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Abstract

Heterogeneous catalytic pathways for clean energy conversion involve thousands

of elementary steps, but most quantum-mechanical models involve only a few dozen

reactions. We combine extensive density functional theory (DFT) calculations, ma-

chine learning (ML) for activation barrier prediction, and human intelligence-inspired

reaction enumeration and elementary reaction identification. This enables automated

kinetic modeling of CO2 hydrogenation on copper, a key process to produce fuels and
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chemicals. We construct the largest dataset of 152 elementary CO2 reduction reac-

tions and experimentally determine CO2 conversion, finding that even large networks

with 100+ reactions are insufficient. In contrast, our approach reveals 9389 elementary

reactions, reducing human bias in the reaction pathway. We unravel 40-fold higher

CO2 conversion rates, following experimental trends of methanol and CO production.

We establish the crucial role of intermolecular hydrogen transfer and hydrogenation

by molecular hydrogen, a surprising ML-enabled discovery validated post-facto. The

proposed strategy to comprehensively model complex catalytic mechanisms will signif-

icantly advance catalysis research and carbon conversion processes.

Introduction

Catalytic reaction pathways are invariably complex, involving thousands of elementary steps

interconnecting hundreds of reaction intermediates.1–3 However, computational studies often

investigate only a few dozen elementary reactions and aim to explain experimental trends

such as catalytic activity, yield, and selectivity.3,4 The major factor necessitating the con-

sideration of a limited number of reactions is that it is infeasible to simulate thousands of

reactions even on state-of-the-art supercomputing facilities. Indeed, locating the transition

state for a reaction is very expensive, requiring ≈10k CPU core hours.5 Considering a net-

work with 10,000 reactions, it would take ≈ 47 years to compute all activation barriers with

240 CPU cores. Although previous studies on large reaction networks used scaling relations

for activation energies or relied on reaction energies,2,6 developing frameworks that can cor-

rectly predict the outcomes of massive (> 1k) reaction networks is an unsolved challenge.

In addition to the challenges of accurately predicting activation barriers, there are no gener-

alizable approaches available to accurately identify plausible elementary steps in a reaction

mechanism apart from database-based mechanism generators.7–9 Moreover, no studies have

demonstrated the kinetic modeling of large reaction networks or compared their predictions

carefully with experimental data.
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In this regard, machine learning (ML) in conjunction with automation and high-throughput

computation strategies can accelerate catalyst and mechanism discovery10 for complex pro-

cesses such as carbon dioxide (CO2) conversion. Here, we formulate a multi-faceted, end-

to-end, and data-driven strategy to tackle the chemical complexity in reaction mechanisms

via ML and mechanism discovery. Copper (Cu) is an effective catalyst that hydrogenates

CO2 to hydrocarbons such as methanol and methane,11–13 when combined with metals such

as Fe,14,15 demonstrating the potential to enable C-C coupling reactions that lead to >C2-

products.16 We comprehensively investigate thermocatalytic CO2 hydrogenation targeting

several possible C1-C4 hydrocarbons/alcohols (e.g., methane, methanol, ethane, ethylene,

acetylene, ethanol, propionaldehyde, propanol, butanol, etc.) on Cu(111) (Figure 1a) via ex-

tensive quantum-mechanical simulations. A subset of the manually drawn reactions studied

using density functional theory (DFT) leading to only C1 and C2 products from CO2 reduc-

tion can be seen in Figure 1b, and some exemplary transition states are shown in Figure 1c.

The DFT calculations and reaction network for C3 and C4 products can be seen in Section

S1. Overall, we examined 152 elementary reactions via DFT, which is significantly more

comprehensive compared to previous computational studies and forms the largest database

of activation barriers for elementary CO2 hydrogenation reactions till date.3,4,17–19

We considered several key classes of reactions, e.g., 109 hydrogenation/dehydrogenation

reactions, 11 C-C coupling, and 32 oxygenation/deoxygenation/dehydroxylation reactions.

