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applicability in zeolite synthesis

Alexander J. Hoffman, Mingrou Xie, Rafael Gómez-Bombarelli

• Add new parameters from earlier work that can be considered when
trying to predict zeolite synthesis outcomes

• Use machine learning tools to identify a new equation that can be used
to rank organic structure-directing agents for zeolite synthesis more
accurately than previous equations developed from chemical intuition
alone
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Abstract

Zeolite synthesis frequently relies on organic structure-directing agents (OS-
DAs), but the process of identifying the best OSDA to synthesize a given
zeolite remains difficult. We use previously gathered binding energy data,
in additional to the formation energies of the siliceous zeolite frameworks
and approximate binding entropies of OSDAs to develop new descriptors
to improve predictions based on known OSDA-zeolite pairs in the litera-
ture. Our earlier work used templating energy (Eij,T ) to rank the most likely
OSDA-zeolite pairs to be produced from synthesis. Using literature recall
area-under-the-curve (AUC) as a performance metric, we find that comput-
ing energies associated with the net transformation that occurs during zeolite
synthesis (the sum of the formation energy of the zeolite framework and the
OSDA binding energy) provides a modest improvement over Eij,T when pre-
dicting the zeolite phase that a given OSDA produces, from 67.5% average
literature recall to 72.3%, but negligibly improves predictions for the best
OSDA for a given zeolite framework, from 68.3% to 68.8%. We then use
machine learning symbolic regression to develop a new descriptor, which we
call αij,T , that slightly improves upon Eij,T for predicting an OSDA for a
given framework, with an average literature recall of 71.8%. While zeolite
synthesis remains difficult to predict a priori, the approaches used in this
work provide one option for improving these predictions.

Keywords: zeolite synthesis, machine learning, organic structure-directing
agent
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1. Introduction

Zeolites are microporous solids that are often synthesized using organic
and inorganic structure-directing agents (OSDAs and ISDAs, respectively).
Over 200 unique zeolite frameworks have been synthesized [1], while over
300,000 more have been hypothesized as possible based on SiO4 tetrahedron
connectivity geometries and estimated formation energies [2, 3, 4, 5, 6]. No-
tably, these hypothetical frameworks are filtered based on having a formation
energy below +30 kJ (mol Si)−1. More recent work has noted that pure sil-
ica frameworks have formation energies well below this threshold (6–19 kJ
(mol Si)−1) and that the range of formation energies of existing silica mate-
rials changes with the density of the framework [7]; as such, many of these
materials may be difficult or impossible to synthesize in (alumino)silicate
form. More recent work using support vector machines has indicated that
formation energies of siliceous frameworks alone are insufficient for identify-
ing synthesis targets from hypothetical frameworks [8]. Instead, accounting
for the most likely feasible composition of hypothetical frameworks can in-
crease the likelihood of identifying synthesis targets. OSDAs are molecules
that template the void spaces of these zeolite materials during synthesis, thus
directing the formation of distinct framework phases. OSDAs are typically
composed primarily of C, N, and H, where the N atoms in these molecules
are often quaternary cations. While other synthesis parameters can be tuned
to affect the final zeolite phase that forms, the selection of an OSDA (when
used) is vital in controlling the zeolite framework that forms during synthe-
sis. SHapley Additive exPlanations (SHAP) have been used to identify the
most salient parts of synthesis recipes (e.g., temperature, ISDAs, synthesis
gel composition)[9]; for many frameworks, OSDA shape and size remain the
most important factors influencing the final crystal structure. As such, meth-
ods to identify effective OSDAs a priori to synthesize frameworks are crucial
for guiding the synthesis of proposed hypothetical frameworks.

Recently, our group published work showing that phase selectivity can
be guided using predictions from computed binding energies of OSDAs in
zeolites [10]. This high-throughput virtual screening (HTVS) approach al-
lowed us to identify an OSDA that produced an intergrowth of the CHA and
AEI frameworks by identifying a biselective OSDA [11], whose Cu-exchanged
form performed better than pure-phase CHA for NOx selective catalytic re-
duction [12], and a CHA/ERI intergrowth [13]. This method to determine
phase control of zeolites used a computed templating energy, Eij,T (Eq. 1),

2

https://doi.org/10.26434/chemrxiv-2024-mbg26-v2 ORCID: https://orcid.org/0000-0002-1337-9297 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-mbg26-v2
https://orcid.org/0000-0002-1337-9297
https://creativecommons.org/licenses/by-nc/4.0/


to estimate how likely an OSDA would produce a given framework:

Eij,T = −kBT log (Cij,OSDACij,SiDij,OSDADij,Si)
1
4 (1)

This equation uses a combination of the competition (Cij) and directivity
(Dij) of a given OSDA and zeolite, which are defined as

Cij =
exp

−∆Eij

kBT∑
j=zeo exp

−∆Eij

kBT

, (2)

which represents how well an OSDA templates a given zeolite framework
compared to all other frameworks, and

Dij =
exp

−∆Eij

kBT∑
i=OSDA exp

−∆Eij

kBT

, (3)

which captures how well an OSDA templates a given framework compared
to all other OSDAs. The ∆Eij term in Eq. 2 and 3 is the binding energy of
OSDA i in zeolite j

∆Eij = EZj-OSDAi
− EZj

− EOSDAi
(4)

where EZ-OSDA is the energy of the bound OSDA-zeolite complex, EZ is the
energy of the empty zeolite, and ∆EOSDA is the energy of the gas-phase ze-
olite. The binding energies used to compute these values can be normalized
either per OSDA in the zeolite unit cell (i.e., the loading) or per tetrahe-
dral Si atom in the zeolite, denoted as ∆Eij,OSDA and ∆Eij,Si, respectively.
The competition and directivity metrics can be computed from binding en-
ergies normalized per OSDA molecule (∆Eij,OSDA)—denoted by an OSDA
subscript, Cij,OSDA and Dij,OSDA—or per Si atom (∆Eij,Si)—Cij,Si and Dij,Si.
These ∆Eij were computed using the DREIDING force field [14], which shows
acceptable agreement with higher-accuracy methods for computing energies
like density functional theory (DFT) [15]. Such binding energy values re-
flect the fit of the OSDA within the zeolite framework of interest and are an
important piece of information for assessing the utility of an OSDA for syn-
thesizing a given framework, although additional information about molecule
and void shape can improve predictions of synthesis outcomes [16].

