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Abstract

Scientific  discovery  relies  on  innovative  software  as  much  as  experimental  methods, 

especially in proteomics,  where computational  tools are essential  for  mass spectrometer 

setup,  data analysis,  and interpretation.  Since the introduction of  SEQUEST, proteomics 

software  has  grown  into  a  complex  ecosystem  of  algorithms,  predictive  models,  and 

workflows,  but  the  field  faces  challenges,  including  the  increasing  complexity  of  mass 

spectrometry  data,  limited  reproducibility  due  to  proprietary  software,  and  difficulties 

integrating with other omics disciplines. Closed-source, platform-specific tools exacerbate 

these issues by restricting innovation, creating inefficiencies, and imposing hidden costs on 

the community. Open-source software (OSS), aligned with the FAIR Principles (Findable, 

Accessible,  Interoperable,  Reusable),  offers  a  solution  by  promoting  transparency, 

reproducibility,  and  community-driven  development,  which  fosters  collaboration  and 

continuous improvement. In this manuscript, we explore the role of OSS in computational 

proteomics, its alignment with FAIR principles, and its potential to address challenges related 

to licensing, distribution, and standardization. Drawing on lessons from other omics fields, we 

present  a  vision  for  a  future  where  OSS  and  FAIR  principles  underpin  a  transparent,  

accessible, and innovative proteomics community.

Introduction

Scientific  discovery  today  is  as  much  a  product  of  innovative  software  as  it  is  of 

groundbreaking experiments, and the right tools often mean the difference between success 

and  stagnation.  Indeed,  the  majority  of  scientists  recognize  scientific  software  as 

indispensable for their work and often impossible to conduct research without it  (1, 2). This 

reliance on software is equally crucial in proteomics, where researchers depend on a range of 

tools and algorithms for every step, from mass spectrometer configuration and data acquisition 

to the subsequent stages of processing, analysis, and interpretation (3, 4).

Since the original publication of the first mass spectrum database search tool, SEQUEST (5),

 proteomics software has evolved into a sophisticated ecosystem encompassing multiple 
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stages  of  data  processing,  advanced  predictive  models,  and  robust  computational 

frameworks. The publication of SEQUEST exemplifies a subsequent recurring pattern in MS-

based  proteomics,  in  which  the  development  of  software  drives  the  adoption  of  novel 

experimental methodology. Numerous examples of open-source software tools have been 

developed and used by the proteomics community. These include tools like Percolator  (6), 

which is used to improve peptide and protein identification using machine learning, MS2PIP (7,

 8) and Prosit (9), which apply gradient boosting and deep learning, respectively, to predict 

fragment ion intensities, aiding in more accurate spectral matching, which can in turn be used 

by Percolator-based rescoring approaches like MS2Rescore  (10), and Proteowizard  (11), 

which provides shared libraries and tools for data access. Platforms like GalaxyP (12) and 

quantms  (13) facilitate  accessible,  reproducible  analyses  through  high-performance 

computing (HPC) and distributed workflows, supporting researchers in handling large datasets 

and complex analyses. Together, these advances underscore how proteomics software has 

transformed  into  a  multidisciplinary  field,  involving  a  complex  ecosystem  of  algorithms, 

models,  and  software  tools  that  build  upon  sophisticated  computational  and  algorithmic 

expertise.

Computational proteomics faces several key challenges common to other omics fields: 

 The increasing complexity and size of data acquired by mass spectrometers, the 

complex sequence of steps, including spectral processing, statistical analysis, and 

biological  interpretation,  along  with  the  need  to  manage  algorithmic  details  and 

parameter settings, all contribute to making software development in proteomics a 

complex and demanding endeavour.

 Although most software tools are described in publications, the absence of open-

source code, comprehensive documentation, and version control often impedes the 

reproducibility, reuse and interpretation of the results generated by these tools. This 

lack of transparency prevents researchers from extending existing algorithms and 

adapting software to keep pace with rapidly advancing instrumentation and acquisition 

methods. Transparency is especially important during the relatively frequent shifts in 

data processing paradigms, like the rapid adoption of data-independent acquisition 

over data-dependent acquisition.

 Ensuring reproducibility is a challenge due to the limited access to detailed algorithmic 

information, which hinders validation and extension of methods.

 Custom licenses and restrictions on software distribution can further complicate the 

situation, making it difficult to share, modify, or redistribute software, and hindering the 

development of a collaborative and open-source ecosystem. Proteomics software is 

often distributed under  restrictive licenses and tailored to specific  platforms (e.g., 
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operating  systems,  and  computer  architectures),  limiting  its  use  across  diverse 

environments and services. Not surprisingly, such restrictive licenses hinder the field’s 

adaptability and impact the integration of proteomics with other omics disciplines.

 Complex workflows and high-throughput data analysis are growing in proteomics (12-

14).  This  complexity  requires  managing  dependencies,  configurations,  and 

environments consistently across diverse systems and architectures without human 

intervention. The community has tackled this challenge with continuous integration and 

deployment (CI/CD) pipelines as, for example, described in (15), but these pipelines 

rely upon the permission to freely redistribute software along the entire dependency 

chain. If one piece in this supply chain is not redistributable, then these exceptions 

must be handled, and automation is harder or impossible. A substantial additional 

burden is therefore created downstream of any non-OSS software package, which is a 

hidden cost on its own, and one that affects the entire community. In sum, restricted 

distribution terms create an additional burden for the entire community downstream, 

which on its own is a hidden cost.

 The lack of standardization in proteomics software development, including inconsistent 

documentation, variable code quality, and limited community engagement, can hinder 

the adoption and use of software tools, leading to inefficiencies and redundancies in 

software development.

