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Abstract 

The stability of a nanoparticle catalyst during electrochemical reaction is crucial for its 
application. Despite increasing interest in multi-metallic alloy nanoparticles, such as high-
entropy alloys (HEAs), for electrocatalysis and emerging models for their catalytic activity, there 
is limited work on frameworks that can predict the metastability of these alloys under reaction 
conditions, including stability against electrochemical surface dissolution. Incorporating 
electrochemical stability in multi-objective optimization would advance HEAs as a catalyst 
discovery platform. To address the knowledge gap on electrochemical stability, we propose a 
methodology for simulating the dissolution of n-element alloy nanoparticles comprised of 
density functional theory and machine learning regression to calculate the dissolution potentials 
of the surface atoms. We demonstrate the methodology for the Ag-Au-Cu-Ir-Pd-Pt-Rh-Ru HEA 
system with the conditions of the oxygen reduction reaction. We investigated trends in stability 
against dissolution through a compositional grid search for the octo-metallic composition space, 
uncovering two alloying strategies to increase stability against electrochemical surface 
dissolution: Alloying with a noble metal or a metal with high relative surface energy. In the 
simulations, stabilization ensues from forming a protective surface layer, and consequently, the 
dissolution of persistent alloyed nanoparticles results in core-shell structures. The model 
enables tracing the evolution of the surface and dissolved composition during electrochemical 
dissolution, forming paths of dissolution and revealing unretainable surface compositions.  
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1 Introduction 

Catalysts are set to play an essential role in achieving a full transition to renewable energy 
sources1-4. One key aspect is the electrochemical splitting of water to store renewable energy as 
green hydrogen and its subsequent use in fuel cells1,5-8. The limiting reaction in hydrogen fuel cells 
is the cathodic oxygen reduction reaction (ORR), for which Pt/C is the benchmark catalyst6,9-11. 
Besides Pt not being the theoretical optimal catalyst9,12, it is an expensive and scarce element, 
which hinders large-scale application7,10,11,13. Thus, replacing Pt or reducing the amount of Pt, 
increasing the catalytic activity per Pt atom through alloying, is of great interest14-16.  

Employing nanoparticles as catalysts increases the efficiency in utilizing the catalytically active 
materials through a high surface-to-volume ratio14. A challenging aspect of the ORR is the 
electrochemical instability due to acidic electrolytes and relatively high operating potentials, 
causing a significant loss in activity over time due to a decreasing active surface area, which has 
been studied extensively for Pt and Pt binary alloy nanoparticles14-22. The primary attributed 
mechanisms for the electrochemical degradation of Pt nanoparticles in the ORR environment are 
Ostwald ripening, agglomeration, particle coalescence, and dissolution of the metal into the 
electrolyte, for which dissolution has been reported as a predominant degradation 
mechanism18,19,23-27. Although significant progress has been made in understanding and modeling 
electrochemical dissolution and re-deposition, considerable knowledge gaps persist 24,28-32. To 
address these challenges, detailed models of single-metal electrodes have been developed, 
incorporating the effects of the solvent as well as electron- and ion-transfer mechanisms33,34. 
Encapsulating all the convoluted degradational effects and mechanisms within one model for 
multiple alloyed elements is thus a daunting task.  This study will, therefore, focus on developing 
a straightforward approach to modeling the dissolution of alloy nanoparticles to broaden and 
generalize the understanding of nanoparticle stabilization against dissolution in reaction 
conditions.  

High-entropy alloys (HEAs), consisting of five or more metals randomly distributed in the lattice 
in near-equal amounts, have gained increasing interest as catalysts35-40. Their random 
configuration of metals provides an array of different adsorption sites, resulting in 
compositionally tunable distributions of adsorption energies41-43. To generalize alloy optimization 
and to investigate compositional trends enabled by the continuous composition space of HEAs, 
theoretical work has modeled catalytic activity on HEAs facilitated by machine-learning 
regression models trained on density functional theory (DFT) calculations of adsorption 
energies43-47. In contrast, as highlighted in a recent review48, there is currently no theoretical 
foundation, no applicable descriptors, and only limited experimental data on the 
electrochemical stability of alloy nanoparticles, including HEAs. A theoretical model, in 
combination with established activity models, would enable a comprehensive HEA catalyst 
optimization by multi-objective optimization, fully utilizing HEAs as a catalyst discovery platform. 
While initial steps toward this approach have been taken49, a significant potential remains for 
more advanced modeling of stability under reaction conditions. Preliminary work on a theoretical 
model for electrochemical stability, conducted by some of the authors50, simulated the 
dissolution of mixed Au-Pd nanoparticles by removing surface atoms according to their 
coordination number (CN). From DFT, they obtained distributions of dissolution potentials for 
which each metal in different surface structures dissolves. They found that adding a non-
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corrosive element (Au) in relatively small amounts, e.g., 20 atomic percent (at. %), increases the 
stability of the Pd nanoparticle against dissolution. In the present study, we expanded on this 
model by generalizing the dissolution process. To achieve this, we constructed a regression 
model to calculate the dissolution potential of surface atoms present on multi-metallic 
nanoparticles within the Ag-Au-Cu-Ir-Pd-Pt-Rh-Ru HEA system. 

