
Open-source and FAIR Research Software for Proteomics

Yasset Perez-Riverol 1, Wout Bittremieux 2, William S. Noble 3, Lennart Martens 4,5, Aivett

Bilbao 6, Michael R. Lazear 7, Bjorn Grüning 8, Daniel S. Katz 9, Michael J. MacCoss 10, Chengxin

Dai 11, Jimmy K. Eng 12, Robbin Bouwmeester 4,5, Michael R. Shortreed 13, Enrique Audain 14,

Timo Sachsenberg 15, Jeroen Van Goey 16, Georg Wallmann 17, Bo Wen 3, Lukas Käll 18, *, William

E. Fondrie 19

1 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome

Genome Campus, Cambridge, UK.
2 Department of Computer Science, University of Antwerp, 2020 Antwerpen, Belgium.
3 Department of Genome Sciences, University of Washington, Seattle, WA, USA.
4 VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium.

5 Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium.
6 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory,

Richland, Washington 99352, USA. US Department of Energy Agile BioFoundry, Emeryville,

CA, 94608, USA.
7 Belharra Therapeutics, 3985 Sorrento Valley Boulevard Suite C, San Diego, California 92121,

USA.
8 Bioinformatics Group, Department of Computer Science, Albert-Ludwigs University Freiburg,

Freiburg, Germany.
9 National Center for Supercomputing Applications & Siebel School of Computing and Data

Science & School of Information Sciences, University of Illinois Urbana-Champaign, Urbana,

Illinois, USA.
10 Department of Genome Sciences, University of Washington, 3720 15th St. NE, Seattle,

Washington 98195, USA.
11 State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for

Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China.
12 Proteomics Resource, University of Washington, Seattle, Washington 98195, USA.
13 Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
14 Institute of Medical Genetics, University Medicine Oldenburg, Carl von Ossietzky University,

Oldenburg, Germany.
15 Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen,

Germany.
16 InstaDeep.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

17 Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried,

Germany
18 Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology

and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
19 Talus Bioscience, Seattle, WA, USA.

Corresponding author: Lukas Käll (lukas.kall@scilifelab.se)

Abstract

Scientific discovery relies on innovative software as much as experimental methods,

especially in proteomics, where computational tools are essential for mass spectrometer

setup, data analysis, and interpretation. Since the introduction of SEQUEST, proteomics

software has grown into a complex ecosystem of algorithms, predictive models, and

workflows, but the field faces challenges, including the increasing complexity of mass

spectrometry data, limited reproducibility due to proprietary software, and difficulties

integrating with other omics disciplines. Closed-source, platform-specific tools exacerbate

these issues by restricting innovation, creating inefficiencies, and imposing hidden costs on

the community. Open-source software (OSS), aligned with the FAIR Principles (Findable,

Accessible, Interoperable, Reusable), offers a solution by promoting transparency,

reproducibility, and community-driven development, which fosters collaboration and

continuous improvement. In this manuscript, we explore the role of OSS in computational

proteomics, its alignment with FAIR principles, and its potential to address challenges related

to licensing, distribution, and standardization. Drawing on lessons from other omics fields, we

present a vision for a future where OSS and FAIR principles underpin a transparent,

accessible, and innovative proteomics community.

Introduction

Scientific discovery today is as much a product of innovative software as it is of

groundbreaking experiments, and the right tools often mean the difference between success

and stagnation. Indeed, the majority of scientists recognize scientific software as

indispensable for their work and often impossible to conduct research without it (1, 2). This

reliance on software is equally crucial in proteomics, where researchers depend on a range of

tools and algorithms for every step, from mass spectrometer configuration and data acquisition

to the subsequent stages of processing, analysis, and interpretation (3, 4).

Since the original publication of the first mass spectrum database search tool, SEQUEST (5),

 proteomics software has evolved into a sophisticated ecosystem encompassing multiple

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

mailto:lukas.kall@scilifelab.se
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

stages of data processing, advanced predictive models, and robust computational

frameworks. The publication of SEQUEST exemplifies a subsequent recurring pattern in MS-

based proteomics, in which the development of software drives the adoption of novel

experimental methodology. Numerous examples of open-source software tools have been

developed and used by the proteomics community. These include tools like Percolator (6),

which is used to improve peptide and protein identification using machine learning, MS2PIP (7,

 8) and Prosit (9), which apply gradient boosting and deep learning, respectively, to predict

fragment ion intensities, aiding in more accurate spectral matching, which can in turn be used

by Percolator-based rescoring approaches like MS2Rescore (10), and Proteowizard (11),

which provides shared libraries and tools for data access. Platforms like GalaxyP (12) and

quantms (13) facilitate accessible, reproducible analyses through high-performance

computing (HPC) and distributed workflows, supporting researchers in handling large datasets

and complex analyses. Together, these advances underscore how proteomics software has

transformed into a multidisciplinary field, involving a complex ecosystem of algorithms,

models, and software tools that build upon sophisticated computational and algorithmic

expertise.

Computational proteomics faces several key challenges common to other omics fields:

 The increasing complexity and size of data acquired by mass spectrometers, the

complex sequence of steps, including spectral processing, statistical analysis, and

biological interpretation, along with the need to manage algorithmic details and

parameter settings, all contribute to making software development in proteomics a

complex and demanding endeavour.

 Although most software tools are described in publications, the absence of open-

source code, comprehensive documentation, and version control often impedes the

reproducibility, reuse and interpretation of the results generated by these tools. This

lack of transparency prevents researchers from extending existing algorithms and

adapting software to keep pace with rapidly advancing instrumentation and acquisition

methods. Transparency is especially important during the relatively frequent shifts in

data processing paradigms, like the rapid adoption of data-independent acquisition

over data-dependent acquisition.

 Ensuring reproducibility is a challenge due to the limited access to detailed algorithmic

information, which hinders validation and extension of methods.

 Custom licenses and restrictions on software distribution can further complicate the

situation, making it difficult to share, modify, or redistribute software, and hindering the

development of a collaborative and open-source ecosystem. Proteomics software is

often distributed under restrictive licenses and tailored to specific platforms (e.g.,

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

operating systems, and computer architectures), limiting its use across diverse

environments and services. Not surprisingly, such restrictive licenses hinder the field’s

adaptability and impact the integration of proteomics with other omics disciplines.

 Complex workflows and high-throughput data analysis are growing in proteomics (12-

14). This complexity requires managing dependencies, configurations, and

environments consistently across diverse systems and architectures without human

intervention. The community has tackled this challenge with continuous integration and

deployment (CI/CD) pipelines as, for example, described in (15), but these pipelines

rely upon the permission to freely redistribute software along the entire dependency

chain. If one piece in this supply chain is not redistributable, then these exceptions

must be handled, and automation is harder or impossible. A substantial additional

burden is therefore created downstream of any non-OSS software package, which is a

hidden cost on its own, and one that affects the entire community. In sum, restricted

distribution terms create an additional burden for the entire community downstream,

which on its own is a hidden cost.

 The lack of standardization in proteomics software development, including inconsistent

documentation, variable code quality, and limited community engagement, can hinder

the adoption and use of software tools, leading to inefficiencies and redundancies in

software development.

 Closed-source, platform-specific software has caused lock-in effects, restricting users

to specific tools and hindering innovation. Until recently, major instrument vendors

lacked open-source, cross-platform libraries for data access, limiting data reuse and

algorithm development (16). Thermo Fisher's RawFileReader library marks important

progress in this respect, enabling tools like ThermoRawFileParser (17) and PRIDE

Archive USI (18, 19). This idea has been recently extended for Bruker timsTOF data

with the timsrust library (https://github.com/MannLabs/timsrust/), which is open-source

and already used by tools like the Sage search engine (20).

A solution to these challenges is offered by open-source software (OSS) which is also aligned

with the FAIR principles (Findable, Accessible, Interoperable, Reusable) that have initially

been established for scientific data (21). The FAIR principles were expanded in 2022 to

research software (FAIR4RS) to address the growing recognition of research software as a

foundational research asset (22). Following FAIR4RS principles empowers proteomics with

OSS tools that are not only accessible, but also foster community-driven development,

rigorous validation, and transparent sharing of methodologies (22, 23). Although OSS is not an

explicit requirement for implementing FAIR principles, it facilitates the realization of these

principles by making software more accessible, transparent, and reusable. OSS has

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/MannLabs/timsrust/
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

demonstrated clear benefits in increasing the accessibility, usability, and visibility of scientific

software (24). In particular, OSS makes reproducibility, traceability, and auditability possible.