 Closed-source, platform-specific software has caused lock-in effects, restricting users 

to specific tools and hindering innovation. Until  recently, major instrument vendors 

lacked open-source, cross-platform libraries for data access, limiting data reuse and 

algorithm development (16). Thermo Fisher's RawFileReader library marks important 

progress in this respect, enabling tools like ThermoRawFileParser  (17) and PRIDE 

Archive USI (18, 19).  This idea has been recently extended for Bruker timsTOF data 

with the timsrust library (https://github.com/MannLabs/timsrust/), which is open-source 

and already used by tools like the Sage search engine (20).

A solution to these challenges is offered by open-source software (OSS) which is also aligned 

with the FAIR principles (Findable, Accessible, Interoperable, Reusable) that have initially 

been established for scientific data  (21).  The FAIR principles were expanded in 2022 to 

research software (FAIR4RS) to address the growing recognition of research software as a 

foundational research asset (22). Following FAIR4RS principles empowers proteomics with 

OSS tools  that  are  not  only  accessible,  but  also  foster  community-driven  development, 

rigorous validation, and transparent sharing of methodologies (22, 23). Although OSS is not an 

explicit requirement for implementing FAIR principles, it facilitates the realization of these 

principles  by  making  software  more  accessible,  transparent,  and  reusable.  OSS  has 
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demonstrated clear benefits in increasing the accessibility, usability, and visibility of scientific 

software (24). In particular, OSS makes reproducibility, traceability, and auditability possible. 

With code freely available for inspection, modification,  and distribution,  OSS encourages 

collaboration and creates avenues for continuous improvement—factors that are critical in 

fields as data-intensive as proteomics.

In this manuscript, we aim to explore the role of OSS in computational proteomics and its 

implications for the development of FAIR research software. We will discuss the benefits and 

challenges of OSS in proteomics, the role of OSS in the development of FAIR research 

software,  and  the  importance  of  distribution,  licensing,  and  citation  of  software  in 

computational proteomics. We will also explore how other omics fields deal with OSS and 

FAIR  software  and  how  these  experiences  can  inform  the  development  of  proteomics 

software. Our goal is to present a vision for a future where OSS and FAIR software are 

encouraged and supported in the proteomics community.

2. What does it mean for software to be "open source"?

2.1. Attributes of an open-source project

Open-source software (OSS) is  defined by its  publicly  accessible  source code,  allowing 

anyone to view, modify, and distribute it under an Open-Source Initiative-approved license. 

Merely making source code available is not enough; licenses that restrict use or modification to 

specific fields (e.g., non-commercial use) do not qualify as open source. Unlike closed-source, 

OSS  guarantees  transparency,  fostering  trust,  collaboration,  and  scientific  progress.  To 

address misconceptions in proteomics, we aim to clarify for the community (users, developers, 

and reviewers) the essential criteria for OSS (https://opensource.org/osd):

 Source  Code  Availability:  The  source  code—the  instructions  that  define  how 

software functions—is publicly accessible, allowing anyone to view, download, and 

examine the code’s details (https://opensource.org/osd).

 OSI-Approved License: The software must use an Open Source Initiative-approved 

license,  which  specifies  rights  to  freely  use,  modify,  and  distribute  the  software, 

regardless of its application or environment (https://opensource.org/licenses).

 Freedom to Modify and Distribute: Open-source software, in contrast to source-

available software, allows users not only to access the code but also to modify it and 

share these modifications, encouraging innovation and collaboration.

 Transparency and Community Trust: With open source, the code is transparent by 

design, allowing the community to understand, verify, and contribute to the project. This 

transparency fosters trust and credibility, which is essential in scientific fields.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://opensource.org/licenses
https://opensource.org/osd
https://opensource.org/osd
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/


 Collaborative  Development:  Open-source  projects  can  be  maintained  by 

communities  or  dedicated  teams,  and  they  welcome  contributions,  such  as  bug 

reports,  enhancements,  and  new  features,  from  a  diverse  group  of  users  and 

developers.

 Long-term Sustainability:  Because the code is  publicly  accessible,  open-source 

projects  are  less  dependent  on  single  organizations  or  developers  for  their 

maintenance and long-term survival,  promoting continuity and stability even if  the 

original contributors leave.

 No Restriction to Specific User Groups: Unlike “free-for-academic-use” licenses, 

which  restrict  usage  to  academic  settings,  open-source  licenses  do  not  impose 

limitations on the types of users or institutions that can access or use the software.

 Not Necessarily Free of Cost: Open-source software is “free” in terms of freedom, not 

necessarily  in  terms of  price.  Users  might  pay for  support,  hosting,  or  additional 

services, but they retain freedom in how they use and modify the software.

2.2. Misconceptions about open source

In proteomics, and bioinformatics in general, multiple misconceptions exist about open/closed 

source software:

 Cost-free software is not always open-source: Many programs are freely available for 

non-commercial or academic use but do not meet open-source criteria. Similarly, "free 

and open-source software" (FOSS) refers to the freedom to run, modify, and share the 

software, not necessarily its financial cost.  FOSS may involve expenses for services 

like support or hosting, but it ensures that users retain the freedom to use, adapt, and 

distribute the software as they wish (https://www.gnu.org/philosophy/free-sw.html).

 So-called "academic licenses" only refer to free-for-academic-use: The source code is 

not necessarily open, shareable, or modifiable. Even the term "academic" is not well-

defined as it can refer to a wide range of institutions and organizations. To simplify this 

complexity, we can define OSS as any software that uses a license approved by the 

Open Source Initiative (OSI, https://opensource.org/licenses).