With the presented methodology, we provide a theoretical framework for uncovering the driving 
forces and limiting factors of electrochemical stability against the dissolution of multi-metallic 
nanoparticles. Furthermore, the developed model should be comparable with experiments, e.g., 
by tracking the dissolved composition of a given multi-metallic system with Inductively Coupled 
Plasma (ICP) Spectroscopy51. With ORR as the demonstrating reaction, stability is quantified to 
form a composition space for stability by considering the relative amount of (111) surface atoms 
before and post-dissolution, with the (111) surface assumed to be the more active surface for 
ORR. Following the work on adsorption energies of HEAs43,44, a regression model is trained on DFT 
simulations and employed to calculate the dissolution potentials of individual surface atoms 
based on their immediate atomic environment. The regression model uncovers atomistic effects 
to decrease or increase the surface dissolution potential relative to the bulk dissolution potential. 
These effects are related to the relative surface energies of the alloyed elements, which, along 
with each metal’s bulk dissolution potential, i.e., reduction potential, influence stability on a 
particle scale and the resulting surface composition. Finally, the dissolved structures show 
surface passivation, resulting in core-shell nanoparticles consistent with the literature, and 
tracking the changing surface composition reveals paths through composition space. 

2 Methods 

The workflow for modeling the electrochemical dissolution, illustrated in Figure 1, entails 
predicting the dissolution potential of individual surface atoms of a simulated nanoparticle. 
Combinatorically, an unfathomable number of possible configurations of HEA nanoparticles 
exist with just a specific size, shape, and composition. Therefore, we propose to consider the 
surface atoms locally, which enables calculating the energetic cost of dissolving surface atoms 
from surface slabs of different structures and compositional configurations with DFT, to build a 
training set for a machine-learning regression model. The final part of the framework is 
implementing the energy regression model to calculate and update dissolution potentials to 
simulate dissolution. 

 

Figure 1: Workflow of the presented methodology, illustrating the use of DFT simulations to calculate 
change in energy to build a regression model that calculates and updates dissolution potentials during 
simulation. 
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2.1 Density Functional Theory Calculations  

The energy change (Δ𝐸) associated with removing an atom from a surface structure is determined 
through DFT calculations using Equation 1, where 𝐸𝑠𝑙𝑎𝑏  and 𝐸𝑠𝑙𝑎𝑏−1  are the energies of the 
structure before and after removing the target atom, respectively. 𝐸𝑏𝑢𝑙𝑘 is the bulk energy of the 
target atom (listed in Table S1). The local structure of the surface atom to remove, referred to as 
the target, is reduced to its immediate coordination environment. Each CN, ranging from 3 to 9, 
is modeled by a representative structure shown in Figure S1 and listed in Table S2. The structures 
model the surfaces present upon initialization of the particle, illustrated in Figure S2, namely, (111) 
and (100) facets, edge, and kink (corner) surfaces, in descending CN order from 9 to 6. Lower CNs 
(3, 4, and 5), occurring as the number of defects from dissolution increases, are modeled by 
adatoms on the (111), (100), and edge surfaces, respectively. 

Δ𝐸 = (𝐸𝑠𝑙𝑎𝑏−1 + 𝐸𝑏𝑢𝑙𝑘) − 𝐸𝑠𝑙𝑎𝑏 (1) 

A detailed description of the DFT calculations is provided in Section S1 of the Supporting 
Information (SI). The calculations cover both single metals and HEA structures. As it is infeasible 
to calculate all possible configurations within the HEA system with DFT, a subset from 100 
uniformly drawn compositions was constructed as training data for a machine-learning 
regression model. On each surface, the target was substituted with each metal, creating 100 data 
points of each CN for each metal. A total of 6000 HEA structures were calculated. Relaxed 
structures deviating from their assigned surfaces and CNs were disregarded from further analysis 
according to the criteria described in Section S1. An overview of the discarded structures is 
provided in Table S3. 