The approach this previous work used, however, neglected the relative sta-
bility of the underlying zeolite framework and the binding entropy of OSDA
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molecules. During zeolite synthesis with an OSDA, the net transformation
that occurs is

n× SiO2 +m×OSDA → (OSDA)mSinO2n(zeo) (5)

where n SiO2 moieties and m OSDAs become the OSDA-Zeolite complex. If
thermodynamics primarily dictate the formation of a zeolite framework dur-
ing synthesis, the energy of this net transformation should drive the selection
of one zeolite phase over another. Recent work has introduced the use of the
net energy of transformation from material sources in the synthesis solution
to the final zeolite product [17, 18]. Such net thermodynamic changes are
important to include when attempting to guide zeolite synthesis using HTVS
approaches like those from our past work, and may improve predictions for
OSDA phase selectivity.

Our earlier work also neglected the potential role that binding entropy
(∆Sij) may play in determining how well an OSDA templates a given frame-
work. Molecular adsorption to a material reduces the number of translational
and rotational degrees of freedom available [19]. Recent work suggested that
the adsorption entropy of alkanes from the gas-phase could be computed us-
ing only the properties of a 3D conformation of the molecule (mass, moments
of inertia) and a few parameters [20]. Such similar methods may improve pre-
dictions of zeolite phase if used to augment earlier HTVS data.

Here, we expound on calculations of the net material transformation to
form a zeolite, which we term formation affinities, ∆Eform,ij (based on Eq.
5), and explore other ways of using metrics calculated in silico to identify
the most promising OSDAs for a zeolite. Using formation affinities alone im-
proves predictions of the framework that forms for a given OSDA for several
key zeolites, but worsens predictions for others. Additionally, we incorpo-
rate estimations of binding entropy based on gas-phase estimates [20], to see
if including such entropic contributions improves literature recall of known
zeolite-OSDA pairs. Finally, we use the sure independence screening and
sparsifying operation (SISSO) program to learn possible descriptors (i.e.,
equations) that predict zeolite synthesis outcomes. These new equations
more accurately predict synthesis outcomes from literature than the Eij,T

equation used in prior work while including additional metrics that could
affect synthesis (such as the framework formation energy, ∆Eform,j). These
new descriptors may help assess OSDAs for more complicated zeolites be-
yond those that have been accomplished from this theory-first approach so
far with a window-cage topology [10, 12, 13].
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2. Results

2.1. Zeolite Formation Energy for Phase Prediction

The net transformation that zeolite synthesis produces is described in Eq.
5. This process can be broken into two components, zeolite formation from
some silica source:

n× SiO2 +m×OSDA → SinO2n(zeo) +m×OSDA (6)

and OSDA binding:

SinO2n(zeo) +m×OSDA → (OSDA)mSinO2n(zeo) (7)

Historically, zeolite formation energies have been computed relative to α-
quartz for comparison to experimental measurements [7, 21], which we also
do in this work using DFT (method details in Section 5.1). Earlier work has
shown that estimations of the formation energy are sensitive to the method
used to optimize the structure and compute the energy [22]. We compute
the formation energy with DFT because it provides relatively accurate esti-
mates of formation energy compared to experimentally measured formation
enthalpies of pure-silica zeolites (Figure B.2, Supporting Information (SI))
[23]. Formation energies from the DREIDING forcefield do not match well
with experimentally measured formation enthalpies nor with the larger set
of DFT-calculated formation energies (Figures B.1 and B.2, SI). The step in
Equation 7 corresponds to the OSDA binding within the zeolite to form an
OSDA-zeolite complex, which has been calculated in our prior work [10, 15]
using the DREIDING force field [14]. As such, the total formation affinity is
simply the sum of the framework’s formation energy and the binding energy
of the OSDA (Figure 1):

∆Eform,ij = ∆Eform,j +∆Eij (8)

We consider how including the formation energy to compute the total
thermodynamic transformation affects literature recall. Notably, this assess-
ment excludes other components that can influence zeolite synthesis out-
comes and be modeled atomistically, such as ISDAs and framework het-
eroatoms (Figure 1). Moreover, these high-throughput atomistic simulations
cannot account for things like synthesis time or temperature, which may also
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Figure 1: Summary of the approach used in this work to identify OSDAs that produce
particular frameworks and the factors that influence zeolite synthesis that were excluded
in our analysis.

influence zeolite crystallization. Instead, we focus specifically on the sta-
bility of the underlying zeolite framework and the fit of the OSDA within
that framework. We use both the formation affinities (normalized per Si
atom in the unit cell of the zeolite, ∆Eform,ij,Si) and a recalculated version
of Eij,T from Eq. 1. This updated formation templating energy, Eform,ij,T ,
is computed from competition and directivity values that are based on the
formation affinities in Eq. 8 rather than the original ∆Eij values in Eq. 4.
Once they are computed, we can compute the literature recall for these de-
scriptors in a similar approach to our earlier work to indicate how well they
rank OSDAs for synthesizing a given zeolite framework [10]. The literature
data were extracted from papers and made publicly available in earlier work
[24], and the dataset was recently expanded to include additional details [9].

Generally, both ∆Eform,ij,Si and Eform,ij,T correlate with Eij,T (Figure 2),
albeit with some scatter. This correlation initially indicates that the rankings
these metrics produce will be similar. If the thermodynamics of the net
transformation during zeolite synthesis determines the final phase produced,
then it is possible that Eij,T closely matches the total transformation energy
and, thus, produces relatively high literature recall.

Our earlier work [10] illustrated the process of computing literature recall
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Figure 2: (a) Formation affinities per Si atom in the unit cell (Eform,ij,Si) and (b) formation
templating energies (Eform,ij,T ) as functions of the templating energy used in earlier work.
Each plot is labeled with the corresponding Spearman correlation coefficient (ρ).

and showed the recall performance for five frameworks (AEI, MFI, CHA,
MOR, and MTW) and several OSDAs. Recall for a zeolite is determined by
ranking the OSDAs and computing the number of experimentally validated
OSDA-zeolite pairs as a function of that ranking. The area under the curve
(AUC) in these recall plots is then normalized by the maximum recall (where
all known OSDAs are the highest ranked) such that AUCs ∈ [0, 1]. Recall
can also be plotted for OSDAs by ranking the zeolites they are predicted to
template best. Notably, there are no clear true negatives that we can use to
construct recall-precision curves because some OSDAs may work for zeolites
but have not yet been attempted under the necessary synthesis conditions.
The literature recall predictions from ∆Eform,ij,Si (Figure 3a) produce similar
performance to Eij,T (Figure 3c) for all frameworks except for MOR, for which
it makes better predictions for effective OSDAs. Generally, the Eform,ij,T

metric worsens recall for all five zeolite frameworks relative to Eij,T (Figure
3b). This initial set of examples appears to indicate that the inclusion of
formation energy can improve the recall of experimentally validated OSDA-
zeolite pairs.