 Accessible source code does not mean open-source: Open-source software does not 

only mean that the source code is available but that it is allowed to be freely modified 

and shared regardless of whether the users work in academic or commercial settings.

 Open-source software does not imply a lack of professional quality: Many open-source 

projects are maintained by dedicated teams with robust testing and good programming 

practices. In genomics, projects like samtools (https://github.com/samtools/samtools) 

(25),  an  MIT-licensed  (https://opensource.org/license/mit-0)  project  with  over  80 

contributors  and  50,000+  citations,  and  the  Genome  Analysis  Toolkit  (GATK, 
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https://github.com/broadinstitute/gatk)  (26),  now  open-source  with  over  100 

maintainers and 26,000+ citations, exemplify this standard. In proteomics, Percolator (

https://github.com/percolator/percolator)  (6) has  over  2000  citations  and  20 

contributors, serving as a core tool for projects like MS2Rescore (10), OpenMS (27), 

MSBooster (28), DeepRescore (29), Crux (30), and even commercial tools like Mascot 

and Proteome Discoverer, and many others (13, 31-33). Other successful open-source 

projects  in  proteomics,  such  as  OpenMS  (27),  Skyline  (34),  Comet  (35), 

PeptideShaker (36), ThermoRawFileParser (17), and ProteoWizard (11), demonstrate 

the benefits of transparency and collaboration. Despite these successes, academic 

open-source proteomics software is still perceived as lower quality. In 2018, Rob Smith 

highlighted the community’s concerns about academic proteomics and metabolomics 

software, including poor documentation, lack of transparency, and limited support (37)

. However, it should be noted that much of this feedback was directed at academic and 

free-for-academic-use software rather than exclusively open-source software.

2.3. Detrimental practices in using public repositories

In addition to the described misconceptions and complexity, many journals and some funding 

agencies mandate code availability as part of publishing, which has prompted multiple bad 

practices from software developers and bioinformaticians aiming to fulfil these requirements. 

Notable examples include:

 Open-source Facade: Researchers may upload closed-source software to platforms 

like GitHub, giving an impression of openness with features such as issue tracking, 

while the actual source code remains inaccessible. Although often well-intentioned, 

this practice can mislead scientists and, in our view, should be discouraged. In these 

instances, a clear statement in the repository should indicate to the users that the 

software is not open source.

 Alterations Post-Publication: Software is deposited in GitHub as open source during 

the submission of the manuscript, but after publication, software licenses in GitHub 

repositories are changed, or repositories are deleted or made private, all of which 

complicates efforts to ensure long-term accessibility.

 License  Misuse  or  Ambiguity:  Some  repositories  may  use  inappropriate  or 

ambiguous  licenses,  causing  confusion  about  the  terms  of  use,  distribution,  and 

modification (more details discussed in the section Licenses in proteomics software).

 Obscure Dependencies: Software repositories may have dependencies that are not 

clearly documented, which may require closed-source or proprietary software. This can 

create barriers for other researchers attempting to run or build on software, as they 

may not have access to necessary components or may need to purchase expensive 
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licenses. Clear documentation of all dependencies along with their licensing terms is 

essential to ensure transparency and reproducibility.

3. Licenses in proteomics software

We  want  to  emphasize  a  fundamental  aspect  and  challenge  in  proteomics  software 

development: the choice of the licenses. Licenses serve as the foundation for defining key 

aspects of software, including commercialization, code reuse, distribution, and proper citation. 

It is therefore crucial to provide a license, and vital to choose a relevant one. As the gold 

standard for proteomics software development, we recommend using a standard OSS license 

like Apache 2.0, MIT, BSD, LGPL, and GPL; the full list of applicable licenses can be found at (

https://opensource.org/licenses). These licenses are all well known, are in use across many 

fields, and are well understood by the community. Additionally, they are compatible with the 

FAIR principles and the OSI guidelines (22). These established licenses moreover all have a 

clear definition of what is allowed and what is not, and how the software can be distributed, 

reused, and cited.

Many proteomics code repositories do not have a software license specified (Figure 1). It is 

important to note that without a specified license the software is not open source. With an 

unspecified software license, the software and contributions are exclusively owned by the 

authors, and no one can use, copy, or distribute the contributions. The fact that so many 

proteomics tools  have unspecified licenses underscores a  misunderstanding of  software 

licensing in the proteomics community.

Figure 1: Software licenses in use in proteomics. Scientific papers published in the Journal of Proteome 

Research that include a GitHub URL in their abstract were automatically retrieved from PubMed and 
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information on the software license of the corresponding GitHub repository was retrieved through the 

GitHub  API.  The  code  to  generate  these  data  is  available  at 

https://gist.github.com/bittremieux/70905e5d9dcc829ae49aab49e85954af.

In addition, as the field is evolving and software becomes more complex and has multiple 

components,  different  components  could  have  different  licenses.  Consequently, 

dependencies between these components should be clearly stated. We recommend clearly 

stating the dependencies that a piece of software might have and the licenses of each of them. 

Full disclosure of such dependencies is necessary to ensure that the user is aware of this, such 

that the community, developers, and journal reviewers are able to understand this challenge.

4. Why open-source software is essential for scientific research

4.1. Transparency promotes scientific rigor

The scientific community increasingly recognizes that algorithms, while not software or tools 

themselves  but  rather  the  underlying  steps  and  methodology,  are  becoming  significant 

research outputs in their own right. Algorithms are no longer seen merely as tools but are 

valued as core research outputs, reflecting the critical steps and methodologies at the heart of 

scientific innovation. For example, the peptide spectrum scoring function HyperScore was 

originally implemented in the open-source search engine X!Tandem (38), later adopted by 

search engines including MSFragger (39), EncyclopeDIA (40), PepQuery (41) and Sage (20).

