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Abstract 

Biomolecular condensates are essential functional cellular structures that form through phase 

separation of macromolecules such as proteins and RNA. Synthetic condensates have 

recently gathered great interest as they can be engineered to better understand the formation 

mechanism of these cellular condensates and serve as cell-mimetic platforms to develop novel 

therapeutic strategies. The complexity of the biomolecular components and their reciprocal 

interactions, however, makes precise engineering and systematic characterization of 

condensate formation a challenging endeavor. While constructing phase diagrams is a 

systematic approach to gain comprehensive insight into phase separation behavior, it is a time-

consuming and labor-intensive process. Here, we present an automated platform for efficiently 

mapping multi-dimensional phase diagrams of condensates. The automated platform 

incorporates a pipetting system for sample formulation, and an autonomous confocal 

microscope for particle property analysis and characterization. Active machine learning – which 

allows iterative model improvement – is used to learn from previous experiments and steer 

future experiments towards an efficient exploration of phase boundaries. The versatility of the 

pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of 

various polypeptides of opposite charge across formulations, producing detailed and 

reproducible multidimensional phase diagrams. Beyond identifying phase boundaries, the 

platform also provides information-rich data, enabling quantification of key condensate 

properties such as particle size, count, and volume fraction – adding functional insights to 

phase diagrams. This self-driven platform is robust and generalizable, allowing easy extension 

to any given combination of condensate-forming materials, ultimately providing key insights 

into their formation and characteristics.  
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Introduction 

Organization and compartmentalization are fundamental aspects of nature.1 The spatial 

arrangement of biomolecules is essential for maintaining cellular function and facilitating 

metabolic processes, such as molecular transport, energy production, and structural support.2,3 

In this respect, biomolecular condensates have gained significant interest in recent years, as 

these membrane-less organelles play essential roles in compartmentalization and may 

contribute to the emergence of cellular complexity.4,5 Condensates are phase-separated, 

micron-sized subcellular droplets that are formed through multivalent interactions between 

(macro)molecules, such as proteins and nucleic acids.6 Their dynamic formation mechanism 

and complex biochemistry have become topic of intensive investigation, in particular in the field 

of molecular and cell biology.7,8 An alternative approach to provide valuable insight into these 

structures is to engineer synthetic condensates in vitro – outside of the cellular environment.9–

14 This allows a more systematic tuning and study of the physicochemical properties of 

condensates15 and also enables the development of self-assembled and/or cell-mimetic 

platforms that can be used for the exploration of novel therapeutic strategies.16–22 Although 

synthetic condensates circumvent the need to take the cell’s complexity into account, still 

significant challenges remain in terms of predicting condensate formation and properties based 

on the molecular structures and elucidating the effects of environmental factors, such as pH 

and ionic strength, on condensate formation and properties (as well as the underlying 

molecular mechanisms).23,24 

Manually navigating the vast combinatorial space, spanning diverse molecular structures and 

environmental factors, to investigate coacervate formation (e.g., via phase diagrams) quickly 

becomes unfeasible as the number of variables to be considered increases. This process 

involves preparing hundreds to thousands of samples, each with precisely controlled 

conditions (e.g., concentration, pH, and ionic strength), followed by detailed and consistent 

analysis of the phase separation parameters.25–30 Furthermore, identifying phase boundaries 

by collecting data across a broad range of conditions without specific guidance (e.g., based on 

intuition) is not only time-consuming and labor-intensive but also prone to human error, 

highlighting the need for automated, machine learning-driven, high-throughput methods.31,32 

To address these challenges, recent innovations in high-throughput biochemical assays, 

microfluidics, and automated microscopy and analysis have enabled new methods to study 

biomolecular condensates under varied conditions.33–36 Notwithstanding these advances, fully 

leveraging the vast datasets these techniques produce opens opportunities to explore 

condensate behavior more efficiently. Integrating machine learning, particularly active 

learning37,38, into this field presents a valuable opportunity to enhance data-driven parameter 
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exploration, refine predictive models, and reduce the need for extensive experimental input. 