2.2 Energy Regression Model 

Comparing the DFT results for the single metals and HEAs in Figures S3 and S4 reveals that the 
HEAs data presents a distribution for each CN for each metal. The constructed model includes 
the location of the distribution as a parameter, i.e., target metal and CN, while accounting for the 
neighboring environment as perturbations to capture the distributions. In this initial study, we 
restrict the regression model to only considering the identity of the neighboring metals 
surrounding the target atom. A more precise feature is attainable by considering the position of 
the neighbor atoms and their CNs. However, to make such a model viable in the simulation, 
several additional structures for each CN that contain more than the current single defect would 
be needed because, as the particle dissolves, the surfaces will gain more defects and, thereby, 
the neighboring atoms will have lower CN than the calculated surfaces.  

Therefore, a linear approach is adopted to ensure simplicity and interpretability. The linear model 
employs a multilinear regression for each target metal, one-hot encoding the CNs while encoding 
the neighboring metals by relative frequency. The predicted change in energy of a target element 

(Δ𝐸𝑝𝑟𝑒𝑑
𝑡𝑎𝑟𝑔𝑒𝑡) is thereby given by Equation 2, where  𝐸𝐶𝑁

𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐸𝑚𝑒𝑡𝑎𝑙
𝑡𝑎𝑟𝑔𝑒𝑡 are the learned parameters 

describing the energy of the CN of the target metal and each neighboring metal’s perturbation to 
it, respectively. 𝑁𝑚𝑒𝑡𝑎𝑙  denotes the number of the given metal in the coordinating atoms. 

Δ𝐸𝑝𝑟𝑒𝑑
𝑡𝑎𝑟𝑔𝑒𝑡

= 𝐸𝐶𝑁
𝑡𝑎𝑟𝑔𝑒𝑡

+
1

𝐶𝑁
∑ 𝐸𝑚𝑒𝑡𝑎𝑙

𝑡𝑎𝑟𝑔𝑒𝑡
⋅ 𝑁𝑚𝑒𝑡𝑎𝑙

𝑚𝑒𝑡𝑎𝑙∈𝑚𝑒𝑡𝑎𝑙𝑠

 (2) 
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The regression model was optimized using Sequential Least Squares Programming, in which the 

parameters for CN=6 (𝐸𝐶𝑁=6
𝑡𝑎𝑟𝑔𝑒𝑡) and the perturbation of the target metal itself (𝐸𝑚𝑒𝑡𝑎𝑙=𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑎𝑟𝑔𝑒𝑡 ) were 

constrained to zero. Thus, the learned parameters are relative to the single metals at CN=6. The 
regression model was validated through leave-one-out cross-validation, obtaining a mean 
absolute error of 0.140 eV with the performance illustrated by a parity plot in Figure S5. The 
parameters are shown in Figure 2a and listed in Table S4. In Figure S6, the neighbor parameters 

(𝐸𝑚𝑒𝑡𝑎𝑙
𝑡𝑎𝑟𝑔𝑒𝑡

  in Equation 2) are plotted against relative surface energies showing a correlation. 

 

Figure 2: a) The regression model parameters and b) the regression model used on a partly dissolved 
nanoparticle to calculate dissolution potentials (bottom right) from considering the elements (top left), CN 
(top right), and Δ𝐸 (bottom left) using Equation 5. 

2.3 Dissolution Potential 

The dissolution potential (𝑈𝑑𝑖𝑠𝑠) is given by Equation 350,52,53, where 𝑛 is the number of transferred 
electrons in the redox reaction, 𝑒 is the electron charge, 𝑈𝑀  is the reduction potential of the target 
metal, and Δ𝐸 is the energy for removing the atom from the surface (Equation 1).  

𝑈𝑑𝑖𝑠𝑠 =
Δ𝐸

𝑛𝑒
+ 𝑈𝑀 (3) 

The dissolution potential depends on the metal concentration (cM ) as given by Equation 453, 
where 𝑈𝑀

0  is the standard reduction potential of metal M, c0 is the standard concentration, 𝑘𝐵 is 
the Boltzmann constant, and 𝑇 = 298.15 K is the temperature. pH is considered by the potential 
via the reversible hydrogen electrode (RHE). The concentration will be assumed to be 10−6 M for 
all metals, following other studies19,20. Combining equations 3 and 4 while substituting Δ𝐸  for 

Δ𝐸𝑝𝑟𝑒𝑑
𝑡𝑎𝑟𝑔𝑒𝑡 (Equation 2) provides the estimated dissolution potentials of atoms during simulation in 

Equation 5. Table 1 lists the considered reduction potentials and their half-reactions. 