 This shift highlights the importance of not only software as a means of implementation but also 

the reproducibility  and reliability of  the underlying computational  methods that  drive new 

discoveries. Both algorithms and their software implementations are now held to rigorous 

validation and reproducibility standards, similar to those for traditional experimental data and 

methodology.

Transparent computational methods open doors to innovation, enabling researchers to test 

hypotheses, refine methodologies, and build upon one another’s work with confidence. For 

instance, providing open-source implementations allows the scientific community to verify 

methods, adapt them to new challenges, and explore alternative approaches. Consider a 

proteomics experiment: without details on sample preparation or instrument settings or the raw 

data,  the  final  results  lack  reproducibility.  Similarly,  open-source  code  ensures  that 

computational methods can be accurately understood, replicated, and extended across labs 

worldwide.  This  transparency  is  particularly  relevant  for  core  proteomics  workflows—as 

demonstrated by AlphaDIA (42)—where understanding the underlying algorithms of protein 

search engines directly impacts data interpretation and research outcomes.
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When algorithms and models are shared as open-source software, they inherently uphold the 

FAIR principles applied to scientific data. This level of openness strengthens scientific rigor, 

enabling others to examine the code, replicate findings, and contribute improvements.  A 

transparent approach to computational research, through openly available code, fosters a 

collaborative  environment  where  the  community  can  validate  results  and  improve  tools, 

ultimately building trust in computational methodologies and accelerating innovation.

Moreover,  open-source implementations  guard  against  unintended variation  in  outcomes 

caused by minor differences in coding practices, dependencies, or hardware environments. 

Even small programming choices can lead to significant changes in results. Open-source code 

mitigates  these  risks  by  making  the  entire  process  visible,  allowing  other  scientists  to 

understand  the  nuances  and  make  informed  adjustments.  Transparency  is  key  in 

computational research, not just for ensuring rigor but for building a reliable foundation that 

drives the entire field forward.

Finally, open-source code allows researchers to apply and compare different implementations, 

revealing assumptions and enhancing understanding. For instance, discrepancies between 

implementations of common tools, such as variations in BLOSUM matrices for sequence 

alignment  (43),  demonstrate  how  essential  code  transparency  is  for  ensuring  scientific 

consistency. Open-source practices thus empower researchers to expand on established 

methods with confidence, propelling science toward more robust, reproducible, and innovative 

outcomes.

4.2. Shared knowledge pushes the field forward

Open-source  software  fosters  a  collaborative  ecosystem  where  researchers  across 

institutions can freely contribute, refine, and extend tools, accelerating scientific progress. 

Unlike proprietary software that confines advances to specific labs or companies, OSS allows 

researchers to rapidly build on each other’s work without duplicating efforts, promoting efficient 

resource  use  and  transforming  individual  achievements  into  collective  gains.  This  is 

particularly vital in proteomics, where bioinformatics is integral to every workflow, and progress 

depends on the synergy between wet-lab experimentation and computational  innovation. 

Extending and building on top of existing algorithms is crucial for scientific progress.

Proteomics  has  already  greatly  benefited  from this  open-source  approach.  Projects  like 

ProteoWizard (11, 44), with tools such as Skyline (34), msConvert (45), and SearchGUI  (46), 

exemplify OSS’s impact. Skyline, for instance, supports over twenty external plugins available 

in its Tool Store, allowing users to perform specialized tasks far more efficiently than if they had 
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to build solutions from scratch. Similarly, msConvert provides a standardized interface for 

mass  spectrometry  data,  sparing  developers  the  need  to  manage  proprietary  formats. 

SearchGUI (46), finally, provides a unified graphical user interface to twelve different search 

engines, in addition to ThermoRawFileParser and the abovementioned msConvert. Together, 

such  well-supported  OSS  projects  create  a  foundational  infrastructure  that  accelerates 

proteomics advancements.

The field of genomics offers a compelling example of how open-source initiatives can drive 

transformative progress. OSS such as reference-based aligners, e.g.,  BWA (47), variant-

calling algorithms, e.g., GATK-HaplotypeCaller  (26), and large-scale cloud-based genomic 

data  analysis  tools,  e.g.,  Hail  (https://hail.is),  have  revolutionized  genomics  research. 

Furthermore,  these  tools  have  been  seamlessly  integrated  into  broader  computational 

frameworks like the nf-core/sarek (48),  demonstrating how community-driven collaboration 

and  standardization  can  amplify  the  impact  of  individual  tools.  This  collaborative 

model underscores the potential  for  proteomics and other fields to follow a similar path, 

leveraging OSS to achieve greater integration, scalability, and innovation.

However,  sustaining successful  OSS projects in proteomics requires ongoing community 

engagement, which has often proven challenging. Despite their long history, projects like 

ProteoWizard and Skyline see few external contributions. Many researchers opt to develop 

independent tools rather than contribute enhancements within Skyline, missing opportunities 

for broader collaboration. Skyline’s external tools framework, which lowers technical barriers to 

contributions, has helped, but much of the development remains within the original labs. 

Community contributions in proteomics face barriers associated with multiple challenges. 

Developing software for proteomics demands specialized technical skills that many labs lack, 

especially  when  resources  are  focused  on  biological  research  rather  than  software 

engineering. The need for continuous updates to accommodate evolving data formats and 

instruments  also  requires  substantial  resources.  Additionally,  academic  incentives  often 

prioritize  novel  software creation over  contributions to  existing projects,  further  deterring 

collaborative development.