In reality, these numbers would be much higher, along with the possibility of other classes

of reactions, e.g., isomerization and oxygen/hydrogen hopping. This is revealed by the

automated reaction enumerator and elementary reaction identifier developed herein. For in-

stance, CO2 to C1 products (Figure 1a) involves 386 surface reactions with 25 intermediates.

Including both C1 and C2 products, this number increases to 1622 with 50 intermediates

and would further grow exponentially upon including C3-C4 products. To make such a

massive network computationally tractable, we develop a physics-inspired ML model to di-

rectly predict activation (free) energies of elementary reactions based on reaction energies,
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Figure 1: Complexity of the CO2 hydrogenation mechanism considered in this work via
comprehensive DFT calculations. (a) All C1-C4 products from CO2 hydrogenation modelled
in this work. (b) A manually curated reaction network of CO2 hydrogenation, producing
all aforementioned C1 (orangish background) and C2 products (bluish background). The
reaction starts from the leftwards double arrow with the label “Start”. The products are
highlighted in squared boxes. The free energies of activation, computed at 298.15 K, are
colour-coded and can be seen with the description given in the legend. The abbreviations
“ads” and “des” stand for adsorption and desorption steps, respectively, and all such steps
are depicted with black arrows. (c) Exemplary CH3CHO*-CH2CHO* and CH3CHO*-CO*
coupling steps with their transition states.
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molecular fingerprints, and reaction features (Figure 2a-b). Indeed, although neural network

potentials based on ML are being explored for structural optimization, they are currently

not accurate enough to predict transition states for arbitrary reactions without quantum

chemistry assistance,20 requiring more physically grounded approaches. In addition, we de-

velop an optimization framework that enumerates all possible surface reactions based on

the number and types of adsorbates given (Figure 2c). Moreover, we advance a molecular

similarity-based algorithm for elementary reaction screening, mimicking human reasoning

(Figure 2d). Finally, we employ automated microkinetic modeling (MKM) to enable the ac-

curate study of thousands of surface chemical reactions involved in thermocatalytic carbon

dioxide hydrogenation on Cu(111) (Figure 2f). We compare our predictions with experi-

mental measurements, demonstrating the criticality of our approach in predicting reaction

outcomes, such as production rates and selectivities.

Results

Creation of the DFT database of reaction and activation free energies

We explored numerous C1-C4 products from CO2 via various reaction pathways (Figure 1b,

Section S1), with many explored here for the first time. Our thermodynamic and kinetic

analyses support the formation of HCOO* (formate) compared to COOH* (carboxylate).

We found that it is more favourable to form HCOOH* (adsorbed formic acid) than H2COO*

via direct hydrogenation. Interestingly, we determined that the cross-species reactions of

HCOO* and HCOOH* with CHO* have low barriers, which encourages exploration of more

such reactions. Our simulations predict that H2COOH* would undergo dehydroxylation

to directly form CH2O* (adsorbed formaldehyde). Regarding the formation of CO*, our

DFT analysis indicates the dehydrogenation of CHO* that forms upon dehydroxylation of

HCOOH* to be the likely pathway. CO* hydrogenates more favourably to CHO* (than

COH*), which is an important intermediate in the formation of various C1-based prod-
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Figure 2: Automation workflow involving DFT, automated reaction enumeration, elemen-
tary reaction identification, ML, and MKM. (a) Generation of different adsorbates on the
Cu(111) catalyst surface. (b) Geometry optimization of adsorbates on the catalyst surface
and locating the transition-state structures for all the listed reactions using DFT. (c) Au-
tomated reaction enumeration using adsorbate structural information. (d) Identification of
the elementary reactions from a pool of all possible reactions suggested by automated re-
action enumeration. (e) Development of two different ML models to predict i. activation
energy from reaction energy, and ii. activation free energy from activation energy. (f) MKM
based on all possible elementary reactions suggested by the elementary reaction identification
framework. The typical MKM workflow based on DFT-derived reactions involves steps a-b-f,
while the newly proposed, automated MKM workflow based on DFT, automated reaction
enumeration, elementary reaction identification, and ML involves steps a-b-c-d-e-f.
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ucts via CH*, CHOH*, and CH2O* (orangish background section in Figure 1b). Moreover,