With code freely available for inspection, modification, and distribution, OSS encourages

collaboration and creates avenues for continuous improvement—factors that are critical in

fields as data-intensive as proteomics.

In this manuscript, we aim to explore the role of OSS in computational proteomics and its

implications for the development of FAIR research software. We will discuss the benefits and

challenges of OSS in proteomics, the role of OSS in the development of FAIR research

software, and the importance of distribution, licensing, and citation of software in

computational proteomics. We will also explore how other omics fields deal with OSS and

FAIR software and how these experiences can inform the development of proteomics

software. Our goal is to present a vision for a future where OSS and FAIR software are

encouraged and supported in the proteomics community.

2. What does it mean for software to be "open source"?

2.1. Attributes of an open-source project

Open-source software (OSS) is defined by its publicly accessible source code, allowing

anyone to view, modify, and distribute it under an Open-Source Initiative-approved license.

Merely making source code available is not enough; licenses that restrict use or modification to

specific fields (e.g., non-commercial use) do not qualify as open source. Unlike closed-source,

OSS guarantees transparency, fostering trust, collaboration, and scientific progress. To

address misconceptions in proteomics, we aim to clarify for the community (users, developers,

and reviewers) the essential criteria for OSS (https://opensource.org/osd):

 Source Code Availability: The source code—the instructions that define how

software functions—is publicly accessible, allowing anyone to view, download, and

examine the code’s details (https://opensource.org/osd).

 OSI-Approved License: The software must use an Open Source Initiative-approved

license, which specifies rights to freely use, modify, and distribute the software,

regardless of its application or environment (https://opensource.org/licenses).

 Freedom to Modify and Distribute: Open-source software, in contrast to source-

available software, allows users not only to access the code but also to modify it and

share these modifications, encouraging innovation and collaboration.

 Transparency and Community Trust: With open source, the code is transparent by

design, allowing the community to understand, verify, and contribute to the project. This

transparency fosters trust and credibility, which is essential in scientific fields.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://opensource.org/licenses
https://opensource.org/osd
https://opensource.org/osd
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

 Collaborative Development: Open-source projects can be maintained by

communities or dedicated teams, and they welcome contributions, such as bug

reports, enhancements, and new features, from a diverse group of users and

developers.

 Long-term Sustainability: Because the code is publicly accessible, open-source

projects are less dependent on single organizations or developers for their

maintenance and long-term survival, promoting continuity and stability even if the

original contributors leave.

 No Restriction to Specific User Groups: Unlike “free-for-academic-use” licenses,

which restrict usage to academic settings, open-source licenses do not impose

limitations on the types of users or institutions that can access or use the software.

 Not Necessarily Free of Cost: Open-source software is “free” in terms of freedom, not

necessarily in terms of price. Users might pay for support, hosting, or additional

services, but they retain freedom in how they use and modify the software.

2.2. Misconceptions about open source

In proteomics, and bioinformatics in general, multiple misconceptions exist about open/closed

source software:

 Cost-free software is not always open-source: Many programs are freely available for

non-commercial or academic use but do not meet open-source criteria. Similarly, "free

and open-source software" (FOSS) refers to the freedom to run, modify, and share the

software, not necessarily its financial cost. FOSS may involve expenses for services

like support or hosting, but it ensures that users retain the freedom to use, adapt, and

distribute the software as they wish (https://www.gnu.org/philosophy/free-sw.html).

 So-called "academic licenses" only refer to free-for-academic-use: The source code is

not necessarily open, shareable, or modifiable. Even the term "academic" is not well-

defined as it can refer to a wide range of institutions and organizations. To simplify this

complexity, we can define OSS as any software that uses a license approved by the

Open Source Initiative (OSI, https://opensource.org/licenses).

 Accessible source code does not mean open-source: Open-source software does not

only mean that the source code is available but that it is allowed to be freely modified

and shared regardless of whether the users work in academic or commercial settings.

 Open-source software does not imply a lack of professional quality: Many open-source

projects are maintained by dedicated teams with robust testing and good programming

practices. In genomics, projects like samtools (https://github.com/samtools/samtools)

(25), an MIT-licensed (https://opensource.org/license/mit-0) project with over 80

contributors and 50,000+ citations, and the Genome Analysis Toolkit (GATK,

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://opensource.org/license/mit-0
https://github.com/samtools/samtools
https://opensource.org/licenses
https://www.gnu.org/philosophy/free-sw.html
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

https://github.com/broadinstitute/gatk) (26), now open-source with over 100

maintainers and 26,000+ citations, exemplify this standard. In proteomics, Percolator (

https://github.com/percolator/percolator) (6) has over 2000 citations and 20

contributors, serving as a core tool for projects like MS2Rescore (10), OpenMS (27),

MSBooster (28), DeepRescore (29), Crux (30), and even commercial tools like Mascot

and Proteome Discoverer, and many others (13, 31-33). Other successful open-source

projects in proteomics, such as OpenMS (27), Skyline (34), Comet (35),

PeptideShaker (36), ThermoRawFileParser (17), and ProteoWizard (11), demonstrate

the benefits of transparency and collaboration. Despite these successes, academic

open-source proteomics software is still perceived as lower quality. In 2018, Rob Smith

highlighted the community’s concerns about academic proteomics and metabolomics

software, including poor documentation, lack of transparency, and limited support (37)

. However, it should be noted that much of this feedback was directed at academic and

free-for-academic-use software rather than exclusively open-source software.

2.3. Detrimental practices in using public repositories

In addition to the described misconceptions and complexity, many journals and some funding

agencies mandate code availability as part of publishing, which has prompted multiple bad

practices from software developers and bioinformaticians aiming to fulfil these requirements.

Notable examples include:

 Open-source Facade: Researchers may upload closed-source software to platforms

like GitHub, giving an impression of openness with features such as issue tracking,

while the actual source code remains inaccessible. Although often well-intentioned,

this practice can mislead scientists and, in our view, should be discouraged. In these

instances, a clear statement in the repository should indicate to the users that the

software is not open source.

 Alterations Post-Publication: Software is deposited in GitHub as open source during

the submission of the manuscript, but after publication, software licenses in GitHub

repositories are changed, or repositories are deleted or made private, all of which

complicates efforts to ensure long-term accessibility.

 License Misuse or Ambiguity: Some repositories may use inappropriate or

ambiguous licenses, causing confusion about the terms of use, distribution, and

modification (more details discussed in the section Licenses in proteomics software).

 Obscure Dependencies: Software repositories may have dependencies that are not

clearly documented, which may require closed-source or proprietary software. This can

create barriers for other researchers attempting to run or build on software, as they

may not have access to necessary components or may need to purchase expensive

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/percolator/percolator
https://github.com/broadinstitute/gatk
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

licenses. Clear documentation of all dependencies along with their licensing terms is

essential to ensure transparency and reproducibility.

3. Licenses in proteomics software

We want to emphasize a fundamental aspect and challenge in proteomics software

development: the choice of the licenses. Licenses serve as the foundation for defining key

aspects of software, including commercialization, code reuse, distribution, and proper citation.

It is therefore crucial to provide a license, and vital to choose a relevant one. As the gold

standard for proteomics software development, we recommend using a standard OSS license

like Apache 2.0, MIT, BSD, LGPL, and GPL; the full list of applicable licenses can be found at (

https://opensource.org/licenses). These licenses are all well known, are in use across many

fields, and are well understood by the community. Additionally, they are compatible with the

FAIR principles and the OSI guidelines (22). These established licenses moreover all have a

clear definition of what is allowed and what is not, and how the software can be distributed,

reused, and cited.