To create a more robust and impactful OSS ecosystem in proteomics, stronger incentives for 

community involvement and frameworks that support sustained collaboration are essential.

With enhanced incentives, collaborative frameworks, and dedicated resources, the proteomics 

community can achieve a more sustainable, widely supported, and effective ecosystem of 

open-source tools. Apart from the engagement needed from the community to foster the 

development of open-source software, proteomics could create and sustain some of the core 
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functionalities  of  the  field  in  small  libraries  and  tools  that  could  be  used  by  the  entire 

community:  for  example tools like MS2Rescore  (10) for  rescoring peptide identifications, 

pyOpenMS (49) for Python-based proteomics functions, or spectrum_utils  (50) for spectral 

data manipulation.

4.3. The community can contribute to development

One of the greatest strengths of open-source software is that "given enough eyeballs, all bugs 

are shallow" (51). Many of the critical pieces of software that underpin the modern technology 

stack are open source: Linux powers operating systems across the globe, Chromium serves 

as the foundation for multiple web browsers, PostgreSQL is a backbone of data storage, and 

Python and PyTorch have revolutionized machine learning and data science. Bringing this 

open-source ethos to proteomics holds the potential  to accelerate advances in the field, 

creating  tools  that  are  not  only  robust  but  also  accessible  to  a  global  community  of 

researchers.

Bugs and mistakes are inevitable in complex software, but collaborative scrutiny allows them 

to  be addressed more efficiently.  In  proteomics,  as  in  other  scientific  fields,  the diverse 

expertise of the community enhances both the quality and the utility of open-source tools. 

Users who encounter issues or limitations often provide feedback, suggest solutions, or even 

contribute code to address the challenges, fostering continuous improvement. In our own 

work, users have uncovered bugs that we subsequently corrected or asked questions about 

the underlying code which led to new features, fewer bugs, and more efficient algorithms. This 

feedback loop is unique to OSS, where the contributions from the community enhance the 

quality and precision of the software over time. Compared to proprietary software, OSS can 

often move faster and defray development costs by enabling users to build and contribute the 

features they need, rather than hoping that the maintainers of the software are willing or able to 

add the features themselves. This dynamic frees developers from the burden of predicting and 

implementing every possible use case and shifts  some of  the innovation to the broader 

community. For users, OSS reduces reliance on software maintainers, allowing research to 

advance even in the absence of formal support.

Without such transparency, computational research risks becoming a "black box" that stifles 

innovation rather than promoting it, hindering the growth of scientific knowledge. OSS can 

foster a culture of shared accountability, where code is not just released but continuously 

scrutinized and refined, driving the field forward in a collective effort toward scientific rigor. We 
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have indeed observed this in some of our projects: at the time of writing, quantms (13) and 

mokapot (52) now have 12 and 13 contributors, respectively.

5. Open source and ML/AI models in proteomics

Machine learning and deep learning are increasingly used in proteomics, with examples like 

the MS2 prediction models Prosit,  pDeep  (53),  AlphaPeptDeep  (54) and MS2PIP  (7,  8), 

retention time prediction models DeepLC  (55) and AutoRT (56), and the  de novo peptide 

sequencing  models  Casanovo  (57) and  InstaNovo  (58).  Many  deep  learning-based 

proteomics  tools  enhance  reproducibility  by  clearly  reporting  source  code,  training 

parameters, and other details. 

While closed-source tools have contributed to research, their models may carry biases that are 

difficult to detect and diagnose, and their potential utility can be hard to assess when code and 

models  are  not  accessible.  A  more  contentious  issue  arises  when  closed-source  or 

commercial models are trained on publicly shared community datasets, often under open-

source licenses.

Open-source software has proven its value by removing barriers to learning, sharing, and 

improving  systems.  For  AI  in  proteomics,  society  needs  similar  freedoms:  autonomy, 

transparency, ease of reuse, and collaborative improvement. The Open-Source Initiative's 

Open-Source AI Definition (OSAID) outlines these freedoms:

 Use the system for any purpose.

 Study how the system works and inspect its components.

 Modify the system, including changing its output.

 Share the system, with or without modifications, for any purpose.

AI  and machine learning are more than software:  they encompass data,  configurations, 

documentation, and artefacts like model weights and biases. "Open source" should apply to 

the entire system, including models,  parameters,  and structural  elements.  However,  it  is 

unclear what mechanisms or licenses ensure that these models, particularly their parameters, 

are  freely  available  for  use,  research,  modification,  and  sharing.  We  recommend  clear 

assertions accompanying parameter distribution to ensure that they remain freely accessible.

6. Increasing emphasis on open science and open source by funding agencies

As open science gains prominence, major funding agencies worldwide are implementing 

mandates to ensure that software developed with public funds is made openly accessible and 

reusable. Horizon Europe, the European Commission's flagship research program, has set 
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stringent  requirements  for  open  science,  strongly  recommending  that  research  outputs, 

including software,  are  shared under  open or  free licenses aligned with  FAIR principles 

(https://commission.europa.eu/about-european-commission/departments-and-executive-

agencies/digital-services/open-source-software-strategy_en). Additionally, all Horizon Europe 

funded research is required to establish a data management plan (DMP), which is a structured 

document that outlines plans for open software and code sharing where possible, including 

tools needed for interoperability.