CHO* can favourably undergo self-condensation to produce CHOCHO* (adsorbed glyoxal),

the first signature of a C2 hydrocarbon. CHOCHO* acts as a building block for longer-chain

molecules, hydrogenating to form a vinyloxy species (CH2CHO*), which is a precursor to ac-

etaldehyde (CH3CHO). Vinyloxy follows sequential hydrogenation to yield ethanol (Section

S1). We predict that ethylene (CH2CH2) could be formed via hydrogenation of CHCH*,

which is formed by self-condensation of CH*. For the formation of C3 and C4 products,

CH3CHO is the key intermediate as in electrochemical pathways.18 C3 products form by

the carbonylation of acetaldehyde to CH3CHOCO* (Figure 1c), leading to the synthesis of

various C3-products such as propanol, propane, propylene, propionaldehyde, allyl alcohol,

and propyne. The activation free energies in the favourable pathways for most C3-products,

except for non-oxygenates, remain below 1 eV (Section S1). The formation of C4 products

can occur via the cross-condensation of CH3CHO* and CH2CHO* (Figure 1c), with a lower

kinetic barrier than the formation of a C3-backbone. Moving forward, the adsorbed C4-

backbone, i.e., CH3CHOCH2CHO*, undergoes hydrogenation to produce 3-hydroxybutanal

(CH3CHOHCH2CHO). This molecule can favourably undergo dehydrogenation and dehy-

droxylation to produce crotonaldehyde (CH3CHCHCHO), which can hydrogenate to pro-

duce butanal (CH3CH2CH2CHO) and crotyl alcohol (CH3CHCHCH2OH). Both butanal and

crotyl alcohol can be hydrogenated favourably to produce butanol. Overall, the proposed

reaction network is the most comprehensive one for C1 to C4 pathways so far and forms the

basis for our detailed study.

Machine learning (ML) of activation (free) energies

Previously, the Brønsted–Evans–Polanyi (BEP) relationship has been utilized to correlate

activation and reaction energies. However, this scaling relationship often fails when consid-

ering different types of bond scission/formation. For our dataset, the BEP relation performs

poorly with low goodness of fit (R2) and mean absolute error (MAE) of 0.48 and 0.22 eV,
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respectively, when fitted over the complete dataset. Recently, some research groups have

developed ML models for activation energies,5,21–23 trained using data from the literature

or open-source databases like Catalysis-Hub,24 RMG-Cat,25 Materials Project,26 and the

ChemCatBio Database, bringing non-uniformity in the dataset due to different DFT func-

tionals, parameters, and structures. We use our comprehensive in-house DFT data of 304

activation barriers (including both directions of reactions) to develop ML models for the pre-

diction of activation energy from reaction energy (AE-RE) and activation free energy from

activation energy (AFE-AE) with a high degree of reliability and accuracy. Figure 3a shows

the ML workflow, from getting the coordinate files from the DFT calculations to predicting

activation free energies and carrying out MKM.

The AE-RE ML model predicts activation energy from reaction energy and various re-

action/molecular features and Morgan fingerprints (Section S2). We mainly used decision

tree-based models for the AE-RE ML model due to their interpretability and robustness. We

compared several regression models, whose MAE and R2 for both training and test sets after

cross validation and hyperparameter tuning (Section S3) are illustrated in radial bar graphs

in Figure 3b. CatBoost offered similar MAE and R2 on the training set as the gradient

boosting model but on the test set, CatBoost outperformed all other models with an MAE

of 0.13 eV and R2 value of 0.82 (parity plot in Figure 3e). This led us to choose the CatBoost

algorithm for the AE-RE ML model. We examined the importance of the various features

in the AE-RE ML model using SHAP (SHapley Additive exPlanations) values.27 Figure 3c

illustrates the essential features and Figure 3d depicts the visual representation of the im-

portant bits according to SHAP values, in which the reaction energy emerged to be the most

important one for activation energy prediction. However, other features such as C-H, C-OH,