𝑈𝑀(cM) = 𝑈𝑀
0 +

𝑘𝐵𝑇

𝑛𝑒
ln (

𝑐𝑀

c0
) (4) 

𝑈𝑑𝑖𝑠𝑠 ≈
Δ𝐸𝑝𝑟𝑒𝑑

𝑡𝑎𝑟𝑔𝑒𝑡

𝑛𝑒
+ 𝑈𝑀(10−6 M) (5) 

Experimental studies on Pt nanoparticles in ORR conditions have reported that the Pt atoms in 
small nanoparticles primarily dissolve directly to soluble Pt2+20,21,23, which will be assumed to 
apply generally in this work. The atoms are assigned the lowest dissolution potential from 
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Equation 5, considering the different half-reactions of each metal in Table 1. Figure 2b (bottom 
right) illustrates an example of applying the regression model on a particle to calculate 
dissolution potentials, with red indicating soluble atoms. When applicable, the electrolyte 
should be considered by accounting for the reduction potential of possible complexes formed 
between the metal and the anion. 

Table 1: Standard reduction potentials (U𝑀
0 ) vs. SHE from ref.54 and reduction potentials at 10−6M. 

Metal Half-reaction 𝑛 𝑈𝑀
0  [V] 𝑈𝑀(10−6 M) 

[V] 

Ag Ag+ + e− ⇌ Ag 1 0.80 0.45 

Au 
Au+ + e− ⇌ Au 1 1.69 1.34 

Au3+ + 3e− ⇌ Au 3 1.50 1.38 

Cu 
Cu+ + e− ⇌ Cu 1 0.52 0.17 

Cu2+ + 2e− ⇌ Cu 2 0.34 0.16 

Ir Ir3+ + 3e− ⇌ Ir 3 1.16 1.04 

Pd Pd2+ + 2e− ⇌ Pd 2 0.95 0.77 

Pt Pt2+ + 2e− ⇌ Pt 2 1.18 1.00 

Rh 
Rh+ + e− ⇌ Rh 1 0.60 0.25 

Rh3+ + 3e− ⇌ Rh 3 0.76 0.64 

Ru Ru2+ + 2e− ⇌ Rh 2 0.46 0.28 
 

2.4 Dissolution Simulation 

The simulated nanoparticles are generated in ASE55 as Pt particles with face-centered cubic (fcc) 
structure using the Wulff construction and by considering the (111) and (100) surfaces, resulting 
in truncated octahedron nanoparticles that subsequently are populated with elements in a 
disordered manner while ensuring the desired compositions. The nanoparticle size refers to the 
distance between two diametrical opposite corner atoms of the initially constructed Pt particle. 
The simulation proceeds with the following steps: 

1. Initiate a particle of a given size, shape, and composition. 
2. For all surface atoms: Predict Δ𝐸 and calculate 𝑈𝑑𝑖𝑠𝑠 using Equation 5. 
3. Remove surface atoms where 𝑈𝑑𝑖𝑠𝑠 < 𝑈 or CN < 3. 
4. Run particle relaxation scheme. 
5. Repeat from 2., until all surface atoms satisfy  𝑈𝑑𝑖𝑠𝑠 ≥ 𝑈 or the number of atoms is 0. 

Step 4 runs an optional particle relaxation scheme to minimize the total surface energy. To 
maintain simplicity and increase the number of viable simulations, a straightforward relaxation 
scheme is employed where atoms move to unoccupied fcc positions to increase coordination. 
The listed methodology dissolves atoms in batches but could alternatively dissolve atoms one at 
a time by the lowest dissolution potential. The difference between dissolution and relaxation 
iteratively versus in batches, including not applying relaxation, is shown in Figure S7. The batch 
approach, i.e., influencing several atoms between updates, is chosen for efficiency. In batch 
relaxation, the repositioning of atoms is prioritized according to improvement in CN, immobilizing 
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atoms affected by atoms with higher priority in the current iteration. Relaxation proceeds until no 
further achievable improvements. 