Active machine learning iteratively selects the most informative data points to analyze and to 

steer the next iteration of experiments,39–42 which makes it particularly useful for automation by 

reducing the amount of data and experimentation needed to achieve accurate results.39,43 

In this work, we introduce an automated, high-throughput platform designed to map multi-

dimensional phase diagrams of biomolecular condensates. Our platform integrates active 

machine learning for phase mapping optimization, an automated pipetting system for sample 

formulation, and an autonomous confocal microscope for high-content imaging and detailed 

sample characterization. Using this platform, we extensively examine the phase behavior of 

two well-studied polypeptides across a range of formulations. Beyond reproducibly identifying 

phase boundaries, the platform also produces information-rich data on condensate properties 

such as particle size, particle count, and volume fraction – offering deep insight into 

condensate characteristics. To demonstrate the robustness of the approach, we construct 

higher-dimensional phase diagrams, allowing to uncover how multiple factors influence 

condensate formation. The automated platform not only accelerates and standardizes phase 

separation behavior mapping but also enhances our understanding of environmental 

parameter effects on condensate properties. We expect this approach to increase the 

application potential of synthetic condensates as a platform for the study of their natural 

analogues and to engineer self-assembled cell-mimetic platforms. 
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Results 

Closed loop navigation of coacervate formation 

Condensate formulation typically involves mixing complementary components, for example, of 

anionic and cationic nature44, at specific speeds and durations, in a pH-controlled aqueous 

solution to form condensate, or more specifically, complex coacervate microdroplets (Figure 

1A). This process can be laborious, error-prone, and time-consuming, limiting current 

capabilities to determine detailed phase diagrams and, correspondingly, the optimal conditions 

for condensate formation. To date, there is no standardized protocol for producing 

condensates, and scientists often adhere strictly to formulation techniques that work for their 

specific applications.45 Here, we present a generalizable, closed-loop workflow that combines 

automation and machine learning to (a) standardize and speed up condensate preparation and 

reduce handling errors, (b) provide an automated characterization approach, and (c) navigate 

complex coacervate phase diagrams more efficiently, thanks to machine learning predictions. 

The workflow is based on the following mutually interacting components:  

I. Robotic sample production. Efficient, accurate, and contamination-free sample preparation 

is critical for exploring vast experimental spaces with diverse conditions. Our platform 

addresses these needs with a cost-effective and versatile robotic pipetting platform (Figure 

1B) that combines adaptable deck space, scalable reservoir options, and an open-source 

programming interface. These features enable high-throughput automation of condensate 

formulations in any pre-defined, multi-dimensional experimental space. Custom features 

(Figure 1C) allow increasing production rates through optimized liquid handling and prevent 

cross-contamination by using adaptable dispensing heights for contactless dispensing and 

different contact points for each liquid via a custom touch-tip functionality. Together, this 

also reduces plastic consumption, by allowing tip re-use for each distinct liquid.  

II. Automated particle characterization. High-throughput condensate analysis requires high-

throughput imaging with sufficient spatial resolution and consistent focus, which can be 

challenging due to heterogeneous and varying sizes of condensate sizes. In our platform, 

samples are transferred to a 96-well microscopy plate and imaged using an automated 

confocal microscope (Figure 1D). This setup enables high-speed imaging and precise 

focus tracking through hardware autofocus. After formulation, condensates naturally settle 

over time on the glass surface, allowing for 3D reconstruction through dynamically acquired 

Z-stacks at four positions within each sample (Figure 1D). This approach generates 

technical replicates and accounts for potential inconsistencies. The automated image 

analysis pipeline involves (a) applying binary thresholding to detect particles (Figure 1E), 

(b) identifying the optimal Z-plane where each particle is in the best focal plane (Figure 1F), 
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and (c) classifying the sample as phase-separated when a threshold number of particles 

is observed (Figure 1G), or as non-phase-separated otherwise. Additionally, condensate 

properties, such as morphology and volume fraction, are extracted for follow-up analysis 

and characterization. 

III. Active machine learning. In our platform, the collected experimental data (Figure 1H) are 

used to train a Gaussian Process Classifier (GPC), a machine learning model that 

leverages Bayesian probability to make predictions, while accounting for uncertainty in 

classification decisions.46 The model is trained to predict whether a pair of polypeptides at 

specific concentrations (optionally along with other experimental parameters) will phase-

separate. The trained model is then used to predict the phase-separation behavior of the 

pre-defined experimental space (Figure 1I). Based on the predictions, new experimental 

points are requested for the next experimental iteration (Figure 1J). This is achieved via 

the exploration of areas in the phase diagram with high prediction uncertainty (in the form 

of information entropy, see Methods, Eq. 5), and via diversity-based sampling (via so-called 

farthest point sampling47). The selected points are then produced and characterized (via 

steps I and II) and contribute to the next phase of model training. 