and CO-H bonds also are essential. The AFE-AE model was trained using activation energy,

temperature, molecular and reaction features, via a ridge regressor. Figure 3e depicts the

parity plots for both ML algorithms used in this study. Clearly, the ridge regressor works

well, as evidenced by the high R2 values and low MAE values (0.06 eV for both training and
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Figure 3: Machine learning models for the predictions of activation energy and activation
free energy. (a) overall machine learning workflow starting from .xyz files to provide input
for the MKM Model. (b) AE-RE model performance on train and test sets. (c) Feature
importance analysis for the AE-RE model calculated using SHAP. (d) Morgan fingerprint
bits of high importance in the AE-RE model and their representations. (e) Parity plots for
both models, namely AE-RE and AFE-AE ML models.

9

https://doi.org/10.26434/chemrxiv-2025-pnh6l ORCID: https://orcid.org/0000-0003-2462-0506 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-pnh6l
https://orcid.org/0000-0003-2462-0506
https://creativecommons.org/licenses/by-nc-nd/4.0/


test sets). This model was five-fold cross-validated to evaluate its robustness (Section S3).

Automated reaction enumeration and elementary reaction identifi-

cation

Our exhaustive reaction enumeration framework is realized by an integer linear programming

framework, which determines all possible reactions that may occur on the catalyst surface.

It requires the representation of adsorbed species in SMILES (simplified molecular-input

line-entry system) form and their corresponding DFT energies and uses physical constraints

such as mass balances, participation of two species in a reaction, non-existence of a species

among both reactants and products, and at most two species among reactants and products.

A detailed formulation can be found in the Methods (Section S4) and Section S5. Upon

supplying all the SMILES strings of 105 adsorbates and their DFT energies, a total of

104723 reactions (including both elementary and non-elementary reactions) was obtained.

Identifying elementary reactions, i.e., those with a single transition state, is a crucial

step before MKM. We leveraged molecular similarity metrics to decide on the elementarity

of a reaction in an automated manner by determining which species among the reactants

and products to compare to obtain the number of bonds formed/broken, mimicking human

intelligence. The elementary reaction identification framework is implemented via a Python

code assisted by the RDKit module and checks that the number of bonds (C-H, C-O, and

C-C) being broken plus those being formed does not exceed two for an elementary reaction.

Figure 4a depicts the workflow of the elementary reaction identification framework and the

major rules associated with it (see also Methods in Section S4, and Section S6). We validated

our framework with a set of 388 randomly selected and manually labeled reactions, making

sure that it contained all types of intermediates (C1, C2, C3, and C4). We found that

our framework correctly classifies each reaction, achieving 100 % accuracy on the test set of

reactions. Using this approach, the automatically enumerated reactions were narrowed down

to 9237 elementary reactions (excluding the 152 manually enumerated reactions), consisting
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of 8088 hydrogenation/ dehydrogenation, 117 C-C coupling/ decoupling, 980 oxygenation

deoxygenation/ dehydroxylation, and 52 isomerization reactions. The comparison between

the number of reactions constructed manually and generated via the automated framework

is depicted in Figure 4b, demonstrating the importance of our approach to avoid human bias

towards certain classes of reactions.

Comparing MKM of manually curated (152) and automated (9k)

reactions

We first compared the microkinetic results of the 152-reaction network using DFT- and

ML-based barriers, demonstrating an excellent match and providing confidence in the ML

model (Section S7). We then proceeded to compare two MKM models: the first based

on our database of 152 manually curated reactions with DFT-derived free energetics and

the second based on 9389 automatically generated elementary reactions with ML-derived

free energetics including the above 152 reactions. We employed gas-phase corrections28–31

for CO to obtain the correct adsorption energy on Cu(111)32 (Section S8), whereas CO2

required no correction. A depiction of the production rates from both MKM models at

varying temperatures and a fixed pressure of 50 bar is given in Figure 4c. The manual

MKM, although state-of-the-art as compared to previous studies due to its extensive nature,

predicted formic acid as one of the major products, as opposed to methanol, which is seen

in experiments (Figure 5; see also refs.4,33,34). Moreover, methanol’s production rate was