Many proteomics code repositories do not have a software license specified (Figure 1). It is

important to note that without a specified license the software is not open source. With an

unspecified software license, the software and contributions are exclusively owned by the

authors, and no one can use, copy, or distribute the contributions. The fact that so many

proteomics tools have unspecified licenses underscores a misunderstanding of software

licensing in the proteomics community.

Figure 1: Software licenses in use in proteomics. Scientific papers published in the Journal of Proteome

Research that include a GitHub URL in their abstract were automatically retrieved from PubMed and

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://opensource.org/licenses
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

information on the software license of the corresponding GitHub repository was retrieved through the

GitHub API. The code to generate these data is available at

https://gist.github.com/bittremieux/70905e5d9dcc829ae49aab49e85954af.

In addition, as the field is evolving and software becomes more complex and has multiple

components, different components could have different licenses. Consequently,

dependencies between these components should be clearly stated. We recommend clearly

stating the dependencies that a piece of software might have and the licenses of each of them.

Full disclosure of such dependencies is necessary to ensure that the user is aware of this, such

that the community, developers, and journal reviewers are able to understand this challenge.

4. Why open-source software is essential for scientific research

4.1. Transparency promotes scientific rigor

The scientific community increasingly recognizes that algorithms, while not software or tools

themselves but rather the underlying steps and methodology, are becoming significant

research outputs in their own right. Algorithms are no longer seen merely as tools but are

valued as core research outputs, reflecting the critical steps and methodologies at the heart of

scientific innovation. For example, the peptide spectrum scoring function HyperScore was

originally implemented in the open-source search engine X!Tandem (38), later adopted by

search engines including MSFragger (39), EncyclopeDIA (40), PepQuery (41) and Sage (20).

 This shift highlights the importance of not only software as a means of implementation but also

the reproducibility and reliability of the underlying computational methods that drive new

discoveries. Both algorithms and their software implementations are now held to rigorous

validation and reproducibility standards, similar to those for traditional experimental data and

methodology.

Transparent computational methods open doors to innovation, enabling researchers to test

hypotheses, refine methodologies, and build upon one another’s work with confidence. For

instance, providing open-source implementations allows the scientific community to verify

methods, adapt them to new challenges, and explore alternative approaches. Consider a

proteomics experiment: without details on sample preparation or instrument settings or the raw

data, the final results lack reproducibility. Similarly, open-source code ensures that

computational methods can be accurately understood, replicated, and extended across labs

worldwide. This transparency is particularly relevant for core proteomics workflows—as

demonstrated by AlphaDIA (42)—where understanding the underlying algorithms of protein

search engines directly impacts data interpretation and research outcomes.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://gist.github.com/bittremieux/70905e5d9dcc829ae49aab49e85954af
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

When algorithms and models are shared as open-source software, they inherently uphold the

FAIR principles applied to scientific data. This level of openness strengthens scientific rigor,

enabling others to examine the code, replicate findings, and contribute improvements. A

transparent approach to computational research, through openly available code, fosters a

collaborative environment where the community can validate results and improve tools,

ultimately building trust in computational methodologies and accelerating innovation.

Moreover, open-source implementations guard against unintended variation in outcomes

caused by minor differences in coding practices, dependencies, or hardware environments.

Even small programming choices can lead to significant changes in results. Open-source code

mitigates these risks by making the entire process visible, allowing other scientists to

understand the nuances and make informed adjustments. Transparency is key in

computational research, not just for ensuring rigor but for building a reliable foundation that

drives the entire field forward.

Finally, open-source code allows researchers to apply and compare different implementations,

revealing assumptions and enhancing understanding. For instance, discrepancies between

implementations of common tools, such as variations in BLOSUM matrices for sequence

alignment (43), demonstrate how essential code transparency is for ensuring scientific

consistency. Open-source practices thus empower researchers to expand on established

methods with confidence, propelling science toward more robust, reproducible, and innovative

outcomes.

4.2. Shared knowledge pushes the field forward

Open-source software fosters a collaborative ecosystem where researchers across

institutions can freely contribute, refine, and extend tools, accelerating scientific progress.

Unlike proprietary software that confines advances to specific labs or companies, OSS allows

researchers to rapidly build on each other’s work without duplicating efforts, promoting efficient

resource use and transforming individual achievements into collective gains. This is

particularly vital in proteomics, where bioinformatics is integral to every workflow, and progress

depends on the synergy between wet-lab experimentation and computational innovation.

Extending and building on top of existing algorithms is crucial for scientific progress.

Proteomics has already greatly benefited from this open-source approach. Projects like

ProteoWizard (11, 44), with tools such as Skyline (34), msConvert (45), and SearchGUI (46),

exemplify OSS’s impact. Skyline, for instance, supports over twenty external plugins available

in its Tool Store, allowing users to perform specialized tasks far more efficiently than if they had

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

to build solutions from scratch. Similarly, msConvert provides a standardized interface for

mass spectrometry data, sparing developers the need to manage proprietary formats.

SearchGUI (46), finally, provides a unified graphical user interface to twelve different search

engines, in addition to ThermoRawFileParser and the abovementioned msConvert. Together,

such well-supported OSS projects create a foundational infrastructure that accelerates

proteomics advancements.

The field of genomics offers a compelling example of how open-source initiatives can drive

transformative progress. OSS such as reference-based aligners, e.g., BWA (47), variant-

calling algorithms, e.g., GATK-HaplotypeCaller (26), and large-scale cloud-based genomic

data analysis tools, e.g., Hail (https://hail.is), have revolutionized genomics research.

Furthermore, these tools have been seamlessly integrated into broader computational

frameworks like the nf-core/sarek (48), demonstrating how community-driven collaboration

and standardization can amplify the impact of individual tools. This collaborative

model underscores the potential for proteomics and other fields to follow a similar path,

leveraging OSS to achieve greater integration, scalability, and innovation.

However, sustaining successful OSS projects in proteomics requires ongoing community

engagement, which has often proven challenging. Despite their long history, projects like

ProteoWizard and Skyline see few external contributions. Many researchers opt to develop

independent tools rather than contribute enhancements within Skyline, missing opportunities

for broader collaboration. Skyline’s external tools framework, which lowers technical barriers to

contributions, has helped, but much of the development remains within the original labs.

Community contributions in proteomics face barriers associated with multiple challenges.

Developing software for proteomics demands specialized technical skills that many labs lack,

especially when resources are focused on biological research rather than software

engineering. The need for continuous updates to accommodate evolving data formats and

instruments also requires substantial resources. Additionally, academic incentives often

prioritize novel software creation over contributions to existing projects, further deterring

collaborative development.

To create a more robust and impactful OSS ecosystem in proteomics, stronger incentives for

community involvement and frameworks that support sustained collaboration are essential.

With enhanced incentives, collaborative frameworks, and dedicated resources, the proteomics

community can achieve a more sustainable, widely supported, and effective ecosystem of

open-source tools. Apart from the engagement needed from the community to foster the

development of open-source software, proteomics could create and sustain some of the core

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

functionalities of the field in small libraries and tools that could be used by the entire

community: for example tools like MS2Rescore (10) for rescoring peptide identifications,

pyOpenMS (49) for Python-based proteomics functions, or spectrum_utils (50) for spectral

data manipulation.

4.3. The community can contribute to development

One of the greatest strengths of open-source software is that "given enough eyeballs, all bugs

are shallow" (51). Many of the critical pieces of software that underpin the modern technology

stack are open source: Linux powers operating systems across the globe, Chromium serves

as the foundation for multiple web browsers, PostgreSQL is a backbone of data storage, and

Python and PyTorch have revolutionized machine learning and data science. Bringing this

open-source ethos to proteomics holds the potential to accelerate advances in the field,

creating tools that are not only robust but also accessible to a global community of

researchers.

Bugs and mistakes are inevitable in complex software, but collaborative scrutiny allows them

to be addressed more efficiently. In proteomics, as in other scientific fields, the diverse

expertise of the community enhances both the quality and the utility of open-source tools.