We computed the recall using this approach for all three of these metrics
for all frameworks and OSDAs for which they could be computed. Figure
B.3 in the Supporting Information (SI) shows the recall AUCs for all zeo-
lites evaluated in this work. Generally, literature recall is better the more
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Figure 3: Literature recall curves for AEI, MFI, CHA, MOR, and MTW using OSDA
rankings computed with (a) formation affinities per Si atom (∆Eform,ij,Si), (b) formation
templating energies (Eform,ij,T ), and (c) the templating energy used in earlier work (Eij,T ).

publications have been made about synthesizing a given framework, while
materials with very few publications can have recall AUCs from very poor to
near unity (Figure B.5, SI). This improvement may arise because frequently
studied frameworks are simpler to synthesize and have more OSDAs that
work for their formation or because not all synthesis routes have been ex-
plored for rarely studied frameworks. Notably, predicting good OSDAs for
some naturally occurring frameworks—such as MOR—is particularly diffi-
cult. Some naturally occurring frameworks are industrially relevant and can
be synthesized with only inorganic SDAs, such as FAU [25, 26, 27], MOR
[28, 29], and LTA [26, 30]. As such, their synthesis may rely less heavily
on OSDA choice than other artificial frameworks. Because they rely less on
OSDA choice, the metrics that perform well in literature recall for synthetic
frameworks appear to perform worse for some commonly studied frameworks
like MOR and LTA.

Finally, we also computed literature recall AUCs for each OSDA molecule
in the dataset to determine how these metrics performed for predicting the
final phase produced from synthesis using a given OSDA. We averaged the
recall AUCs across all zeolites or across all OSDAs for each of the metrics
(Table 1). The metrics that include the formation energies of the siliceous
forms of the frameworks (Eform,ij,T and ∆Eform,ij,Si) do not always outperform
the recall of the original Eij,T metric for ranking OSDAs to synthesize those
frameworks; however, ∆Eform,ij,Si outperforms Eij,T on recall for zeolite phase
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Table 1: Average literature recall areas-under-the-curve (AUC) for the templating energy
from earlier work (Eij,T ) compared to similar metrics that include siliceous zeolite forma-
tion energies.

Metric Average Recall AUC

Framework OSDA

Eij,T 0.684 0.675
Eform,ij,T 0.680 0.684
∆Eform,ij,Si 0.688 0.723

outcomes for OSDAs on average. The performance of these metrics suggests
that net thermodynamic information is important for determining phase se-
lectivity for an OSDA, but that the selection of a molecule when targeting
a framework might be confounded by other factors, such as the absence of
true negatives in the available data.

2.2. Entropic contributions to OSDA templating

We estimate the standard adsorption entropies of OSDAs, ∆S◦
ij based on

equations described elsewhere (details in Section 5.2) [20]. This assessment
does not directly include conformational entropy contributions (∆Sads,conf);
however, these equations include an empirical fit to gas-phase adsorption
entropies and, as such, should include a ∆Sads,conf contribution implicitly.
Moreover, ∆Sads,conf losses relative to the gas phase should be relatively
small compared to rotational and translational entropy losses. We also note
that molecules with high gas or aqueous phase conformational entropy would
likely make poor OSDAs. Flexible molecules are less likely to adopt the shape
required to template a zeolite pore for long enough to stabilize the crystal-
lization of the zeolite at typical solvothermal synthesis temperatures. Once
calculated, we use these ∆S◦

ij values to compute the Helmholtz free energies
of binding, ∆Aij, for each zeolite-OSDA pair:

∆Aij = ∆Eij − T∆S◦
ij (9)

We use a constant synthesis temperature of 400 K for these estimations
for all zeolites (the same value used to compute C and D throughout this
work and in earlier work [10]). While the Gibbs free energy, ∆Gij, is the
natural potential for zeolite crystallization systems, the Helmholtz free energy
captures the majority of the contributions to the Gibbs free energy and should
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be sufficiently informative for HTVS work, where fast methods are used to
rapidly assess and eliminate large numbers of candidates [31].

Similar to our initial assessment of formation affinities, we compute a
templating energy based on the Helmholtz free energies. First, we calculate
competition and directivity values for each OSDA-zeolite pair based on these
Helmholtz free energies:

CA,ij =
exp

−∆Aij

kBT∑
j=zeo exp

−∆Aij

kBT

, (10)

DA,ij =
exp

−∆Aij

kBT∑
i=OSDA exp

−∆Aij

kBT

. (11)

Next, we compute a Helmholtz templating energy based on these CA,ij and
DA,ij values analogously to the earlier Eij,T :

Aij,T = −kBT log (CA,ij,OSDACA,ij,SiDA,ij,OSDADA,ij,Si)
1
4 (12)

These Aij,T values correlate with Eij,T (Figure 4), although the inclusion of
the entropy introduces significant scatter.

Figure 4: Helmholtz templating energy, Aij,T , as a function of Eij,T .

Similar to our approach in Section 2.1, we also computed the average
literature recall AUCs for this new metric and compared it to Eij,T . Adding
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an entropic contribution to OSDA binding energies appears to worsen recall
AUC when averaged across frameworks and with a slight improvement across
OSDAs for ∆Aform,ij,Si (Table 2). Importantly, the entropic contributions es-
timated here are for these molecules in the gas-phase and based on a model
for non-polar alkane adsorption in zeolites. A more realistic approach would
account for the effects of aqueous solvation on OSDAs and their free energies
(and, therefore, entropies) because zeolites are often synthesized hydrother-
mally. The decline in recall performance for this Helmholtz templating energy
relative to Eij,T may be caused by an overestimation of entropic losses upon
confinement of the OSDA in the zeolite during synthesis relative to the OSDA
in the aqueous solution phase. Using chemical intuition to incorporate zeo-
lite stability and molecular entropic losses within the original mathematical
formulation for synthesis predictions did not satisfactorily improved recall
of experimentally validated pairs. Therefore, we sought an alternative ap-
proach that could encompass more energy terms as well as other factors not
included in the templating energy formulation using the SISSO method to
develop new descriptors.

Table 2: Average literature recall areas-under-the-curve (AUC) for the templating energy
from earlier work (Eij,T ) compared to the Aij,T metric that include an estimation of OSDA
entropy loss upon adsorption.