O(10−6) mole m−3 s−1 (Figure 4c). In contrast, for the automated MKM model based on

the extensive set of reactions, the production rates and product distribution closely followed

experimental trends (Figure 5). The automated implementation increased production rates

by more than an order of magnitude and led to the formation of more methanol than formic

acid, in agreement with experiments. Further, the methanol production rate decreased with

increasing temperature, which is also seen in experiments. Note that the objective of this

study is not to quantitatively match experimental results via fitting parameters but to match
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Figure 4: Contrast between the elementary reactions enumerated manually and automat-
ically, and the automated and manual MKM predictions. (a) Elementary reaction iden-
tification workflow consists of one global logical check (in green) and three local logical
checks (in blue). (b) Classification of manual and automated reactions into the categories
hydrogenation/dehydrogenation, oxygenation/deoxygenation, C-C coupling/decoupling, and
isomerization. (c) Production rate from MKM modeling of the automatically enumerated
reactions and manual reactions with initial feed mixtures CO2:H2=1:3 at 50 bar pressure,
over the temperature range of 400-800 K. (d) CO2 hydrogenation pathway to methanol with
the highest flux for automatically enumerated reactions at 500K and 50 bar. Pale orange,
blue, cream, and green background blocks depict major reactants, surface intermediates,
co-reactants (*/H*/H2*), and products, respectively. Values for species marked with an as-
terisk (*) indicate fractional coverages, while the others represent partial pressures in bar.
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them qualitatively and highlight the importance of accounting for all possible elementary

reactions rather than just a few tens of reactions.

Revealing the precise mechanistic pathways of the major products

Several theories abound on the formation mechanism of methanol via CO2 hydrogenation,

but none of them account for all possibilities and types of surface reactions. The inclusion of

various types of reactions allowed us to clearly determine the actual course of the formation

of various product species. For methanol production (Figure 4d), the mechanism starts with

CO2 adsorption followed by its hydrogenation to formate via surface hopping of the hydrogen

atom of an adsorbed hydrogen molecule (CO2* + H2* ⇀↽ HCOO* + H*) rather than with

an adsorbed hydrogen atom (H*). This is a surprising finding since the latter is often

considered to be the main hydrogenation mechanism of CO2*. To validate the favorability

of the heretofore unexplored molecular hydrogenation pathway, we carried out explicit DFT

calculations, which verified that hydrogenation by molecular hydrogen, as revealed by the

ML-backed MKM, is indeed faster (Table 1).

Table 1: Hydrogenation reactions via molecular/atomic hydrogen and their free energy bar-
riers at 500 K calculated using DFT.

Reaction Hydrogenation type Gact (in eV)

CO2* + H2* ⇀↽ COOH* + H* / CO2* + H* ⇀↽ COOH* H2* / H* 0.61/1.43

CO2* + H2* ⇀↽ HCOO* + H* / CO2* + H* ⇀↽ HCOO* H2* / H* 0.18/0.64

HCOOH* + H2* ⇀↽ H2COOH* + H* / HCOOH* + H* ⇀↽ H2COOH* H2* / H* 0.54/0.91

CH3O* + H2* ⇀↽ CH3OH* + H* / CH3O* + H* ⇀↽ CH3OH* H2* / H* 0.44/1.06

Nevertheless, the hydrogenation of HCOO* to produce adsorbed formic acid (HCOOH*)

does occur using an H*, following which, the formation of H2COOH* again occurs with a

hopping of hydrogen atom from H2* (Table 1). Next, dehydroxylation of H2COOH* yields

CH2O*, which, with the assistance of adsorbed atomic hydrogen, forms CH3O*. Further

hydrogenation of CH3O* to produce CH3OH* occurs with surface H2* (Table 1) followed

by the desorption of CH3OH* to yield methanol. The production of CO (the other major
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experimental product) follows the carboxyl pathway: adsorbed CO2* hydrogenates, assisted

with hopping of hydrogen atom from H2*, to produce COOH*, which then dehydroxylates

to CO* followed by desorption to gas-phase (Section S6).

