequencies. These rich 

embeddings provide the foundation of understanding for the 

successful predictions made by Graphormer-IRIS via 

transfer learning. Similar dimensionality reduction of the 

final Graphormer-IRIS models shows that its embeddings 

retain the knowledge of functional groups from Graphormer-

IR, and that the charge encoding communicates a contextual 

understanding of likely sites of charge state derived from the 

global charge node. Given the richness of the “learned” 

chemical intuition that we observe in our model, we 

speculate that experimental IR(IS) data are an avenue to train 

“generalist” foundational deep learning frameworks by 

describing the patterns in molecular structure and bonding 

that are not obvious from a simple molecule graph.61,62   

   To employ IRIS as a tool for annotation of unknown 

features detected by mass spectrometry or for self-driving 

process optimization, it is necessary to overcome the current 

issues of data scarcity and the complex nuances of molecular 

charge. Here, we achieved this using multi-staged transfer 

learning to pass a learned “chemical intuition” from one 

model to another. Although a meaningful step forward, there 

remains a great deal to accomplish en route to improved MS 

feature annotation. For example, Graphormer-IRIS can 

provide accurate spectral predictions for small molecule 

metabolites, but our experimental training set requires 

significant expansion to create a generally applicable model. 

Such a model could be used as a discriminator for non-

targeted MS feature annotation. ML-predicted IR and IRIS 

spectra could also prove valuable in a closed-loop self-

driving framework for process optimization.  
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