In the United States, agencies like the National Institutes of Health (NIH) and the National 

Science Foundation (NSF) strongly encourage, and in some cases require, software and code 

sharing  through  public  repositories,  aiming  to  maximize  reproducibility  and  scientific 

transparency  (https://datascience.nih.gov/tools-and-analytics/best-practices-for-sharing-

research-software-faq). Similarly, the Wellcome Trust in the United Kingdom also recommends 

all research outputs, such as software integral to funded research, be available to ensure other 

research  can  verify  it,  build  on  it  and  use  it  to  advance  knowledge  and  make  health 

improvements  (https://wellcome.org/grant-funding/guidance/policies-grant-conditions/data-

software-materials-management-and-sharing-policy). However, the same recommendations 

recognised that in some circumstances, controls and limits on sharing are necessary – for 

example, to protect the confidentiality and privacy of research participants, or to enable IP to 

be protected.

Many other funding agencies all over the world have similar open-source guidelines. This trend 

underscores  a  commitment  from  funders  to  foster  collaborative  scientific  ecosystems, 

democratizing  access  to  essential  research  tools  and  enhancing  reproducibility  across 

disciplines.

7. Challenges of Maintaining Open-Source Scientific Software

Open-source software in computational proteomics offers significant benefits but also poses 

challenges,  particularly  around  sustainability.  These  challenges  often  deter  long-term 

commitment,  with  some researchers  transitioning  to  closed-source  software  after  facing 

sustainability  issues.  Below,  we  outline  key  barriers  to  maintaining  OSS  and  propose 

strategies—both practical and aspirational—to help advance OSS in the field.

7.1. Financial Sustainability
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Maintaining an OSS project requires ongoing funding for updates, bug fixes, testing, and user 

support.  However,  funding  agencies  like  the  NIH  often  prioritize  novelty  over  software 

maintenance, leaving many projects to become "abandonware" once the initial grant(s) end.

Problem: Without consistent funding, OSS projects in proteomics lose momentum after the 

initial development phase.

Potential Solutions:

 Dedicated Maintenance Grants: Funding agencies should offer grant mechanisms 

for software maintenance, such as the Chan Zuckerberg Initiative’s "Essential Open-

Source Software for  Science" grants.  For example,  the NIH previously supported 

software  maintenance through an R01 mechanism,  and today has a  program to 

support  sustainable  OSS  projects  (https://grants.nih.gov/grants/guide/rfa-files/RFA-

OD-24-010.html) directly.

 Commercialization  Models:  OSS  projects  could  explore  commercialization, 

potentially leading to academic spin-offs or new revenue streams (read the section 

about commercialization strategies).

7.2. Misaligned Incentive Structures in Academia

The  academic  incentive  structure  prioritizes  publications  and  novelty,  encouraging 

researchers to develop new software instead of maintaining existing tools. Contributions to 

OSS, especially those owned by others, are undervalued and rarely recognized in tenure or 

promotion evaluations.

Problem: The "publish-or-perish" culture discourages OSS maintenance, as it doesn’t align 

with traditional academic metrics.

Potential Solutions:

 Recognition  for  OSS  Contributions:  Institutions  and  funding  agencies  should 

acknowledge OSS maintenance as valuable scholarly work, similar to publications, 

and include it in grant and tenure evaluations, as is, for instance, the case in the 

European Commission's ERC programme CV template.

 Community-driven  Publications:  Journals  should  accept  papers  on  software 

updates, offering academic recognition for maintenance work, as seen in the Journal of 

Proteome Research’s Software Tools and Resources issue.

7.3. The Challenge of Consistent Maintainers
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In  academic  settings,  many  OSS projects  are  led  by  students,  postdocs,  or  temporary 

researchers who eventually leave for other opportunities, often in unrelated fields. This results 

in a lack of long-term maintainers, leading to project stagnation or abandonment.

Problem: The reliance on transient academic positions means OSS projects are vulnerable to 

disruptions as contributors move on.

Potential Solutions:

 Governance Models: Establishing community-driven governance structures, such as 

steering  committees  or  core  maintainer  teams,  can  provide  continuity  even  as 

individual contributors leave. Notably, this kind of governance is likely only feasible for 

larger, well-established open-source projects.

 Transition Plans: Projects should develop clear transition plans, ensuring that new 

maintainers can seamlessly take over. This could involve thorough documentation, 

onboarding guidelines, and mentoring new contributors.

Addressing  these  challenges  requires  a  multi-pronged  approach,  combining  changes  in 

funding  structures,  academic  incentives,  and  community  engagement.  The  scientific 

community,  funding  agencies,  companies,  and  academic  institutions  must  collaborate  to 

ensure that OSS can continue to thrive. By addressing these challenges head-on, we can build 

a more sustainable and collaborative ecosystem for open-source scientific software, ultimately 

driving innovation and reproducibility in proteomics research.
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8. How to start a gold-standard OSS project in proteomics

Box 1: How to get started with OSS. The following steps provide a guideline that can foster a successful 

open-source project that grows in adoption, value, and contributions over time.

  

1- Define clear goals and scope: Start by defining the specific problem or gap your software aims 
to solve. Ensure it addresses an unmet need or provides a significant improvement over existing 
solutions. Before starting an independent OSS project, consider contributing to an existing OSS 
project  by  evaluating  if  your  use  case could  take  advantage of  existing  frameworks.  For 
example,  adding  a  new  feature  within  Skyline  or  OpenMS would  not  require  using  your 
resources for implementing a raw data reading component and a user interface.

2- Choose an open-source license:  Choose an OSI  approved license that  aligns  with  the 
project's  intended use and desired level  of  openness.  For  projects  that  may later  require 
commercialization  or  enterprise  use,  dual  licensing  (e.g.,  open  source  with  an  option  for 
commercial licensing) can be considered to support sustainability. 