Users who encounter issues or limitations often provide feedback, suggest solutions, or even

contribute code to address the challenges, fostering continuous improvement. In our own

work, users have uncovered bugs that we subsequently corrected or asked questions about

the underlying code which led to new features, fewer bugs, and more efficient algorithms. This

feedback loop is unique to OSS, where the contributions from the community enhance the

quality and precision of the software over time. Compared to proprietary software, OSS can

often move faster and defray development costs by enabling users to build and contribute the

features they need, rather than hoping that the maintainers of the software are willing or able to

add the features themselves. This dynamic frees developers from the burden of predicting and

implementing every possible use case and shifts some of the innovation to the broader

community. For users, OSS reduces reliance on software maintainers, allowing research to

advance even in the absence of formal support.

Without such transparency, computational research risks becoming a "black box" that stifles

innovation rather than promoting it, hindering the growth of scientific knowledge. OSS can

foster a culture of shared accountability, where code is not just released but continuously

scrutinized and refined, driving the field forward in a collective effort toward scientific rigor. We

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

have indeed observed this in some of our projects: at the time of writing, quantms (13) and

mokapot (52) now have 12 and 13 contributors, respectively.

5. Open source and ML/AI models in proteomics

Machine learning and deep learning are increasingly used in proteomics, with examples like

the MS2 prediction models Prosit, pDeep (53), AlphaPeptDeep (54) and MS2PIP (7, 8),

retention time prediction models DeepLC (55) and AutoRT (56), and the de novo peptide

sequencing models Casanovo (57) and InstaNovo (58). Many deep learning-based

proteomics tools enhance reproducibility by clearly reporting source code, training

parameters, and other details.

While closed-source tools have contributed to research, their models may carry biases that are

difficult to detect and diagnose, and their potential utility can be hard to assess when code and

models are not accessible. A more contentious issue arises when closed-source or

commercial models are trained on publicly shared community datasets, often under open-

source licenses.

Open-source software has proven its value by removing barriers to learning, sharing, and

improving systems. For AI in proteomics, society needs similar freedoms: autonomy,

transparency, ease of reuse, and collaborative improvement. The Open-Source Initiative's

Open-Source AI Definition (OSAID) outlines these freedoms:

 Use the system for any purpose.

 Study how the system works and inspect its components.

 Modify the system, including changing its output.

 Share the system, with or without modifications, for any purpose.

AI and machine learning are more than software: they encompass data, configurations,

documentation, and artefacts like model weights and biases. "Open source" should apply to

the entire system, including models, parameters, and structural elements. However, it is

unclear what mechanisms or licenses ensure that these models, particularly their parameters,

are freely available for use, research, modification, and sharing. We recommend clear

assertions accompanying parameter distribution to ensure that they remain freely accessible.

6. Increasing emphasis on open science and open source by funding agencies

As open science gains prominence, major funding agencies worldwide are implementing

mandates to ensure that software developed with public funds is made openly accessible and

reusable. Horizon Europe, the European Commission's flagship research program, has set

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

stringent requirements for open science, strongly recommending that research outputs,

including software, are shared under open or free licenses aligned with FAIR principles

(https://commission.europa.eu/about-european-commission/departments-and-executive-

agencies/digital-services/open-source-software-strategy_en). Additionally, all Horizon Europe

funded research is required to establish a data management plan (DMP), which is a structured

document that outlines plans for open software and code sharing where possible, including

tools needed for interoperability.

In the United States, agencies like the National Institutes of Health (NIH) and the National

Science Foundation (NSF) strongly encourage, and in some cases require, software and code

sharing through public repositories, aiming to maximize reproducibility and scientific

transparency (https://datascience.nih.gov/tools-and-analytics/best-practices-for-sharing-

research-software-faq). Similarly, the Wellcome Trust in the United Kingdom also recommends

all research outputs, such as software integral to funded research, be available to ensure other

research can verify it, build on it and use it to advance knowledge and make health

improvements (https://wellcome.org/grant-funding/guidance/policies-grant-conditions/data-

software-materials-management-and-sharing-policy). However, the same recommendations

recognised that in some circumstances, controls and limits on sharing are necessary – for

example, to protect the confidentiality and privacy of research participants, or to enable IP to

be protected.

Many other funding agencies all over the world have similar open-source guidelines. This trend

underscores a commitment from funders to foster collaborative scientific ecosystems,

democratizing access to essential research tools and enhancing reproducibility across

disciplines.

7. Challenges of Maintaining Open-Source Scientific Software

Open-source software in computational proteomics offers significant benefits but also poses

challenges, particularly around sustainability. These challenges often deter long-term

commitment, with some researchers transitioning to closed-source software after facing

sustainability issues. Below, we outline key barriers to maintaining OSS and propose

strategies—both practical and aspirational—to help advance OSS in the field.

7.1. Financial Sustainability

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://wellcome.org/grant-funding/guidance/policies-grant-conditions/data-software-materials-management-and-sharing-policy
https://wellcome.org/grant-funding/guidance/policies-grant-conditions/data-software-materials-management-and-sharing-policy
https://commission.europa.eu/about-european-commission/departments-and-executive-agencies/digital-services/open-source-software-strategy_en
https://commission.europa.eu/about-european-commission/departments-and-executive-agencies/digital-services/open-source-software-strategy_en
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

Maintaining an OSS project requires ongoing funding for updates, bug fixes, testing, and user

support. However, funding agencies like the NIH often prioritize novelty over software

maintenance, leaving many projects to become "abandonware" once the initial grant(s) end.

Problem: Without consistent funding, OSS projects in proteomics lose momentum after the

initial development phase.

Potential Solutions:

 Dedicated Maintenance Grants: Funding agencies should offer grant mechanisms

for software maintenance, such as the Chan Zuckerberg Initiative’s "Essential Open-

Source Software for Science" grants. For example, the NIH previously supported

software maintenance through an R01 mechanism, and today has a program to

support sustainable OSS projects (https://grants.nih.gov/grants/guide/rfa-files/RFA-

OD-24-010.html) directly.

 Commercialization Models: OSS projects could explore commercialization,

potentially leading to academic spin-offs or new revenue streams (read the section

about commercialization strategies).

7.2. Misaligned Incentive Structures in Academia

The academic incentive structure prioritizes publications and novelty, encouraging

researchers to develop new software instead of maintaining existing tools. Contributions to

OSS, especially those owned by others, are undervalued and rarely recognized in tenure or

promotion evaluations.

Problem: The "publish-or-perish" culture discourages OSS maintenance, as it doesn’t align

with traditional academic metrics.

Potential Solutions:

 Recognition for OSS Contributions: Institutions and funding agencies should

acknowledge OSS maintenance as valuable scholarly work, similar to publications,

and include it in grant and tenure evaluations, as is, for instance, the case in the

European Commission's ERC programme CV template.

 Community-driven Publications: Journals should accept papers on software

updates, offering academic recognition for maintenance work, as seen in the Journal of

Proteome Research’s Software Tools and Resources issue.

7.3. The Challenge of Consistent Maintainers

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://grants.nih.gov/grants/guide/rfa-files/RFA-OD-24-010.html
https://grants.nih.gov/grants/guide/rfa-files/RFA-OD-24-010.html
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

In academic settings, many OSS projects are led by students, postdocs, or temporary

researchers who eventually leave for other opportunities, often in unrelated fields. This results

in a lack of long-term maintainers, leading to project stagnation or abandonment.

Problem: The reliance on transient academic positions means OSS projects are vulnerable to

disruptions as contributors move on.

Potential Solutions:

 Governance Models: Establishing community-driven governance structures, such as

steering committees or core maintainer teams, can provide continuity even as

individual contributors leave. Notably, this kind of governance is likely only feasible for

larger, well-established open-source projects.

 Transition Plans: Projects should develop clear transition plans, ensuring that new

maintainers can seamlessly take over. This could involve thorough documentation,

onboarding guidelines, and mentoring new contributors.

Addressing these challenges requires a multi-pronged approach, combining changes in

funding structures, academic incentives, and community engagement. The scientific

community, funding agencies, companies, and academic institutions must collaborate to

ensure that OSS can continue to thrive. By addressing these challenges head-on, we can build

a more sustainable and collaborative ecosystem for open-source scientific software, ultimately

driving innovation and reproducibility in proteomics research.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

8. How to start a gold-standard OSS project in proteomics

Box 1: How to get started with OSS. The following steps provide a guideline that can foster a successful

open-source project that grows in adoption, value, and contributions over time.