Metric Average Recall AUC

Framework OSDA

Eij,T 0.683 0.675
Aij,T 0.629 0.629

∆Aform,ij,Si 0.619 0.686

2.3. Regressed descriptors for zeolite synthesis

2.3.1. Variables for synthesis prediction

Before performing symbolic regression using SISSO, we analyzed how the
variables we might include in such runs correlate with one another. Squared
Spearman correlation coefficients (ρ2) between several of the metrics used
to understand binding energies are above 0.7 for several variables (Figure
5; all ρ2 are provided for the potential energy SISSO run in Figure B.6 in
the SI). Perhaps most notably, ∆Eij,Si correlates relatively strongly with all
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formation affinities (∆Eform,ij,Si, ∆Eform,ij,OSDA,mol, and ∆Eform,ij,OSDA,atom),
with 0.73 ≤ ρ2 ≤ 0.80. This correlation indicates that ∆Eij,Si may have
matched well with the net thermodynamic transformation during synthesis
and, as such, led to good literature recall despite excluding zeolite formation
energies. These correlations may explain why the metrics discussed above all
appear to produce recall AUCs > 0.6: multiple descriptors depend on one
another or correlate with one another. As such, the OSDA rankings they
provide for a given framework (or the framework rankings for an OSDA)
appear similar, even if they describe a different set of physical contributions
to synthesis.

Figure 5: Spearman correlation coefficients squared, ρ2, for the variables used as possible
inputs to SISSO runs for potential energies.

When performing symbolic regression with SISSO, only the units of any
input variables are incorporated during descriptor construction. As such,
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two variables may correlate with one another, but in final descriptors may
produce values of significantly different scale if swapped. As such, we include
all variables that were part of the original work, such as binding energies
∆Eij,Si and ∆Eij,OSDA, and the logarithms of C and D values from these
binding energies. We included ∆Eij,OSDA values normalized both per OSDA
molecule in the unit cell (∆Eij,OSDA,mol) and per OSDA atom in the unit cell
(∆Eij,OSDA,atom). The earlier Eij,T metric was computed from C and D using
∆Eij,OSDA,atom, which is similar in scale to ∆Eij,Si such that the respective C
and D values were also similar in scale. Additionally, we use the logarithms
of C and D because their values cover many orders of magnitude, which
causes issues during SISSO descriptor construction. Using these variables
allows SISSO to recreate the Eij,T metric or augment it with other values
if that produces the best predictions. We also include the formation energy
∆Eform,j and formation affinities per OSDA and per Si. We only exclude C
and D values derived from formation affinities when they correlate strongly
with other variables available during symbolic regression (ρ2 > 0.8). As such,
we exclude lnCform,ij,OSDA,mol, lnCform,ij,OSDA,atom, and lnDform,ij,OSDA,mol. In
the next section, we assess the equations produced by SISSO from these
variables.

2.3.2. Descriptors for synthesis

We saved a total of 50,000 equations from the SISSO assessment we per-
formed on the binding and formation energy data. These equations were
assessed and filtered by fitting decision trees and logistic curves as described
in Section 5.3. These machine learning (ML) approaches can fit data quickly
so that descriptors which have decision boundaries that best classify synthe-
sized zeolite-OSDA pairs can be identified, filtered, and the best descriptors
evaluated more thoroughly. We use this SISSO approach to build a physi-
cally informed method of ranking OSDAs for synthesis of a given framework
to identify promising templates for zeolite phase selectivity. Traditional clas-
sifiers like random forests and neural networks struggle to identify zeolite-
OSDA pairs (Figure A.1, SI). Once the top-performing SISSO descriptors
from the decision tree and logistic curve fits were identified, they were used
to rank OSDAs for a given zeolite (or zeolite frameworks for a given OSDA)
and the literature recall computed from synthesized zeolite-OSDA pairs (see
Section 2.3). Lower values for the descriptor—as with Eij,T—indicate that
an OSDA is more likely to produce a given framework.

The descriptor that provides the highest average recall AUC across all
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zeolites, which we call αij,T , is

αij,T =
lnCform,ij,Si

lnDOSDA,ij,mol × lnDform,ij,Si

− ∆Eij,Si

∆Eij,OSDA, mol

. (13)

This descriptor provides modest improvement on the recall AUC performance
of the templating energy Eij,T when averaged across zeolite frameworks and
OSDAs, with an increase from 0.683 to 0.718 and from 0.675 to 0.716, re-
spectively (Table 3). In the case of recall for the zeolites shown earlier in Fig-
ure 3, recall improves for the three frameworks for which recall was already
relatively good (MFI, AEI, and CHA), but does not improve significantly
for MTW or MOR (Figure 6c). The αij,T descriptor also correlates quite
strongly with the Eij,T metric that we assessed earlier in this work (Figure
6a). This correlation further indicates that there are several metrics that
capture much of the thermodynamics of zeolite synthesis but which include
different arrangements of these contributing variables.

Table 3: Average literature recall areas-under-the-curve (AUC) for the templating energy
from earlier work (Eij,T ) compared to the αij,T metric.

Metric Average Recall AUC

Framework OSDA

Eij,T 0.683 0.675
∆Eform,ij,Si 0.688 0.723

αij,T 0.718 0.716

After we downselect the descriptors developed by SISSO to the top 600
from decision tree and logistic curve classification, we compute the average
recall AUCs across zeolites and use those to rank the performance of each de-
scriptor. Among the top 100 equations with the highest zeolite recall AUCs,
the majority contain lnDOSDA,mol, including the top-performing descriptor
that we identified, αij,T (Figure 6c). Such commonalities indicate that di-
rectivity from per-molecule OSDA binding energies plays an outsized role in
determining which OSDA best fits a given framework. In 70% of all descrip-
tors where lnDOSDA,mol appears, it is in the denominator of the expression.
This preference for dividing by lnDOSDA,mol shows that favorable binding en-
ergies of OSDAs in a framework relative to other OSDAs drive selectivity.
Stronger binding energies (more negative) produce D values that are closer
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Figure 6: (a) Templating energy (Eij,T ) as a function of the (negative) best SISSO-
identified descriptor, αij,T (with outliers removed). (b) Zeolite recall curves from αij,T for
the exemplar frameworks shown in Figure 3. (c) The frequency with which each available
variable appears in the top 100 equations produced by SISSO (AUC > 0.68).

to unity; the inverse of the logarithm of those values then, is more negative
than corresponding D values of OSDAs with weaker binding energies. For
example, for a hypothetical group of OSDAs whose binding energies (per
molecule) follow an arithmetic series of −100 to −10 kJ mol−1 (each sep-
arated by 10 kJ mol−1), the lowest value of (lnDOSDA,mol)

−1 is an order of
magnitude more negative than for a geometric series of binding energies,
where many OSDAs are clustered closer to −100 kJ mol−1 (Figure D.1, SI).
As such, (lnDOSDA,mol)

−1 captures the influence of OSDA binding strength
relative to other OSDAs more strongly and disproportionately appears in
high-performing descriptors.