Experimental validation of the automated MKM predictions for CO2

hydrogenation on copper

We performed an experimental investigation of CO2 hydrogenation on Cu/SiO2 catalysts,

with the silica support purposefully selected to provide an inert carrier to finely disperse cop-

per species (see Methods in Section S4, and Section S9). Briefly, the synthesized crystalline

CuO nanoparticles were reduced to metallic copper, as confirmed by powder X-ray diffraction

(Figure 5a), hydrogen temperature programmed reduction (Figure 5b), X-ray photoelectron

spectroscopy (Figure 5c), and transmission electron microscopy (Figure 5d,e). Catalytic tests

were performed using an Incoloy 800H tubular fixed bed reactor system equipped with online

gas chromatography by feeding H2/CO2 = 3 at 50 bar pressure and in the temperature range

of 483-523 K. Details on catalytic experiments, product analysis, and performance calcula-

tions are provided in Section S9. Figure 5h and 5i depict the CO2 conversion and product

selectivity, respectively. We observed that the CO2 conversion rate increases with increasing

temperature due to Arrhenius effects, mainly converting into CO and methanol, with the

former being the major product (Section S9). The selectivity of methanol was ≈10% at 483

K, decreasing with an increase in temperature. This phenomenon can be exactly seen in the

predictions of our MKM model based on automated reactions, which shows an increment

and decrement in the production rates of CO and methanol, respectively, with increasing

temperature (Figure 4c). The absence of methane from the experimental CO2 hydrogenation

product mixture can be associated with the kinetically demanding dehydroxylation reaction

of methanol (∆Gact = 1.69 eV) to produce methyl.
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Figure 5: Characterization and catalytic data for Cu/SiO2 catalyst in CO2 hydrogenation
reactions. (a) XRD patterns, (b) H2-TPR, (c) XPS Cu 2p, (d-g) TEM images of fresh
(black lines/borders) and spent (blue: after CO2 hydrogenation) Cu/SiO2 samples. (h,i)
CO2 conversion rate (R) and product selectivity (S) in CO2 hydrogenation over Cu/SiO2 at
50 bar, H2:CO2 = 3, GHSV = 7200 cm3 h-1 g-1.
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Conclusions

To enable the automated exploration of massive reaction networks, we developed new frame-

works for physics-inspired ML-based prediction of activation (free) energies, automated re-

action enumeration, and human-intelligence-inspired elementary reaction identification. We

circumvented the issue of considerable complexity in activation energy calculations using

DFT by building a robust ML model on our dataset consisting of 152 reactions, the largest

set of elementary catalytic CO2 reduction reactions ever explored till now using DFT. The

combination of automated reaction enumeration and elementary reaction identification gen-

erated an extensive set of 9389 surface reactions that were utilized in the MKM model.

We subsequently compared two MKM models: one based on the 152 manually curated re-

actions and the other based on the 9389 automatically generated ones. With our newly

devised approach combining DFT, automated reaction enumeration, elementary reaction

identification, ML, and MKM, experimental trends of methanol production on Cu(111) were

convincingly explained. In contrast, the smaller reaction network, even though significantly

larger than previously considered networks, wrongly predicted more formic acid production

than methanol and led to a much lower CO2 conversion rate, juxtaposed to experimen-

tal results. We also unraveled the precise reaction mechanism leading to the formation of

methanol and carbon monoxide, revealing the critical role of previously unexplored hydrogen-

transfer and molecular hydrogenation reactions. The strategy developed here can also be

readily applied to any thermochemical or electrochemical processes, including CO(2) reduc-

tion/hydrogenation, nitrogen reduction, and water splitting.11,35–37 Future directions can

involve generative artificial intelligence for enumerating possible reaction intermediates and

improvements in neural network potentials for accurate activation barriers, which can be

used in our framework. Overall, our study will significantly accelerate the study of complex

chemical mechanisms, enabling better predictions and deep chemical insights, particularly

into thermochemical CO2 reduction, which is a crucial chemical conversion process for a

cleaner future.
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