1- Define clear goals and scope: Start by defining the specific problem or gap your software aims
to solve. Ensure it addresses an unmet need or provides a significant improvement over existing
solutions. Before starting an independent OSS project, consider contributing to an existing OSS
project by evaluating if your use case could take advantage of existing frameworks. For
example, adding a new feature within Skyline or OpenMS would not require using your
resources for implementing a raw data reading component and a user interface.

2- Choose an open-source license: Choose an OSI approved license that aligns with the
project's intended use and desired level of openness. For projects that may later require
commercialization or enterprise use, dual licensing (e.g., open source with an option for
commercial licensing) can be considered to support sustainability.

3- Plan for sustainability: Research potential funding sources, such as grants, academic support,
or partnerships. Decide if the project will rely on donations, grants, or if it might later incorporate
paid services. If applicable, consider models like SaaS, support-based revenue, or feature-
based licensing that could sustain the project without sacrificing its open-source nature.

4- Set up a well-structured repository: Use a version-control platform like GitHub or GitLab for
easy access, community contributions, and versioning. Use clear folder structures, name
conventions, and modular code design to enhance usability and maintainability. Provide a clear
guide on how others can contribute to the project, including coding standards, pull request
policies, and a Code of Conduct to foster a positive collaborative environment.

5- Incorporate early user feedback: Develop a prototype and engage a select group of users as
beta testers than can try the software and provide feedback to ensure its usefulness and
effectiveness.

6- Implement rigorous testing and quality control: Use CI/CD practices like GitHub Actions to
automate testing and improve code quality. Create robust tests to ensure functionality and
compatibility, and regularly review code with input from experienced contributors or
collaborators.

7- Develop thorough documentation:
a. User documentation: Provide tutorials, installation guides, and usage examples that lower

barriers to entry for new users.
b. Developer documentation: Include technical details that make it easier for new

developers to understand the codebase, contribute, and debug.
c. Version control and changelog: Maintain a detailed changelog for tracking updates, and

consider using semantic versioning for releases to help users track changes and updates.
8- Build a community: Create forums, mailing lists, or a Slack channel to facilitate communication

and support for users and contributors. Promote the project within academic and industry
circles, social media, or conferences. Encourage diverse participation, whether from seasoned
developers, scientists, or students, by being open to questions, feedback, and contributions of
varying levels.

9- Ensure long-term maintenance and evolution: Provide a roadmap to outline planned features
and long-term goals, keeping contributors aligned and users confident. Build an engaged
community by recognizing contributors, hosting events, and welcoming new ideas. Adopt a
governance model, such as a core maintainer group, to ensure the project’s mission endures
despite contributor changes.

10- Monitor and measure success: Track metrics like repository stars, downloads, citations, or
code contributions to gauge adoption and impact. Regularly collect user feedback and address
concerns or feature requests to ensure the project stays relevant and useful to its audience.

11- Stable DOIs: To prevent issues with license or code changes after publication, OSS projects
should use archival platforms like Zenodo, Figshare, or Software Heritage, which offer DOIs for
long-term citation and access. These platforms integrate with GitHub for automated, enduring
accessibility.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

9. Creation of Sustainable, Open-Source Software in an Academic Setting

A primary purpose of the academic laboratory is the training of graduate and post-doctoral

students. These positions are by their nature, of limited duration. The creation and

development of software tools can be an ideal mechanism for creating a deep understanding

of the concepts and best practices of proteomics. However, tools created during training can

languish following the graduation and departure of the student unless there is a considered

and established plan for sustainability in place. We have established and maintained a

procedure for sustainable software using the following established practices.

Box 2: One working approach to sustainable software development in an academic setting.

The rationale for these rules is as follows. Choosing a single language for the laboratory

means that all students will be well-versed and deeply knowledgeable in that language. This

enables an easy understanding of existing code and the ability to understand the code written

by other contributors. The re-use of an established codebase eventually results in robust,

reliable, and bug-free operation. Moreover, all contributors become extremely conversant with

the individual capabilities and their straightforward and facile integration into new tools.

Student contributions are guided by the consensus of the group, being incorporated into our

codebase where they make the most sense and with an eye toward their future use. The

requirement for unit test coverage means that new code functions as expected and maintains

the functionality of existing functions. The requirement for three reviews means that all code

created in the lab is well understood by many other lab members. Therefore, when a student

leaves the lab, there are many individuals still around who understand all that student’s code

and can maintain it moving forward. The requirement that students extend projects with new

functionality rather than create stand-alone software provides an avenue to re-use established

code with proven reliability, limiting potential bugs only to the new portions of code. The effect

of some code changes cannot be predicted. Therefore, the use of nightly build tests, where

many code operations are evaluated with large datasets enable the team to find unexpected

1- All students create code in the same language.
2- The language used by the lab should operate across major platforms (Windows, Linux, and

MacOS).
3- All new code must make maximal use of existing code for efficiency.
4- Any new tools that are created by students or staff are incorporated into that code base, if

possible, rather than downstream applications, so that they can be made use of in many
projects.

5- All adaptations of existing code or newly created code must be covered by unit tests, that
become a permanent part of the code base.

6- All new code must be reviewed and approved by an additional member of the team through code
reviews.

7- All code must pass nightly build tests before public release.
8- New applications should be extensions of existing applications whenever possible.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

changes to the results or operation time. A key ancillary benefit of maximizing code re-use and

minimizing new monolithic applications is the great reduction in the amount of code that needs

maintenance over the long term. Code maintenance can require a significant investment of

capital and human resources. Therefore, for the academic lab, a concerted effort to reduce the

need for both of those precious resources is vital.

10. Strategies to commercialize OSS

Open-source software (OSS) is not free from costs; maintaining, running, and developing it

requires resources. To ensure long-term sustainability, several commercialization strategies

have been developed, balancing openness with financial viability, in a manner suiting the

needs of the owner. Here, we consider "commercialization" as any means to monetize OSS,

whether it remains in an academic setting, is adopted by a company, or spun out into a startup.

We argue that healthy OSS projects must be financially supported by methods such as

charitable means, grants, or commercialization, in order for the development of the project to

be sustainable. We discuss a few commercialization models that have become popular with

OSS, which try to strike a balance between supporting openness and supporting future

development. It is worth noting that these strategies are not necessarily mutually exclusive.

 Dual licensing: A popular commercialization option for OSS has been to offer the

software under both a strong copyleft license (like GPL or AGPL) and a more

permissive commercial license. The code itself is typically the same for both license

types. The difference lies in how the code can be used, modified, and redistributed

depending on the license under which it is acquired. Projects using this strategy are

often available under a strong copyleft license (GPL, AGPL, etc.) with no financial cost.

However, the copyleft nature of these licenses requires any derivative works to be

published under a compatible open-source license, which is often undesirable for

corporate users. Thus, projects also offer more permissive commercial licenses to

paying customers, allowing them to use the OSS project within proprietary code.

Although this approach may seem prone to abuse (e.g., improper use of GPL code),

our experience has been that companies tend to be risk-averse and prefer purchasing

proper licenses to avoid violating a copyleft license. A successful example of this

strategy from outside of proteomics has been RStudio by Posit. RStudio is currently

available under an open-source AGPLv3 license, or under a commercial license when

AGPLv3 is incompatible. Notably, developers should make sure to include a

"contributor license agreement" as part of their requirements for new contributors to

ensure their contributions can be distributed under both licenses.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

 Support or services: Some OSS projects commercialize by offering support services

or new feature development at a cost. Often users, particularly from corporate entities,

are willing to pay for specialized training and ongoing support for their use of OSS

projects. In special instances, it may even be the case that outside entities are able to

pay for the prioritization of specific features. For example, the major mass

spectrometry instrument vendors have been providing financial support to both the

Skyline and Proteowizard projects to ensure features, support, and documentation are

provided for their customers. This road must be trod carefully though; while there is a

benefit to allowing sponsored features, and they do benefit everyone once

implemented; such a model risks losing control over the direction of an OSS project.