The first term of the αij,T descriptor (lnCform,Si/(lnDOSDA,mol×lnDform,Si))
contains only variables from the C and D metrics, while the second term
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(∆Eij,Si/∆Eij,OSDA,mol) contains only binding energies. The first term ap-
pears to capture the relative performance of an OSDA for a given framework.
These two terms have similar ranges (with the exception of some outliers in
the first term); as such, we expect that they contribute similarly to the com-
puted ranking for AUC calculation. When simplified, the second part of the
equation simplifies to:

∆Eij,Si

∆Eij,OSDA,mol

=
nOSDA,mol

nSi

(14)

where nOSDA,mol is the loading of OSDA molecules per unit cell of the frame-
work and nSi is the number of Si tetrahedral atoms per unit cell. Together,
these terms indicate that the best OSDA for a given zeolite is one which has
a much stronger binding energy than competing molecules and which can
produce a high loading per tetrahedral site.

3. Discussion

This work relies on relatively low-fidelity binding energy data to make
predictions about which OSDA best templates a given zeolite framework or to
predict the framework that would result from a given OSDA. Because binding
energies of OSDAs within frameworks were computed using a DREIDING
force field rather than more accurate DFT methods, predictions of synthesis
outcomes may be significantly worse than they might otherwise be. Moreover,
our binding energy calculations use a simplified model to assess OSDA fit only
(Figure 1). While we assess these binding energies in pure silica materials,
our past work has shown that this approach works well to identify the fit
of these molecules within zeolites and identify promising OSDAs for zeolite
materials with a wide range of Si/Al [10, 15, 32]. When we compute literature
recall to evaluate the metrics we use, we include all possible frameworks for
two reasons. First, this approach appears to work despite its constrained
framework composition. Second, when attempting to identify an OSDA to
synthesize a given framework—even if targeting a specific composition—one
must compare its phase purity across all possible options [10]. By neglecting
the influence of ISDA templating of specific composite building units (CBUs)
or the role of heteroatoms in stabilizing some CBUs, these data create an
incomplete picture of zeolite synthesis. We also neglect the formation of
silanol defects, crystallization kinetics, and other unusual synthesis behaviors
that could affect OSDA choice. For example, MWW zeolites form in layers
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around their OSDAs and are calcined at high temperature to both remove
the OSDA and form the final crystal phase [33, 34, 35]. In cases such as
these, computing binding energies in the final, fully formed crystal do not
accurately reflect the synthesis process.

We also attempted to include entropic effects that might affect zeolite
crystallization. The metric that we used in this work is based on an em-
pirical fit to alkane adsorption entropies in a small set of zeolites [20]. We
used this metric, estimates of the gas-phase entropies of the OSDAs studied
here from statistical mechanics, and tabulated data for occupiable volumes
of different zeolites [36] to estimate adsorption entropy of OSDAs within ze-
olites. However, zeolites are often synthesized hydrothermally, as noted in
Section 2.2; a more rigorous investigation of OSDA binding entropy would
incorporate these solvent effects and would compute the Gibbs free energy
of adsorption (∆Gij) rather than the Helmholtz free energy (∆Aij). Ad-
ditionally, more rigorous investigations on the polarity of the material or
distribution of acid sites on the entropy of different adsorbates that develop
a similar but more extensive descriptor would be useful. Such an approach
would require extensive additional calculations, such as molecular dynamics
[37, 38], and is beyond the scope of this work.

The growing accuracy of ML broadly, but especially neural network force
fields (NFFs) and machine-learned interatomic potentials (MLIPs), has en-
abled novel computation-driven methods for materials discovery and synthe-
sis [39, 40]. This work uses a combination of different levels of theory—DFT
for formation energies and a force field to estimate OSDA binding energies.
In the future, we anticipate that MLIPs may enable rapid assessment of
zeolite formation energies and more accurate estimations of OSDA binding
energies than those computed with the DREIDING force field. For example,
there are already some MLIPs specifically for zeolites [7, 41, 42, 43, 44, 45]
and a growing number of potentials for general materials chemistry purposes
like CHGNet [46] and MACE-MP-0 [47], both of which are trained on data
from the Materials Project [48, 49]. Beyond MLIPs, other ML methods
have been used to predict materials properties of zeolite frameworks [50, 51].
Even without Achieving DFT-level accuracy for all of the metrics used in
this work and for additional compositions besides siliceous frameworks may
enable more robust predictions of synthesis outcomes in silico that can guide
experimental procedures.

Finally, the standard by which we are measuring the performance of our
metrics—literature recall AUC—may be an imperfect measure of success.
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Some of the OSDAs that we have identified here may work well for some
frameworks, but the specific synthesis recipe that could produce such mate-
rials requires additional information to develop (e.g., the inclusion of partic-
ular ISDAs, synthesis time). Many materials have only a few publications
or patents about their syntheses and are rarely studied; in these cases, lit-
erature recall proves more difficult because of the scarcity of synthesis data.
Moreover, this work treats the absence of a publication using a given OSDA
to synthesize a zeolite as a true negative; however, such absences may reflect
a dearth of attempts to develop synthesis recipes for a given OSDA-zeolite
pair. While there are some cases where OSDA molecules cannot template
a given framework, assigning a quantity to these cases remains challenging.
For example, the OSDA 1-methyl-4-[3-[1-methyl-1-(phenylmethyl)piperidin-
1-ium-4-yl]propyl]-1-(phenylmethyl)piperidin-1-ium (see Figure E.1 in the SI
for structure) is extremely large and has only been used to synthesize beta
zeolites [52, 53, 54, 55]. Our past work was unable to dock this OSDA within
several frameworks—such as CHA and LTA—which may suggest that these
frameworks can never be synthesized using this OSDA and may most closely
represent a “true negative” OSDA-zeolite pair. Such non-binding OSDA-
zeolite pairs are excluded from our assessment of literature recall because no
binding energy (and therefore no Eij,T ) could be calculated. The inability to
fit within the zeolite pores is already an indication of the OSDA’s inability
to template the given zeolite. Additionally, the simple thermodynamic cal-
culations used here may not capture the full complexity of zeolite formation,
where nucleation mechanisms remain mysterious and methods to control for-
mation are still nascent [56]. As such, a priori zeolite synthesis prediction
and guidance remains challenging for some zeolite frameworks that require
highly specific OSDAs and synthesis recipes to form, despite recent progress
and the growing availability of more accurate tools to drive data-driven syn-
thesis [9, 57].