 Analyzing stability across composition space requires applying a quantitative stability measure 
on the resulting particles. A relevant quantifier for ORR is evaluating concentration changes of 
the (111) surface by comparing the number of atoms before and after dissolution, mimicking a 
relative change in the electrochemical active surface area (ECSA)56. We denote this parameter as 
𝑆𝑑 in Equation 6. The number of atoms (𝑁111) in the (111) surface is estimated by the number of 
atoms with CN=9. 

𝑆𝑑 =
𝑁111(𝑓𝑖𝑛𝑎𝑙)

𝑁111(𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
 (6) 

The simulation parameters, including particle size, shape (relative (100) and (111) energies), and 
the number of simulated particles, were chosen based on an analysis of equimolar particles at 
0.8 V versus RHE, the applied potential in simulations with fixed potential. The analysis is 
provided in Section S3.2 (Figures S8-S18). In the presented results, the particles are 4 nm with 
equal (111) and (100) facet energies, where 10 equimolar particles yield a standard error below 
0.01 on 𝑆𝑑 (Figure S14) and approximately 3 at. % on the final (111) surface composition (Figure 
S15), which is considered representative. The effect of increasing potential is shown in Figure S19. 

3 Results and Discussion 

3.1 Stability Composition Space 

The composition space of Ag-Au-Cu-Ir-Pd-Pt-Rh-Ru was divided into a 1/16 molar fraction (6.25 
at. %) incremental grid to investigate stability trends across compositions. Ten simulations of 4 
nm particles at 0.8 V were performed for each grid composition, recording the average result. The 
resulting stability composition space is represented in Figure 3 using contour maps. Figure 3a 
shows the entire 8-metal space in a pseudo-ternary composition space in which molar fractions 
are combined into three, grouped by the reduction potentials of the metals. Figure 3a unveils that 
in the presence of stable metals (𝑈𝑀

𝑐 > 𝑈), there are no local maxima due to a gradient towards 
the metals with higher reduction potential than the applied potential (Au, Ir, and Pt). Moreover, 
the regions of maximum stability on the grid (𝑆𝑑 = 1) span from the stable metals (see Table S5). 
Excluding the stable metals, i.e., considering the AgPd-CuRhRu edge, an internal maximum on 
the grid emerges (Pd81.25Rh12.5Ru6.25). The lack of maxima disconnected from stable metals 
trivializes the optimization of 𝑆𝑑 within this composition space. However, when combined with 
other objectives, such as catalytic activity and material cost, an array of Pareto optimal 
compositions may emerge. Thus, utilizing this stability model in multi-objective optimization will 
be of future interest. 

To increase the interpretability of the stability composition space, two representative ternary 
subspaces, Au-Cu-Pt and Pd-Pt-Ru, are shown in Figures 3b and 3c, respectively. Starting with 
the unstable Cu in Figure 3b, adding the noble metals Pt and Au stabilizes the composition slowly. 
The similar stabilization rate between Pt and Au indicates that the nobility of the stabilizing metals 
may be less significant. Figures 3d and 3e, showing a resulting particle of Cu75Pt25 and Cu25Pt75, 
illustrate how alloying with noble metals stabilizes the particle relative to Cu. The dissolution 

https://doi.org/10.26434/chemrxiv-2024-4vt27 ORCID: https://orcid.org/0000-0002-3859-1921 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-4vt27
https://orcid.org/0000-0002-3859-1921
https://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

process forms a Pt-layer leading to core-shell (PtCu@Pt) particles, aligning well with 
experimental observations57,58. Moreover, it conforms in general with the widely studied Pt-M 
(M=Co, Fe, Cu, Ni) nanoparticles for ORR, where exposing Pt-M particles to corrosive 
environments is known to form Pt-skeleton particles, which are core-shell nanoparticles with a 
rough Pt surface layer depleted of the non-noble metal and a bulk core with retained 
composition17,22,57,59-61.  Within our model, the noble shell acts as a passivation layer, protecting 
the non-noble elements in the bulk from dissolution. Increasing the amount of Pt facilitates the 
formation of the Pt layer resulting in a larger particle after dissolution, which is deemed more 
stable by the stability metric. Thus, the stability of a particle is determined by the formation of a 
stable layer. 