Features added to Skyline from a vendor are made available to all vendors if they have

compatible instrumentation. Red Hat is the most prominent example of a company

using this strategy to commercialize their enterprise Linux offering.

 Software as a service (SaaS): The SaaS commercialization model has become

increasingly popular in recent times. When using a SaaS model, the OSS project

remains open source, but commercialization occurs by building a platform around it.

The platform then allows users to more easily use the OSS project. This model often

includes a managed hardware or cloud infrastructure component, where users pay to

interact with a web application to use the OSS tool, reducing the barrier to entry. In the

bioinformatics space, NextFlow (59) is an open-source bioinformatics workflow engine

that has been commercialized by Seqera Labs using the SaaS model. Their current

Seqera Platform product provides an interface to launch, observe, and explore

workflow executions with NextFlow, in addition to other features.

 Open-core: The open-core commercialization model provides access to new features

only to paying customers. Rather than essential functionality, this refers to optional

features such as a nicer user interface or early access to new features. Some variants

of this model use a time delay for new features, where paying users have access to

new features sooner than those using the fully OSS version. Practically, the

implementation of this strategy often involves the creation of a private, upstream fork of

the OSS code repository. New features are then added to the private fork and synced to

the OSS version at a later date. Such a strategy can also be used by academic labs

looking to protect new features while preparing for publication and until a manuscript is

accepted. Although we advocate for developing those features in the open, we

recognize that there are instances where this is not practical. For example, when a

junior researcher is publishing a novel algorithm, they may want to avoid the risk of

having their work pre-empted by others. Similarly, collaborators may request that the

software be kept private to prevent other researchers from using it and publishing their

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

findings first. While we believe that these situations are rare in the proteomics

community, they could lead to the original researchers losing recognition and credit for

their work. The open-core model is quite common, and in proteomics, it is used for

ScaffoldDIA from Proteome Software: the open-source core of ScaffoldDIA is

EncyclopeDIA (40).

10. Concluding remarks

As proteomics increasingly depends on computational tools, adopting open-source and FAIR

principles is crucial for ensuring transparency, reproducibility, and accessibility. We urge

researchers, funding agencies, institutions, and companies to prioritize open-source practices,

particularly for publicly funded work, to foster a truly collaborative scientific ecosystem. By

collectively advancing open-source software, the scientific community can build an inclusive,

rigorous foundation that fosters innovation and extends the benefits of research to scientists

and the public alike.

Moving forward, we as a community should explore mechanisms to make OSS sustainable, for

example, by creating a foundation for proteomics software to support the maintenance of OSS

in our field. Emphasizing scalable, user-friendly software with complex features hidden behind

intuitive interfaces will help ensure widespread adoption and success (60). This approach can

also counteract negative perceptions of the quality of academic or OSS in mass spectrometry

(37). Additionally, we expect that AI-assisted software development will enhance the quality of

proteomics OSS by automating error detection, optimizing code performance, and enhancing

feature integration—ultimately boosting reliability and user satisfaction. Regardless, let us

unite in our commitment to open science and pursue a shared, sustainable future in our

exploration of the proteome.

Acknowledgements

Y.P.-R. is funded by Wellcome grants (numbers 208391/Z/17/Z, 223745/Z/21/Z) and EMBL

core funding. T.S. acknowledges funding by the Federal Ministry of Education and Research in

the frame of de.NBI/ELIXIR-DE (W-de.NBI-022) and is supported by the Ministry of Science,

Research and Arts Baden-Württemberg. MJM acknowledges financial support from National

Institutes of Health grants R24 GM141156, U01 DK137097, and U19 AG065156. R.B. and

L.M. acknowledge funding from the Research Foundation Flanders (FWO) (12A6L24N,

G010023N, and G028821N). L.M. acknowledges funding from the Ghent University Concerted

Research Action (BOF21/GOA/033) and the European Union’s Horizon Europe Programme

(101080544, 101103253, 101195186, and 10119173). L.K. acknowledges funding from the

Swedish Research Council (VR 2024-05887)

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

Conflicts of interest

W.E.F. is an employee of Talus Bioscience Inc., a drug-discovery biotechnology company that

develops and contributes to OSS and does not currently sell software. Additionally, Talus

Bioscience has a collaborative research agreement with Bruker. T.S. is an officer in OpenMS

Inc., a non-profit foundation that manages the international coordination of OpenMS

development. MRL is an employee of Belharra Therapeutics, Inc., and an officer of Chaparral

Labs, Inc., a company offering SaaS solutions for proteomics, in addition to commercial

support for OSS software. JVG is an employee of InstaDeep Ltd. The MacCoss Lab at the

University of Washington receives funding from Agilent, Bruker, Sciex, Shimadzu, Thermo

Fisher Scientific, and Waters to support the development of Skyline, an open-source software

tool for quantitative proteomics. MJM is a paid consultant for Thermo Fisher Scientific. The

CompOmics group at Ghent University and VIB (RB and LM) receives funding from Bruker.

References

1. Hettrick, S.; Antonioletti, M.; Carr, L.; Chue Hong, N.; Crouch, S.; De Roure, D. C.;

Emsley, I.; Goble, C.; Hay, A.; Inupakutika, D., UK research software survey 2014. 2014.

2. Jimenez, R. C.; Kuzak, M.; Alhamdoosh, M.; Barker, M.; Batut, B.; Borg, M.; Capella-

Gutierrez, S.; Chue Hong, N.; Cook, M.; Corpas, M.; Flannery, M.; Garcia, L.; Gelpi, J. L.;

Gladman, S.; Goble, C.; Gonzalez Ferreiro, M.; Gonzalez-Beltran, A.; Griffin, P. C.; Gruning,

B.; Hagberg, J.; Holub, P.; Hooft, R.; Ison, J.; Katz, D. S.; Leskosek, B.; Lopez Gomez, F.;

Oliveira, L. J.; Mellor, D.; Mosbergen, R.; Mulder, N.; Perez-Riverol, Y.; Pergl, R.; Pichler, H.;

Pope, B.; Sanz, F.; Schneider, M. V.; Stodden, V.; Suchecki, R.; Svobodova Varekova, R.;

Talvik, H. A.; Todorov, I.; Treloar, A.; Tyagi, S.; van Gompel, M.; Vaughan, D.; Via, A.; Wang, X.;

Watson-Haigh, N. S.; Crouch, S., Four simple recommendations to encourage best practices

in research software. F1000Res 2017, 6.

3. Perez-Riverol, Y.; Wang, R.; Hermjakob, H.; Muller, M.; Vesada, V.; Vizcaino, J. A.,

Open source libraries and frameworks for mass spectrometry based proteomics: a developer's

perspective. Biochim Biophys Acta 2014, 1844, (1 Pt A), 63-76.

4. Halder, A.; Verma, A.; Biswas, D.; Srivastava, S., Recent advances in mass-

spectrometry based proteomics software, tools and databases. Drug Discov Today Technol

2021, 39, 69-79.

5. Eng, J. K.; McCormack, A. L.; Yates, J. R., An approach to correlate tandem mass

spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass

Spectrom 1994, 5, (11), 976-89.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

6. Kall, L.; Canterbury, J. D.; Weston, J.; Noble, W. S.; MacCoss, M. J., Semi-supervised

learning for peptide identification from shotgun proteomics datasets. Nat Methods 2007, 4,

(11), 923-5.

7. Degroeve, S.; Martens, L., MS2PIP: a tool for MS/MS peak intensity prediction.

Bioinformatics 2013, 29, (24), 3199-203.

8. Declercq, A.; Bouwmeester, R.; Chiva, C.; Sabido, E.; Hirschler, A.; Carapito, C.;

Martens, L.; Degroeve, S.; Gabriels, R., Updated MS(2)PIP web server supports cutting-edge

proteomics applications. Nucleic Acids Res 2023, 51, (W1), W338-W342.

9. Gessulat, S.; Schmidt, T.; Zolg, D. P.; Samaras, P.; Schnatbaum, K.; Zerweck, J.;

Knaute, T.; Rechenberger, J.; Delanghe, B.; Huhmer, A.; Reimer, U.; Ehrlich, H. C.; Aiche, S.;

Kuster, B.; Wilhelm, M., Prosit: proteome-wide prediction of peptide tandem mass spectra by

deep learning. Nat Methods 2019, 16, (6), 509-518.