4. Conclusions

We expand our previous studies of OSDA selection using high-throughput
approaches by including additional factors that may influence zeolite syn-
thesis. Specifically, we test whether including formation energies of zeolite
frameworks (∆Eform,j) and estimates of OSDA binding entropies in frame-
works (∆Sij) improves predictions of experimentally validated OSDA-zeolite
pairs. The net transformation during OSDA-guided zeolite synthesis involves
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the crystallization of the framework material around an OSDA molecule. We
compute the energy associated with this transformation normalized per Si
atom in the zeolite (∆Eform,ij,Si) and compare it to a previous metric that
we used to rank the best OSDAs for zeolite synthesis, the templating energy
(Eij,T ) [10]. Using this energy slightly improves predictions for the most
likely zeolite to be produced from a given OSDA, but does not markedly
improve identification of the best OSDA for a targeted zeolite material.

Chemical intuition alone may not produce the best descriptor to pre-
dict OSDA-zeolite pairs. As such, we turn to ML techniques to construct
a better equation using SISSO. The descriptor from SISSO that we identi-
fied with the best performance for predicting OSDA-zeolite pairs, αij,T (Eq.
13), only provides a marginal improvement over Eij,T for these predictions.
This descriptor has two terms: a term containing only values of competi-
tion (C) and directivity (D) that capture differences in how well an OSDA
templates a given framework; and a term that depends on the ratio of the
number of OSDAs to the number of framework Si atoms in the material.
The first term contains (lnDform,Si)

−1, which appears the most frequently
out of any possible variables in the equations from SISSO that have the
highest literature recall AUC performance on average. This finding suggests
that directivity of an OSDA—specifically derived from the formation affinity
of that OSDA-zeolite pair—disproporionately contributes to the likelihood
of the OSDA-zeolite pair being experimentally validated. This assessment
did identify a descriptor that predicts which OSDA-zeolite pairs are most
likely slightly better than descriptors developed based on chemical intuition;
however, this new descriptor αij,T does not improve significantly over those
developed from chemical intuition. As such, using chemically reasonable de-
scriptors may remain desirable because they are more readily interpretable.

Predicting the outcomes of zeolite synthesis or the best OSDA to synthe-
size a given framework remains challenging. The data used here to develop
this descriptor were collected using relatively low-accuracy methods within
a high-throughput virtual screening framework that aims to filter out un-
likely candidates and identify the most promising candidates. Higher fidelity
data may provide different recalls and rankings than those produced here,
but methods for gathering those data remain costly. Finally, literature recall
provides an imperfect metric for assessing the performance of these metrics.
Zeolite and zeotype synthesis often involves a complex mixture of a silica
source, heteroatoms, an OSDA, ISDAs, and other mineralizing agents, all of
which may affect the framework that is produced. Literature data also do
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not necessarily contain all possible OSDA-zeolite pairs; some OSDAs may be
able to synthesize frameworks that these metrics have identified as promising,
but the correct recipe has not yet been identified and verified in literature.
The absence of an OSDA-zeolite pair from literature is treated here as a true
negative, but such true negatives cannot actually exist within the synthesis
literature. This work provides a metric to more accurately predict viable
OSDA-zeolite pairs, but more accurate data and faster predictions will be
necessary to guide zeolite synthesis reliably a priori.

5. Methods

5.1. Density Functional Theory Calculations and atomistic zeolite models

Density functional theory (DFT) calculations were done using the Vi-
enna ab initio simulation package (VASP) [58, 59, 60]. Planewaves were
created with an energy cutoff of 600 eV using the projector-augmented wave
(PAW) method [61]. Calculations were performed using the Perdew–Burke–
Ernzerhof (PBE) form of the generalized gradient approximation (GGA) [62],
with the DFT-D3 correction to account for van der Waals and dispersive in-
teractions [63]. Monkhorst-Pack k-point meshes for each calculation were

constructed to maintain a constant sampling density of 64 k-points Å
−3
.

Hexagonal cells used Γ-centered k-point meshes. Each structure was opti-
mized such that both the atomic positions and unit cell were permitted to
relax (ISIF = 3 in VASP). Self-consistent field (SCF) cycles were considered
converged once energies varied by < 10−6 eV. Geometries were optimized

until forces on each atom were < 10−2 eV Å
−1
. All zeolite structures were re-

trieved as CIF files from the database of the International Zeolite Association
(IZA) [64].

5.2. Entropy corrections

Entropies were estimated based on an empirical fit to gas-phase adsorp-
tion data of alkanes in many different zeolite frameworks [20]. This earlier
work found that the standard state adsorption entropy of a molecule i in
zeolite j (∆S◦

ij) could be described by

− ∆S◦
ij = S◦

1D,trans,i +

(
Frot, slab +

1

7

[(
1− Vcrit

2Vocc,j

)−3

− 1

])
S◦
rot,i (15)
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In this equation, S◦
1D,trans,i is the standard one-dimensional translational en-

tropy of the molecule as an ideal gas, Frot, slab is the fractional loss in rota-
tional entropy when a molecule adsorbs to a slab, Vcrit is a critical volume at
which all rotational entropy is lost, Vocc,j is the occupiable volume available

for zeolite j within a 1000 Å
3
cube of space in the crystal, and S◦

rot,i is the
standard rotational entropy of the molecule as an ideal gas [20]. The values of

Frot, slab and Vcrit are 0.03 (unitless) and 127.3 Å
3
, and both are constant for

all zeolites. The value of Vocc,j depends on the zeolite, and was calculated in
earlier work by filling the voids of the zeolite with spheres of diameter 2.8 Å
to approximate packing water molecules within the zeolite voids [36]. Bind-
ing entropies were only estimated for zeolite frameworks for which occupiable
volumes were previously calculated.