In Figure 3b, Pd is stabilized rapidly by adding Pt due to Pd’s reduction potential of 0.77 V being 
close to the applied potential of 0.8 V. Besides the stabilization from adding noble metals, results 
of interactive effects emerge on the Pt-Au and Pd-Ru edges. On the Pt-Au edge, where the 
constituting metals are deemed fully stable at the modelled conditions, the stability drops by up 
to 6% from mixing the elements (Figure S20). Reversely on the Pd-Ru edge in Figure 3c, mixing 
fully dissolvable elements increases stability.  These observations are the results of interactive 
effects captured by the neighbor parameters in the regression model (Figure 2a), which correlate 
with the relative surface energies of the elements, as shown in Figure S6. The neighbor 
parameters reveal a zero-sum-like interaction where, in most cases, a stabilizing effect on atom 
A results in a destabilization of atom B for an A-B neighbor atoms pair. Thus, Au destabilizes Pt 
due to its lower surface energy, and thereby, the dissolution potential of a Pt atom surrounded by 
enough Au neighbors can decrease sufficiently to make the Pt atom soluble. In the case of the 
Pd-Ru edge, Ru effectively stabilizes Pd to elude surface exposure due to its high surface energy. 
Thus, adding a sufficient amount of Ru to Pd (approximately 25 at. %) results in particles that, 
while partly dissolved, persist at conditions where the individual constituent elements would 
otherwise dissolve. As a result, the dissolved particles form a core@shell nanoparticle structure 
of PdRu@Pd, as illustrated in Figure 3f. The shell is, thus again, depleted by the readily dissolved 
element. The formed Pd shell with sub-surface Ru effectively acts as a passivation layer on a 
nanoparticle smaller than its initial state, which could be the basis of a potential design principle 
for creating ultra-small nanoparticles with increased stability for ORR. However, the potential 
advantage may depend on the recoverability of dissolved precious metals. The principle of 
utilizing high surface energy metals, such as Ru, would also apply to Pt alloys such as PtRu. Figure 
3g shows a dissolved Pt25Ru75 particle displaying a core-shell structure, which aligns with recent 
findings for PtRu alloy particles62. Although Ru, like Cu, readily dissolves from the surface, Ru 
stabilizes the Pt atoms by increasing their dissolution potentials, resulting in a slightly higher 
stability. 

The stability spaces reveal two distinct alloying strategies. The first involves stabilizing a 
composition using a noble element (𝑈𝑀

𝑐 > 𝑈) as a stabilizing agent. However, this strategy may 
inadvertently destabilize desired surface elements if the stabilizing agent has significantly lower 
surface energy. Secondly, an element with high relative surface energy can function as a 
stabilizing agent. Although this element may dissolve from the surface, its presence in the sub-
surface layer enhances the dissolution potential of the surface atoms. 
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Figure 3: Composition spaces for 𝑆𝑑   as contour maps created from the simulated grid with particle 
examples. In a) the 8-metal space is shown as a pseudo-ternary plot by combining molar fractions, showing 
the most stable composition on top where more are available. b) and c) show the ternary spaces of Au-Cu-
Pt and Pd-Pt-Ru, respectively. d), e), f), and g) show the final particle (left) with a cross-section view (right) 
of one of the simulated particles for four selected compositions: Cu75Pt25, Cu25Pt75, Pd75Ru25, and Pt25Ru75, 
respectively. 

3.2 Evolution in Composition Space Through Dissolution 

The change in surface composition during operation is crucial for understanding and predicting 
the catalytic activity in designing new catalysts. In previous work, we uncovered paths of 
maximum activity as ridges in HEA composition space for ORR, from which we proposed 
designing catalysts that degrade along the ridges to retain activity46. Utilizing this strategy would 
require insights into how the surface changes during electrochemical degradation. We 
demonstrate the concept of following the evolution of the surface by recording the composition 
in each iteration of the simulation, thus tracing the path in composition space during dissolution. 
Figure 4a displays the initial- and final surface compositions connected by a path showing the 
surface composition after each iteration, i.e., batch, of dissolution for ten equimolar particles. 
Refer to Figure S21 for the individual paths, Table S6 for the initial- and final compositions, and 
Figure S22 for a visualization of the particles. Although the evolution of the (111) surface 
compositions is not direct, there is directionality towards a similar composition, with the 
discrepancies largely attributable to the lower statistics of only considering the (111) surface 
atoms. The change in the dissolved composition is more consistent, making it promising for 
experimental comparisons with ICP. Initially, the dissolution consists primarily of the non-noble 
metals Cu, Rh, and Ru, which leaves the stable atoms less coordinated and thereby vulnerable 
to dissolution, increasing the amount of the more stable elements in the dissolved composition 
with dissolution iterations. A study of the dissolution pathway in comparison with activity could 
be of future interest. 
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Figure 4: a) Paths in composition space by each iteration of dissolution for ten equimolar octo-metallic 
particles. The paths originating in the blue circles and green triangles show the (111) surface and dissolved 
compositions, respectively, while the red crosses show the final composition. b) Composition profiles of 
surface layers and coordination number (CN) showing the average compositions of the particles with the 
total number of atoms in each composition given above. “Bulk” refers to the atoms below the three layers. 