10. Declercq, A.; Bouwmeester, R.; Hirschler, A.; Carapito, C.; Degroeve, S.; Martens, L.;

Gabriels, R., MS(2)Rescore: Data-Driven Rescoring Dramatically Boosts Immunopeptide

Identification Rates. Mol Cell Proteomics 2022, 21, (8), 100266.

11. Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S.;

Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; Hoff, K.; Kessner, D.; Tasman, N.; Shulman, N.;

Frewen, B.; Baker, T. A.; Brusniak, M. Y.; Paulse, C.; Creasy, D.; Flashner, L.; Kani, K.;

Moulding, C.; Seymour, S. L.; Nuwaysir, L. M.; Lefebvre, B.; Kuhlmann, F.; Roark, J.; Rainer,

P.; Detlev, S.; Hemenway, T.; Huhmer, A.; Langridge, J.; Connolly, B.; Chadick, T.; Holly, K.;

Eckels, J.; Deutsch, E. W.; Moritz, R. L.; Katz, J. E.; Agus, D. B.; MacCoss, M.; Tabb, D. L.;

Mallick, P., A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol

2012, 30, (10), 918-20.

12. Chambers, M. C.; Jagtap, P. D.; Johnson, J. E.; McGowan, T.; Kumar, P.; Onsongo, G.;

Guerrero, C. R.; Barsnes, H.; Vaudel, M.; Martens, L.; Gruning, B.; Cooke, I. R.; Heydarian, M.;

Reddy, K. L.; Griffin, T. J., An Accessible Proteogenomics Informatics Resource for Cancer

Researchers. Cancer Res 2017, 77, (21), e43-e46.

13. Dai, C.; Pfeuffer, J.; Wang, H.; Zheng, P.; Käll, L.; Sachsenberg, T.; Demichev, V.; Bai,

M.; Kohlbacher, O.; Perez-Riverol, Y., quantms: a cloud-based pipeline for quantitative

proteomics enables the reanalysis of public proteomics data. Nature Methods 2024.

14. Deutsch, E. W.; Mendoza, L.; Shteynberg, D. D.; Hoopmann, M. R.; Sun, Z.; Eng, J. K.;

Moritz, R. L., Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data

Analysis Suite. J Proteome Res 2023, 22, (2), 615-624.

15. Bray, S.; Chilton, J.; Bernt, M.; Soranzo, N.; van den Beek, M.; Batut, B.; Rasche, H.;

Cech, M.; Cock, P. J. A.; Gruning, B.; Nekrutenko, A., The Planemo toolkit for developing,

deploying, and executing scientific data analyses in Galaxy and beyond. Genome Res 2023,

33, (2), 261-268.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

16. Martens, L.; Nesvizhskii, A. I.; Hermjakob, H.; Adamski, M.; Omenn, G. S.;

Vandekerckhove, J.; Gevaert, K., Do we want our data raw? Including binary mass

spectrometry data in public proteomics data repositories. Proteomics 2005, 5, (13), 3501-5.

17. Hulstaert, N.; Shofstahl, J.; Sachsenberg, T.; Walzer, M.; Barsnes, H.; Martens, L.;

Perez-Riverol, Y., ThermoRawFileParser: Modular, Scalable, and Cross-Platform RAW File

Conversion. J Proteome Res 2020, 19, (1), 537-542.

18. Perez-Riverol, Y.; Bandla, C.; Kundu, D. J.; Kamatchinathan, S.; Bai, J.;

Hewapathirana, S.; John, N. S.; Prakash, A.; Walzer, M.; Wang, S.; Vizcaino, J. A., The PRIDE

database at 20 years: 2025 update. Nucleic Acids Res 2024.

19. Deutsch, E. W.; Perez-Riverol, Y.; Carver, J.; Kawano, S.; Mendoza, L.; Van Den

Bossche, T.; Gabriels, R.; Binz, P. A.; Pullman, B.; Sun, Z.; Shofstahl, J.; Bittremieux, W.; Mak,

T. D.; Klein, J.; Zhu, Y.; Lam, H.; Vizcaino, J. A.; Bandeira, N., Universal Spectrum Identifier for

mass spectra. Nat Methods 2021, 18, (7), 768-770.

20. Lazear, M. R., Sage: An Open-Source Tool for Fast Proteomics Searching and

Quantification at Scale. J Proteome Res 2023, 22, (11), 3652-3659.

21. Wilkinson, M. D.; Dumontier, M.; Aalbersberg, I. J.; Appleton, G.; Axton, M.; Baak, A.;

Blomberg, N.; Boiten, J. W.; da Silva Santos, L. B.; Bourne, P. E.; Bouwman, J.; Brookes, A. J.;

Clark, T.; Crosas, M.; Dillo, I.; Dumon, O.; Edmunds, S.; Evelo, C. T.; Finkers, R.; Gonzalez-

Beltran, A.; Gray, A. J.; Groth, P.; Goble, C.; Grethe, J. S.; Heringa, J.; t Hoen, P. A.; Hooft, R.;

Kuhn, T.; Kok, R.; Kok, J.; Lusher, S. J.; Martone, M. E.; Mons, A.; Packer, A. L.; Persson, B.;

Rocca-Serra, P.; Roos, M.; van Schaik, R.; Sansone, S. A.; Schultes, E.; Sengstag, T.; Slater,

T.; Strawn, G.; Swertz, M. A.; Thompson, M.; van der Lei, J.; van Mulligen, E.; Velterop, J.;

Waagmeester, A.; Wittenburg, P.; Wolstencroft, K.; Zhao, J.; Mons, B., The FAIR Guiding

Principles for scientific data management and stewardship. Sci Data 2016, 3, 160018.

22. Barker, M.; Chue Hong, N. P.; Katz, D. S.; Lamprecht, A. L.; Martinez-Ortiz, C.;

Psomopoulos, F.; Harrow, J.; Castro, L. J.; Gruenpeter, M.; Martinez, P. A.; Honeyman, T.,

Introducing the FAIR Principles for research software. Sci Data 2022, 9, (1), 622.

23. de Visser, C.; Johansson, L. F.; Kulkarni, P.; Mei, H.; Neerincx, P.; Joeri van der Velde,

K.; Horvatovich, P.; van Gool, A. J.; Swertz, M. A.; Hoen, P. A. C.; Niehues, A., Ten quick tips for

building FAIR workflows. PLoS Comput Biol 2023, 19, (9), e1011369.

24. In Open Science by Design: Realizing a Vision for 21st Century Research, Washington

(DC), 2018.

25. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.;

Abecasis, G.; Durbin, R.; Genome Project Data Processing, S., The Sequence Alignment/Map

format and SAMtools. Bioinformatics 2009, 25, (16), 2078-9.

26. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.;

Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; DePristo, M. A., The Genome Analysis

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.

Genome Res 2010, 20, (9), 1297-303.

27. Pfeuffer, J.; Bielow, C.; Wein, S.; Jeong, K.; Netz, E.; Walter, A.; Alka, O.; Nilse, L.;

Colaianni, P. D.; McCloskey, D.; Kim, J.; Rosenberger, G.; Bichmann, L.; Walzer, M.; Veit, J.;

Boudaud, B.; Bernt, M.; Patikas, N.; Pilz, M.; Startek, M. P.; Kutuzova, S.; Heumos, L.;

Charkow, J.; Sing, J. C.; Feroz, A.; Siraj, A.; Weisser, H.; Dijkstra, T. M. H.; Perez-Riverol, Y.;

Rost, H.; Kohlbacher, O.; Sachsenberg, T., OpenMS 3 enables reproducible analysis of large-

scale mass spectrometry data. Nat Methods 2024, 21, (3), 365-367.

28. Yang, K. L.; Yu, F.; Teo, G. C.; Li, K.; Demichev, V.; Ralser, M.; Nesvizhskii, A. I.,

MSBooster: improving peptide identification rates using deep learning-based features. Nat

Commun 2023, 14, (1), 4539.