We computed the gas-phase translational and rotational entropies of all
OSDA molecules in the Organic Structure-directing agent DataBase (OSDB)
[10]. Translational entropies were estimated using the Sackur-Tetrode equa-
tion [65], which was also used in the work that discovered Eq. 15:

Strans,i(T ) = S◦
Ar,298K +R ln

[(
mi

mAr

) 3
2
(

T

298K

) 5
2

]
(16)

where S◦
Ar,298K is the gas-phase entropy of Ar at 298 K and 1 bar (or 154.8

J (molK)−1), R is the universal gas constant, mi

mAr
is the ratio of the mass

of the molecule to the mass of an Ar atom, and T is the temperature in K.
The rotational entropy of each molecule was calculated according to ideal-gas
statistical mechanics used in the same work:

Srot,i(T ) = R

(
ln

[√
πIAIBIC

σ

(
8π2kBT

h2

) 3
2

]
+

3

2

)
(17)

where IA, IB, and IC are the principle moments of inertia of a molecule; σ
is the symmetry number, kB is Boltzmann’s constant, and h is Planck’s con-
stant. Previous work has generated three-dimensional molecular conformers
for all of the OSDA molecules that were studied in this work [10]. Up to
five conformers were generated using the RDKit software package for each
molecule (v. 2024.3.1) [66]. The energies of each conformer were estimated
using the semi-empirical tight binding scheme (GFN-xTB) [67]. Moments of
inertia and symmetry numbers were estimated based on the conformer with
the lowest GFN-xTB energy. Symmetry numbers were computed using the
pymatgen package (v. 2024.5.1) [68].
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5.3. Descriptor fitting
The sure independence screening and sparsifying operation (SISSO) code

[69] was used to generate a one-dimensional descriptor (i.e., a single equa-
tion) to describe zeolite synthesis outcomes based on zeolite formation ener-
gies, binding energies, and the C and D metrics described in Eq. 2 and 3. We
used SISSO to develop a descriptor for classification that could distinguish
between positive and negative synthesis outcomes but which can also be used
to rank OSDAs for a given framework or frameworks for a given OSDA. As
such, we constrain our primary study to one-dimensional descriptors that pro-
duce a single numeric value for a given OSDA-zeolite pair. While SISSO can
develop multi-dimensional descriptors (that is, descriptors composed of mul-
tiple equations), such equations may not be useful for ranking OSDA-zeolite
pairs. Users could fit multi-dimensional logistic curves to multi-dimensional
equations, but such efforts would only serve for classification purposes. Al-
ternatively, linear combinations of equations produced by SISSO could be
used—where each equation was multiplied by a fitted parameter; however,
the combinatorial space of such an effort would be enormous and would risk
overfitting. Therefore, we pursue only a one-dimensional descriptor from
SISSO in this work.

SISSO constructs features by iteratively performing functional or alge-
braic operations on a set of variables. These variables are provided as inputs
to the primary feature space, Φ0, and have the corresponding data against
which fitting is performed provided in an external file. A set of operations
on Φ0 produces the Φ1 feature space; for example, if Φ0 contains variables
a and b with the same units, Φ1 may contain a+ b, a− b, a/b, a2, and so on.
Subsequent spaces Φn are composed of items from previous feature spaces
Φm<n. The maximum permitted feature complexity used in this work was 4
(i.e., up to Φ4). A total of 50,000 descriptors were saved in the output of the
SISSO runs (the SISSO.in file is provided in the Supporting Information).
Importantly, this approach and the operators used with SISSO would allow
SISSO to reproduce the earlier equation that we used to rank zeolite-OSDA
pairs (Eq. 1) [10].

The binding energy data were taken from earlier work [10], while forma-
tion energies were computed here using the DFT methods described above
in Section 5.1. The binding energies were calculated for OSDAs in pure-
silica zeolite frameworks with the DREIDING force field [14]—an approach
that was shown to correlate well with DFT-calculated binding energies for a
subset of these zeolite-OSDA pairs [15]. This dataset contains zeolite frame-
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works that have been synthesized successfully in labs and all known OSDAs
to template these frameworks (at the time of its publication).

The dataset for binding energies contains a total of 112,426 OSDA-zeolite
pairs—far too large to perform SISSO. These pairs were generated from a
list of OSDAs that were compiled from previous publications and patents for
zeolite synthesis using natural language processing [70]. Where possible, any
molecules used as OSDAs within this synthesis dataset were docked within
siliceous forms of all zeolite frameworks. Because of the size of the dataset,
we take a stratified sample of 5000 zeolite-OSDA pairs that have not been
identified in literature and 500 zeolite-OSDA pairs that have produced zeolite
frameworks to perform the SISSO analysis. After removing highly correlated
C and D variables derived from formation affinities (see Section 2.3.1), we
performed sparse regression using the remaining 12 variables shown in Figure
5 on this sample of the full dataset.

Once the descriptors were generated with SISSO, we fit each equation to
the outcomes in the sample dataset using decision trees and logistic regres-
sion with the scikit-learn package [71]. Decision trees for classification were
fit to all 50,000 equations with a depth of two, similar to an earlier approach
used to evaluate SISSO equations to predict perovskite synthesis outcomes
[72]. Logistic curves were fit with the descriptor as the independent variable
and the synthesis outcome for the framework-OSDA pair, where 0 meant the
zeolite-OSDA pair had not been found in literature and 1 meant that it had,
also similar to earlier work studying ion ordering in perovskites [73]. Once
all equations had been assessed on the training sample using this method,
they were ranked based on their relative performances for classification with
each method. The top 200 equations based on decision trees, 200 equations
from logistic regression (excluding any whose decision tree classifiers had
already been selected), and 200 with the highest average ranking between
the two (again excluding redundant descriptors) were selected for further fil-
tering. The descriptors were then computed for all data points in the full
dataset for which all datapoints were available. These descriptors—alongside
Eij,T , Eform,ij,T , ∆Eform,ij,Si, and Aij,T—were then evaluated by computing
literature recall area-under-the-curve (AUC), where OSDAs are ranked for
a given framework (or frameworks ranked for a given OSDA) by their de-
scriptor values from low to high and the number of experimentally validated
zeolite-OSDA pairs counted for each ranking (see Section 2.1 for examples).
Zeolites and OSDAs for which binding entropies could not be estimated us-
ing the equations from Ref. [20] from tabulated values in Ref. [36] were
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excluded from this analysis. High AUCs indicate that rankings provided
by the descriptors tend to place known zeolite-OSDA pairs at a low value.
Some of the filtered descriptors whose decision tree or logistic curve classifi-
cations performed well had AUCs < 0.5, which indicated that they instead
ranked zeolite-OSDA pairs in the opposite order of how AUC rankings were
computed for the other descriptors. In these cases, the descriptors were mul-
tiplied by −1 and the AUCs recomputed. The best descriptor from Eq. 13
was determined as the equation that had the best AUC.