Figure 4b shows the final average composition by layer and CN of the particles in Figure 4a. The 
layer profile demonstrates the preservation of the composition below the top surface layer, while 
the non-noble metals of Cu, Ru, and Rh predominantly dissolve from the surface. Moreover, the 
profile shows that elements with low surface energy and high reduction potential, primarily Au, 
stabilize the particle by occupying undercoordinated sites, which is a well-documented 
stabilizing effect from Au in the literature that, furthermore, has been reported to be enhanced by 
the outward diffusion of Au, which occupies the vulnerable sites and shields dissolvable atoms 
63-66. Diffusion within the particle is unaccounted for in this study. Thus, within this model, Au is 
likely underrepresented in defect positions, possibly leading to underestimation of stability for 
Au-alloys.  Reversely, Au in bulk will destabilize the surface atoms per the neighbor parameters. 
Therefore, stabilizing with Au, or likewise, could be more favorably achieved through galvanic 
replacement67-69 of lower coordinated surface atoms, which additionally would be an efficient 
use of Au. We exemplify this approach for Pd-Au particles illustrated in Figure S23. Replacing Pd 
with CN ≤ 6, 7, and 8 with Au increases the minimum dissolution potential from 0.77 V to 0.89, 
0.94, and 1.14 V, respectively, making the particles fully stable below these potentials within the 
scope of this model. Comparing with 𝑆𝑑 < 1 at 0.8 V from stabilizing with increasing amounts of 
Au through alloying, as shown in Figure S24, indicates the strategy of galvanic replacement is 
more effective. 

Figure 4a shows the evolution of the surface composition through composition space. Relating 
the final surface composition to its initial state reveals that a vast part of composition space may 
be unattainable for surface composition. Figure 5a illustrates this by showing the final (111) 
surface compositions of the grid simulations for the quaternary Au-Cu-Pd-Pt space (limited to 
12.5 at. % grid compositions for intelligibility). As Cu completely dissolves from the surface, the 
surface composition devolves to the ternary Au-Pd-Pt subspace, as shown in Figure 5b. The lines 
in Figure 5a, connecting to the initial surface composition, follow the same directionality in 
composition space directly away from the Cu corner, approximately conserving the ratios 
between Au, Pd, and Pt. 
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Figure 5: (111) Surface compositions after dissolution of Au-Cu-Pd-Pt alloy particles. a) Shows the 
quaternary space, whereas b) shows the Au-Pd-Pt subspace. The color denotes the bulk composition by a 
weighted average of the metal colors by composition, while the marker size scales with 𝑆𝑑. Unfilled markers 
represent compositions with 𝑆𝑑 = 0. The grey lines in a) serve as a guide to the eye, connecting the initial- 
and final (111) surface compositions. 

3.3 Model Limitations and Future Improvements 

Although the presented dissolution model can capture experimental trends in predicting core-
shell structures, the current framework provides no time dependency, which could challenge 
experimental comparisons where time is a factor, e.g., in electrochemical potential cycles.  

In this demonstration, the model dissolves surface atoms in batches according to their predicted 
dissolution potential relative to the applied potential, which implicitly assumes an equal 
dissolution rate for all atoms. Although more computationally demanding, related inaccuracies 
and inconsistencies could be mitigated using the model implementation where only a single 
atom per iteration dissolves. Moreover, a constant metal-ion concentration is used as a proxy for 
the dissolution rate to compensate for solely thermodynamic energetics. Otherwise, 
concentrations that follow the dissolution would, upon initiation, yield an infinitely negative 
dissolution potential for all atoms. Thus, concentration effectively sets a reasonable limit on the 
rate of dissolution. However, the chosen concentration may affect the observed trends. If a 
metal’s reduction potential is relatively close to the applied potential, concentration may notably 
impact the result if the metal constitutes a large amount of the composition. Therefore, future 
work could involve including kinetic barriers for dissolution or determining appropriate 
concentrations through experiments. Additionally, dissolution mechanisms and redeposition 
could be included through kinetics to capture their effect on the dissolution of alloy nanoparticles. 