29. Li, K.; Jain, A.; Malovannaya, A.; Wen, B.; Zhang, B., DeepRescore: Leveraging Deep

Learning to Improve Peptide Identification in Immunopeptidomics. Proteomics 2020, 20, (21-

22), e1900334.

30. Kertesz-Farkas, A.; Nii Adoquaye Acquaye, F. L.; Bhimani, K.; Eng, J. K.; Fondrie, W.

E.; Grant, C.; Hoopmann, M. R.; Lin, A.; Lu, Y. Y.; Moritz, R. L.; MacCoss, M. J.; Noble, W. S.,

The Crux Toolkit for Analysis of Bottom-Up Tandem Mass Spectrometry Proteomics Data. J

Proteome Res 2023, 22, (2), 561-569.

31. Granholm, V.; Kim, S.; Navarro, J. C.; Sjolund, E.; Smith, R. D.; Kall, L., Fast and

accurate database searches with MS-GF+Percolator. J Proteome Res 2014, 13, (2), 890-7.

32. Brosch, M.; Yu, L.; Hubbard, T.; Choudhary, J., Accurate and sensitive peptide

identification with Mascot Percolator. J Proteome Res 2009, 8, (6), 3176-81.

33. Wen, B.; Li, G.; Wright, J. C.; Du, C.; Feng, Q.; Xu, X.; Choudhary, J. S.; Wang, J., The

OMSSAPercolator: an automated tool to validate OMSSA results. Proteomics 2014, 14, (9),

1011-4.

34. MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.; Frewen, B.;

Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J., Skyline: an open source document editor

for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, (7), 966-

8.

35. Eng, J. K.; Jahan, T. A.; Hoopmann, M. R., Comet: an open-source MS/MS sequence

database search tool. Proteomics 2013, 13, (1), 22-4.

36. Vaudel, M.; Burkhart, J. M.; Zahedi, R. P.; Oveland, E.; Berven, F. S.; Sickmann, A.;

Martens, L.; Barsnes, H., PeptideShaker enables reanalysis of MS-derived proteomics data

sets. Nat Biotechnol 2015, 33, (1), 22-4.

37. Smith, R., Conversations with 100 Scientists in the Field Reveal a Bifurcated

Perception of the State of Mass Spectrometry Software. J Proteome Res 2018, 17, (4), 1335-

1339.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

38. Craig, R.; Beavis, R. C., TANDEM: matching proteins with tandem mass spectra.

Bioinformatics 2004, 20, (9), 1466-7.

39. Kong, A. T.; Leprevost, F. V.; Avtonomov, D. M.; Mellacheruvu, D.; Nesvizhskii, A. I.,

MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based

proteomics. Nat Methods 2017, 14, (5), 513-520.

40. Searle, B. C.; Pino, L. K.; Egertson, J. D.; Ting, Y. S.; Lawrence, R. T.; MacLean, B. X.;

Villen, J.; MacCoss, M. J., Chromatogram libraries improve peptide detection and

quantification by data independent acquisition mass spectrometry. Nat Commun 2018, 9, (1),

5128.

41. Wen, B.; Wang, X.; Zhang, B., PepQuery enables fast, accurate, and convenient

proteomic validation of novel genomic alterations. Genome Res 2019, 29, (3), 485-493.

42. Wallmann, G.; Skowronek, P.; Brennsteiner, V.; Lebedev, M.; Thielert, M.; Steigerwald,

S.; Kotb, M.; Heymann, T.; Zhou, X.-X.; Schwoerer, M., AlphaDIA enables End-to-End Transfer

Learning for Feature-Free Proteomics. bioRxiv 2024, 2024.05. 28.596182.

43. Styczynski, M. P.; Jensen, K. L.; Rigoutsos, I.; Stephanopoulos, G., BLOSUM62

miscalculations improve search performance. Nat Biotechnol 2008, 26, (3), 274-5.

44. Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P., ProteoWizard: open

source software for rapid proteomics tools development. Bioinformatics 2008, 24, (21), 2534-6.

45. Adusumilli, R.; Mallick, P., Data Conversion with ProteoWizard msConvert. Methods

Mol Biol 2017, 1550, 339-368.

46. Vaudel, M.; Barsnes, H.; Berven, F. S.; Sickmann, A.; Martens, L., SearchGUI: An

open-source graphical user interface for simultaneous OMSSA and X!Tandem searches.

Proteomics 2011, 11, (5), 996-9.

47. Li, H.; Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics 2009, 25, (14), 1754-60.

48. Hanssen, F.; Garcia, M. U.; Folkersen, L.; Pedersen, A. S.; Lescai, F.; Jodoin, S.; Miller,

E.; Seybold, M.; Wacker, O.; Smith, N.; Gabernet, G.; Nahnsen, S., Scalable and efficient DNA

sequencing analysis on different compute infrastructures aiding variant discovery. NAR

Genom Bioinform 2024, 6, (2), lqae031.

49. Rost, H. L.; Schmitt, U.; Aebersold, R.; Malmstrom, L., pyOpenMS: a Python-based

interface to the OpenMS mass-spectrometry algorithm library. Proteomics 2014, 14, (1), 74-7.

50. Bittremieux, W., spectrum_utils: A Python Package for Mass Spectrometry Data

Processing and Visualization. Anal Chem 2020, 92, (1), 659-661.

51. Raymond, E. S. Release Early, Release Often.

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html

52. Fondrie, W. E.; Noble, W. S., mokapot: Fast and Flexible Semisupervised Learning for

Peptide Detection. J Proteome Res 2021, 20, (4), 1966-1971.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

53. Zhou, X. X.; Zeng, W. F.; Chi, H.; Luo, C.; Liu, C.; Zhan, J.; He, S. M.; Zhang, Z., pDeep:

Predicting MS/MS Spectra of Peptides with Deep Learning. Anal Chem 2017, 89, (23), 12690-

12697.

54. Zeng, W. F.; Zhou, X. X.; Willems, S.; Ammar, C.; Wahle, M.; Bludau, I.; Voytik, E.;

Strauss, M. T.; Mann, M., AlphaPeptDeep: a modular deep learning framework to predict

peptide properties for proteomics. Nat Commun 2022, 13, (1), 7238.

55. Bouwmeester, R.; Gabriels, R.; Hulstaert, N.; Martens, L.; Degroeve, S., DeepLC can

predict retention times for peptides that carry as-yet unseen modifications. Nat Methods 2021,

 18, (11), 1363-1369.

56. Wen, B.; Li, K.; Zhang, Y.; Zhang, B., Cancer neoantigen prioritization through sensitive

and reliable proteogenomics analysis. Nat Commun 2020, 11, (1), 1759.

57. Yilmaz, M.; Fondrie, W. E.; Bittremieux, W.; Melendez, C. F.; Nelson, R.; Ananth, V.;

Oh, S.; Noble, W. S., Sequence-to-sequence translation from mass spectra to peptides with a

transformer model. Nat Commun 2024, 15, (1), 6427.

58. Eloff, K.; Kalogeropoulos, K.; Morell, O.; Mabona, A.; Jespersen, J. B.; Williams, W.;

van Beljouw, S. P.; Skwark, M.; Laustsen, A. H.; Brouns, S. J., De novo peptide sequencing

with InstaNovo: Accurate, database-free peptide identification for large scale proteomics

experiments. bioRxiv 2023, 2023.08. 30.555055.

59. Di Tommaso, P.; Chatzou, M.; Floden, E. W.; Barja, P. P.; Palumbo, E.; Notredame, C.,

Nextflow enables reproducible computational workflows. Nat Biotechnol 2017, 35, (4), 316-

319.

60. Ross, D. H.; Bhotika, H.; Zheng, X.; Smith, R. D.; Burnum-Johnson, K. E.; Bilbao, A.,

Computational tools and algorithms for ion mobility spectrometry-mass spectrometry.

Proteomics 2024, 24, (12-13), e2200436.

https://doi.org/10.26434/chemrxiv-2024-wf6dw ORCID: https://orcid.org/0000-0001-5689-9797 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-wf6dw
https://orcid.org/0000-0001-5689-9797
https://creativecommons.org/licenses/by/4.0/