5.4. Machine Learning Classifier Tests

We fit two ML models to our data to predict the presence of OSDA-
zeolite pairs in literature. These models were trained as a benchmark for our
SISSO descriptor and to contrast classifier models with a physically informed
descriptor to rank OSDAs. Both models were trained using the same data
and variables that were used to evaluate the SISSO descriptors. The code
for these models has been made publicly available with the rest of our code
and data (see Code Availability Statement).

First, we fit a random forest classifier from the scikit-learn package [71].
A grid search for the best hyperparameters suggested that a model with 100
decision tree estimators, each with a maximum depth of 30, had the best
five-fold cross-validation score. The confusion matrix showing this models
performance is shown in Figure A.1a in the SI.

Finally, we fit a neural network (NN) to classify zeolite-OSDA literature
pairs using PyTorch (v. 2.4.1) [74]. The NN model had three hidden layers,
each of which used the rectified linear unit (ReLU) activation function, until
passed through a final sigmoidal layer to predict the probability a zeolite-
OSDA pair was in the literature. The model was trained for 20 epochs and
used a binary cross entropy loss function. The confusion matrix for this
model is shown in Figure A.1b in the SI.
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Y. Román-Leshkov, A. Corma, T. Willhammar, R. Gómez-Bombarelli,
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Appendix to: Learning descriptors to predict organic

structure-directing agent applicability in zeolite

synthesis

Appendix A. Classifier Test for Phase Prediction

Figure A.1: Confusion matrices on a validation set for (a) a random forest and (b) neural
network classifiers trained on the binding energy from Ref [10].
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Appendix B. Zeolite Formation Energy for Phase Prediction

Figure B.1: Comparison of pure-silica zeolite formation energies relative to α-quartz com-
puted with DFT (PBE-D3) and the DREIDING forcefield in kJ (mol Si)−1. The point
corresponding to the RWY zeolite is highlighted.

Figure B.2: Comparison of pure-silica zeolite formation energies relative to α-quartz deter-
mined experimentally [23] and those computed with DFT (PBE-D3) and the DREIDING
forcefield in kJ (mol Si)−1. Each series is labeled with the Pearson’s correlation coefficient,
r.
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Figure B.3: Recall AUCs for all frameworks considered in this work computed with tem-
plating energy (Eij,T , red), formation templating energy (Eform,ij,T , blue), and formation
affinity (∆Eform,ij,Si, orange).
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Figure B.4: Literature recall AUC for all frameworks from (a) formation affinities per Si
atom (∆Eform,ij,Si), (b) formation templating energies (Eform,ij,T ), and (c) the templating
energy used in earlier work (Eij,T ), plotted as a function of the formation energy of the
underlying zeolite relative to α-quartz (∆Eform,j). Each point is colored by the number of
synthesis publications about the framework.

Figure B.5: Literature recall AUC for all frameworks computed using templating en-
ergy (Eij,T , red), formation templating energy (Eform,ij,T , blue), and formation affinity
(∆Eform,ij,Si, orange) as a function of the number of publications for each framework.
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Figure B.6: Heatmap of Spearman correlation coefficients squared, ρ2, for all of the vari-
ables that could be included for symbolic regression based on potential energies (DREID-
ING binding energies and DFT formation energies).
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Appendix C. SISSO equation analysis

Figure C.1: Distributions of (a) the negative of the first term and (b) second term in the
αij,T expression. (c) The second term as a function of the first term, with the Spearman
correlation coefficient (ρ) of the two terms.(d) The two terms within αij,T plotted here.
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Appendix D. Binding energy distribution effects on directivity

We illustrate the behavior of the most frequently occurring term in high-
performing equations generated by SISSO by constructing two sequences of
binding energies. The first is an arithmetic sequence where

∆Eij,arith,n = −100 + 10(n− 1) ∀n ∈ {0, 1, 2, ..., 9} (D.1)

The second is a geometric sequence where

∆Eij,geom,n = −101 + 10
9−n
5 ∀n ∈ {0, 1, 2, ..., 9} (D.2)

Table D.1: Values for the arithmetic and geometric series of example bining energies per
OSDA molecule (∆Eij,OSDA,mol) in kJ mol−1.

Arithmetic Geometric
-100 -100
-90 -99.42
-80 -98.49
-70 -97.02
-60 -94.69
-50 -91.00
-40 -85.15
-30 -75.88
-20 -61.19
-10 -37.90
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Figure D.1: Dependence of the inverse of the logarithm of the directivity derived from
binding energies per OSDA molecule ((lnDOSDA,mol)

−1) as a function of binding energies.
Two series of arbitrary binding energies are shown: an arithmetic sequence and a geometric
sequence, as defined by Eqs. D.1 and D.2, respectively.
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Appendix E. Example of large OSDA

Figure E.1: Structure of 1-methyl-4-[3-[1-methyl-1-(phenylmethyl)piperidin-
1-ium-4-yl]propyl]-1-(phenylmethyl)piperidin-1-ium (SMILES:
C[N+]1(Cc2ccccc2)CCC(CCCC2CC[N+](C)(Cc3ccccc3)CC2)CC1).
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Appendix F. SISSO Input

Below are the contents of the SISSO.in file for the successful SISSO run
performed in this work.

ptype=2

ntask=1

desc_dim=1

nsample=(5000,500)

restart=0

nsf=16

ops=‘(+)(-)(*)(/)(exp)(exp-)(^-1)(^2)(log)’

fcomplexity=4

funit=(1:7)

fmax_min=1e-3

fmax_max=1e8

nf_sis=50000

method_so=’L0’

nmodels=50000

isconvex=(1,1)

bwidth=0.001

10

https://doi.org/10.26434/chemrxiv-2024-mbg26-v2 ORCID: https://orcid.org/0000-0002-1337-9297 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-mbg26-v2
https://orcid.org/0000-0002-1337-9297
https://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	Zeolite Formation Energy for Phase Prediction
	Entropic contributions to OSDA templating
	Regressed descriptors for zeolite synthesis
	Variables for synthesis prediction
	Descriptors for synthesis


	Discussion
	Conclusions
	Methods
	Density Functional Theory Calculations and atomistic zeolite models
	Entropy corrections
	Descriptor fitting
	Machine Learning Classifier Tests

	Acknowledgments
	CRediT Author Statement
	Code Availability Statement
	Classifier Test for Phase Prediction
	Zeolite Formation Energy for Phase Prediction
	SISSO equation analysis
	Binding energy distribution effects on directivity
	Example of large OSDA
	SISSO Input