For a fast and straightforward particle relaxation scheme, the atoms were allowed to move to 
increase coordination, implying three assumptions: Increasing CN decreases energy 
independent of the atomic environment, each incremental increase in CN is equally favorable, 
and energetic barriers associated with moving to a neighboring position are negligible. Moreover, 
the model restricts the atoms to fcc lattice positions, dismissing any other surface or structure 
that could reduce the total energy. Only repositioning atoms to unoccupied neighboring lattice 
positions also disregards other means of particle relaxations driving surface segregation, such as 
increasing presence on the surface of elements with low surface energy. Thus, future endeavors 
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in developing this model could entail a more detailed mechanism for particle relaxation. Doing 
so through DFT or molecular dynamics is infeasible for HEA compositional screening. However, 
machine learning force fields could provide the necessary speedup to include more accurate 
particle relaxations and atomic diffusion in future implementations70,71.  It is also worth noting 
that the actual particle size and shape will depend on the synthesis, thus challenging a factual 
representation of the particle and its dependence on the composition within the simulations. 

Oxide formation and adsorbates are currently not accounted for but may impact 
dissolution18,25,32,72,73. Their effect could, therefore, be of interest to include in future studies. 
Besides particle degradation driven by dissolution, mechanisms such as particle detachment, 
aggregation, and coalescence may play a considerable role in the loss of ECSA and catalytic 
activity18,26,27,74-76. Such electrochemical degradation mechanisms, not captured by this model, 
may further challenge direct experimental comparisons with the model.  

4 Conclusion 

In this study, we addressed the lack of fundamental and theoretical insights on the 
electrochemical stability of complex multi-metallic systems, such as high-entropy alloys, by 
developing a theoretical framework for simulating the dissolution of nanoparticles under 
electrochemical conditions. We demonstrated this methodology for the oxygen reduction 
reaction using the octo-metallic Ag-Au-Cu-Ir-Pd-Pt-Rh-Ru high-entropy alloy system.  

The dissolution of a given particle was simulated by calculating the dissolution potentials of each 
surface atom depending on its local atomic environment, enabled by predicting the change in 
surface energy using a simple machine-learning regression model trained on density functional 
theory calculations. A stability parameter, measuring the number of (111) surface atoms before 
versus after the simulation, was presented to analyze stability trends in composition space 
through a grid search. Analyzing the stability composition space uncovered two stabilizing 
strategies through alloying: 1) Increasing the concentration of metals with reduction potential 
above the applied potential and 2) incorporating an element with a high relative surface energy. 
The dissolution model resulted in core-shell particles with shells depleted of elements with low 
dissolution potential in agreement with experimental studies on binary Pt-alloys. In effect, the 
dissolution proceeds until a stable layer forms, and its facilitation determines the size of the 
resulting particle. The noble metals stabilize the particle by constituting the protective shell and 
occupying the low coordinated positions. Meanwhile, metals with high surface energy situated in 
the sub-surface layer have a stabilizing effect by increasing the dissolution potential of the 
surface atoms.  

Our findings show that the surface composition changes substantially during dissolution. We 
demonstrated that the dissolution model can follow the evolution of the surface while tracking 
the experimentally measurable dissolved composition, revealing traceable paths in composition 
space of both surface- and dissolved composition. Moreover, this analysis indicated that a large 
part of the composition space may be unretainable for surface compositions. 

Besides supporting intuitive results, such as elements with low reduction potential depleting 
from the surface through dissolution, our demonstrations show that a model built on this 
framework gains insight into less intuitive outcomes, notably, how interactions between 
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elements impact the degree to which a particle with a given composition dissolves and changes 
surface composition.  Moreover, trends in the literature showing core-shell formation were 
reproducible despite the simplicity of the dissolution model used to demonstrate the presented 
framework. Further validation could entail experimentally verifying that elements with high 
surface energy in sub-surface layers can stabilize atoms on the surface. Utilizing the current 
model for other predictions than investigating trends is likely to have little validity. However, 
further development toward a more rigorous dissolution model within this framework could 
increase prediction accuracy. Combining a model for electrochemical stability, such as the one 
presented in this study, with current activity models and other relevant objectives in multi-
objective optimization of high-entropy alloys is of great interest in establishing a fully-fledged 
catalyst discovery platform. 
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