3- Plan for sustainability: Research potential funding sources, such as grants, academic support, 
or partnerships. Decide if the project will rely on donations, grants, or if it might later incorporate 
paid services. If applicable, consider models like SaaS, support-based revenue, or feature-
based licensing that could sustain the project without sacrificing its open-source nature. 

4- Set up a well-structured repository: Use a version-control platform like GitHub or GitLab for 
easy  access,  community  contributions,  and  versioning.  Use  clear  folder  structures,  name 
conventions, and modular code design to enhance usability and maintainability. Provide a clear 
guide on how others can contribute to the project, including coding standards, pull request 
policies, and a Code of Conduct to foster a positive collaborative environment. 

5- Incorporate early user feedback: Develop a prototype and engage a select group of users as 
beta testers than can try the software and provide feedback to ensure its usefulness and 
effectiveness. 

6- Implement rigorous testing and quality control: Use CI/CD practices like GitHub Actions to 
automate testing and improve code quality. Create robust tests to ensure functionality and 
compatibility,  and  regularly  review  code  with  input  from  experienced  contributors  or 
collaborators.

7- Develop thorough documentation:
a. User documentation: Provide tutorials, installation guides, and usage examples that lower 

barriers to entry for new users. 
b. Developer  documentation:  Include  technical  details  that  make  it  easier  for  new 

developers to understand the codebase, contribute, and debug. 
c. Version control and changelog: Maintain a detailed changelog for tracking updates, and 

consider using semantic versioning for releases to help users track changes and updates. 
8- Build a community: Create forums, mailing lists, or a Slack channel to facilitate communication 

and support  for  users and contributors.  Promote the project  within academic and industry 
circles, social media, or conferences. Encourage diverse participation, whether from seasoned 
developers, scientists, or students, by being open to questions, feedback, and contributions of 
varying levels. 

9- Ensure long-term maintenance and evolution: Provide a roadmap to outline planned features 
and long-term goals,  keeping contributors aligned and users confident.  Build  an engaged 
community by recognizing contributors, hosting events, and welcoming new ideas. Adopt a 
governance model, such as a core maintainer group, to ensure the project’s mission endures 
despite contributor changes.

10- Monitor and measure success: Track metrics like repository stars, downloads, citations, or 
code contributions to gauge adoption and impact. Regularly collect user feedback and address 
concerns or feature requests to ensure the project stays relevant and useful to its audience. 

11- Stable DOIs: To prevent issues with license or code changes after publication, OSS projects 
should use archival platforms like Zenodo, Figshare, or Software Heritage, which offer DOIs for 
long-term citation and access. These platforms integrate with GitHub for automated, enduring 
accessibility.
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9. Creation of Sustainable, Open-Source Software in an Academic Setting

A primary purpose of the academic laboratory is the training of graduate and post-doctoral 

students.  These  positions  are  by  their  nature,  of  limited  duration.  The  creation  and 

development of software tools can be an ideal mechanism for creating a deep understanding 

of the concepts and best practices of proteomics.  However, tools created during training can 

languish following the graduation and departure of the student unless there is a considered 

and established plan for  sustainability  in  place.  We have established and maintained a 

procedure for sustainable software using the following established practices.

Box 2: One working approach to sustainable software development in an academic setting.

 

The rationale for these rules is as follows. Choosing a single language for the laboratory 

means that all students will be well-versed and deeply knowledgeable in that language. This 

enables an easy understanding of existing code and the ability to understand the code written 

by other contributors.  The re-use of an established codebase eventually results in robust, 

reliable, and bug-free operation.  Moreover, all contributors become extremely conversant with 

the  individual  capabilities  and  their  straightforward  and  facile  integration  into  new tools. 

Student contributions are guided by the consensus of the group, being incorporated into our 

codebase where they make the most sense and with an eye toward their future use. The 

requirement for unit test coverage means that new code functions as expected and maintains 

the functionality of existing functions.  The requirement for three reviews means that all code 

created in the lab is well understood by many other lab members. Therefore, when a student 

leaves the lab, there are many individuals still around who understand all that student’s code 

and can maintain it moving forward.  The requirement that students extend projects with new 

functionality rather than create stand-alone software provides an avenue to re-use established 

code with proven reliability, limiting potential bugs only to the new portions of code. The effect 

of some code changes cannot be predicted. Therefore, the use of nightly build tests, where 

many code operations are evaluated with large datasets enable the team to find unexpected 

1- All students create code in the same language.
2- The language used by the lab should operate across major platforms (Windows, Linux, and 

MacOS).
3- All new code must make maximal use of existing code for efficiency. 
4- Any new tools that are created by students or staff are incorporated into that code base, if 

possible,  rather than downstream applications,  so that  they can be made use of  in many 
projects.

5- All adaptations of existing code or newly created code must be covered by unit tests, that 
become a permanent part of the code base.

6- All new code must be reviewed and approved by an additional member of the team through code 
reviews. 

7- All code must pass nightly build tests before public release.
8- New applications should be extensions of existing applications whenever possible.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/


changes to the results or operation time. A key ancillary benefit of maximizing code re-use and 

minimizing new monolithic applications is the great reduction in the amount of code that needs 

maintenance over the long term. Code maintenance can require a significant investment of 

capital and human resources.  Therefore, for the academic lab, a concerted effort to reduce the 

need for both of those precious resources is vital.

10. Strategies to commercialize OSS

Open-source software (OSS) is not free from costs; maintaining, running, and developing it 

requires resources. To ensure long-term sustainability, several commercialization strategies 

have been developed, balancing openness with financial viability, in a manner suiting the 

needs of the owner. Here, we consider "commercialization" as any means to monetize OSS, 

whether it remains in an academic setting, is adopted by a company, or spun out into a startup. 

We argue that healthy OSS projects must be financially supported by methods such as 

charitable means, grants, or commercialization, in order for the development of the project to 

be sustainable. We discuss a few commercialization models that have become popular with 

OSS, which try  to  strike a balance between supporting openness and supporting future 

development. It is worth noting that these strategies are not necessarily mutually exclusive.

 Dual licensing: A popular commercialization option for OSS has been to offer the 

software  under  both  a  strong  copyleft  license  (like  GPL or  AGPL)  and  a  more 

permissive commercial license. The code itself is typically the same for both license 

types. The difference lies in how the code can be used, modified, and redistributed 

depending on the license under which it is acquired. Projects using this strategy are 

often available under a strong copyleft license (GPL, AGPL, etc.) with no financial cost. 

However, the copyleft nature of these licenses requires any derivative works to be 

published under a compatible open-source license, which is often undesirable for 

corporate users. Thus, projects also offer more permissive commercial licenses to 

paying customers,  allowing them to use the OSS project  within proprietary code. 

Although this approach may seem prone to abuse (e.g., improper use of GPL code), 

our experience has been that companies tend to be risk-averse and prefer purchasing 

proper licenses to avoid violating a copyleft  license. A successful example of this 

strategy from outside of proteomics has been RStudio by Posit. RStudio is currently 

available under an open-source AGPLv3 license, or under a commercial license when 

AGPLv3  is  incompatible.  Notably,  developers  should  make  sure  to  include  a 

"contributor license agreement" as part of their requirements for new contributors to 

ensure their contributions can be distributed under both licenses.
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 Support or services: Some OSS projects commercialize by offering support services 

or new feature development at a cost. Often users, particularly from corporate entities, 

are willing to pay for specialized training and ongoing support for their use of OSS 

projects. In special instances, it may even be the case that outside entities are able to 

pay  for  the  prioritization  of  specific  features.   For  example,  the  major  mass 

spectrometry instrument vendors have been providing financial support to both the 

Skyline and Proteowizard projects to ensure features, support, and documentation are 

provided for their customers. This road must be trod carefully though; while there is a 

benefit  to  allowing  sponsored  features,  and  they  do  benefit  everyone  once 

implemented; such a model risks losing control over the direction of an OSS project. 

Features added to Skyline from a vendor are made available to all vendors if they have 

compatible instrumentation.  Red Hat is the most prominent example of a company 

using this strategy to commercialize their enterprise Linux offering.

 Software as a service (SaaS):  The SaaS commercialization model  has become 

increasingly popular in recent times. When using a SaaS model, the OSS project 

remains open source, but commercialization occurs by building a platform around it. 

The platform then allows users to more easily use the OSS project. This model often 

includes a managed hardware or cloud infrastructure component, where users pay to 

interact with a web application to use the OSS tool, reducing the barrier to entry. In the 

bioinformatics space, NextFlow (59) is an open-source bioinformatics workflow engine 

that has been commercialized by Seqera Labs using the SaaS model. Their current 

Seqera  Platform  product  provides  an  interface  to  launch,  observe,  and  explore 

workflow executions with NextFlow, in addition to other features.

 Open-core: The open-core commercialization model provides access to new features 

only to paying customers. Rather than essential functionality, this refers to optional 

features such as a nicer user interface or early access to new features. Some variants 

of this model use a time delay for new features, where paying users have access to 

new  features  sooner  than  those  using  the  fully  OSS  version.  Practically,  the 

implementation of this strategy often involves the creation of a private, upstream fork of 

the OSS code repository. New features are then added to the private fork and synced to 

the OSS version at a later date. Such a strategy can also be used by academic labs 

looking to protect new features while preparing for publication and until a manuscript is 

accepted.  Although  we  advocate  for  developing  those  features  in  the  open,  we 

recognize that there are instances where this is not practical. For example, when a 

junior researcher is publishing a novel algorithm, they may want to avoid the risk of 

having their work pre-empted by others. Similarly, collaborators may request that the 

software be kept private to prevent other researchers from using it and publishing their 
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findings  first.   While  we believe  that  these  situations  are  rare  in  the  proteomics 

community, they could lead to the original researchers losing recognition and credit for 

their work. The open-core model is quite common, and in proteomics, it is used for 

ScaffoldDIA  from  Proteome  Software:  the  open-source  core  of  ScaffoldDIA  is 

EncyclopeDIA (40).

10. Concluding remarks

As proteomics increasingly depends on computational tools, adopting open-source and FAIR 

principles  is  crucial  for  ensuring  transparency,  reproducibility,  and accessibility.  We urge 

researchers, funding agencies, institutions, and companies to prioritize open-source practices, 

particularly for publicly funded work, to foster a truly collaborative scientific ecosystem. By 

collectively advancing open-source software, the scientific community can build an inclusive, 

rigorous foundation that fosters innovation and extends the benefits of research to scientists 

and the public alike.

Moving forward, we as a community should explore mechanisms to make OSS sustainable, for 

example, by creating a foundation for proteomics software to support the maintenance of OSS 

in our field. Emphasizing scalable, user-friendly software with complex features hidden behind 

intuitive interfaces will help ensure widespread adoption and success (60). This approach can 

also counteract negative perceptions of the quality of academic or OSS in mass spectrometry 

(37). Additionally, we expect that AI-assisted software development will enhance the quality of 

proteomics OSS by automating error detection, optimizing code performance, and enhancing 

feature integration—ultimately boosting reliability and user satisfaction. Regardless, let us 

unite in our commitment to open science and pursue a shared, sustainable future in our 

exploration of the proteome.
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