Thanks to this closed-loop make-analyze-predict cycle, the sample production (step I) and 

characterization (step II) produce data for the machine-learning-driven choice of the next 

experiments (step III) – this procedure is repeated until convergence. According to self-driving 

lab autonomy criteria, our pipeline qualifies as a Level 4 platform, since it integrates multiple 

hardware operations (e.g., liquid handling and imaging) with iterative, software-driven decision-

making.48 In this framework, the machine learning algorithm autonomously selects future 

experiments, and the system automatically evolves based on the newly acquired experimental 

data, while humans are only tasked with defining the initial search space.49 This setup goes 

beyond traditional, trial-and-error based approaches, and it can generalize to virtually any 

system: once the initial search space is defined, the condensate phase behavior can be 

automatically explored in a self-driving manner. 
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Figure 1: Closed loop navigation of condensate phase diagrams. The workflow is constituted 

by three parts: (I) condensate formulation, where samples are automatically prepared, (II) confocal 
microscopy and sample classification, for characterization, and (III) active machine learning, that learns 
from the collected data and suggests the next experiments. (A) Condensate microparticles are formed 
by mixing cationic and anionic polypeptides, resulting in phase-separated micron-sized droplets. (B) 
Schematic representation of the robotic pipetting platform with 16 flexible deck slots. (C) Formulations 
are prepared in a conical PCR plate, using contactless dispensing with volume tracking. A custom touch-
tip functionality follows a touch-point trajectory to ensure accurate dispensing. (D) Confocal imaging is 
performed using dynamic Z-stack acquisition. (E) Automated binary Yen-thresholding is applied to each 
Z-plane for particle detection. (F) The optimal Z-plane is selected based on the largest detected area, 
corresponding to the slice that is best in focus. (G) Samples with 12 or more particles are labeled as 
phase-separated (condensates), while those below the threshold are labeled as non-condensates. (H) 
Experimentally validated data points are incorporated into the machine learning algorithm for training. 
(I) The model predicts a phase diagram based on the acquired experimental data. (J) The model then 
guides the selection of new formulations, restarting the automation cycle at (A). 
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Proof-of-concept: Automated construction of phase diagrams 

To showcase the potential of our self-driving platform, we applied it to navigate the phase 

behavior of poly-L-(lysine) and poly-L-(aspartic acid) (Figure 2), two well-investigated 

polypeptides in phase separation research.30,50–53 Even in this case, despite their widespread 

use, the detailed phase diagrams that capture their binodal boundary remain underexplored, 

possibly owing, to the need of labor-intensive experiments.29,30,51 In this context, this 

condensate system was a useful case-study to investigate how well our automated workflow 

was suited to effectively determine its phase behavior. 

Our experiments followed make-analyze-predict workflow, as follows: 

0. Initialization step (Figure 2A). We constructed an experimental design space, ranging from 

0.1-8.1mM monomer concentration for each polypeptide. As a starting point we used poly-

L-(lysine)100 and poly-L-(aspartic acid)200. Eight points for the experimental formulation and 

characterization were selected by the farthest point sampling algorithm47, which starts from 

a randomly selected point, and then chooses maximally dispersed samples across the 

design space.  

1. Automated sample production and characterization. The chosen samples were then 

formulated and characterized experimentally for their phase separation (Figure 2B). Based 

on their phase separation behavior, they were labeled as either ‘condensate’, or ‘non-

condensate’ for training the machine learning model. 

2. Model training and experiments selection. The experimentally determined labels were used 

to train the model and predict the coacervate behavior across the design space (Figure 

2C). In particular, the GPC algorithm generates a new phase diagram prediction across 

the design space. The probabilistic nature of GPC prediction allows to compute an 

uncertainty measure per class, which we leverage in the form of entropy of the class 

probabilities (the higher the entropy, the higher the uncertainty across the classes, see 

Methods, Eq. 4). Once the points within the highest uncertainty regions are identified, 

farthest point sampling again selects the next batch points for production and 

characterization (Figure 2D).  

After the initialization (step 0), steps 1-2 were iteratively repeated, by adding the new 

experimental labels to the training dataset and subsequently updating both the phase (Figure 

2E) and uncertainty (Figure 2F) landscapes for the next cycle. This active learning process 

continued until a total of 72 samples were measured across nine cycles (Figure 2A,2G). 

After approximately 40 samples (five iterations), only minor changes were observed in the 

predicted phases, suggesting that the model started to stabilize. Collecting a total of 72 

samples further reduced the uncertainty of the predicted phase boundaries (Supplementary 
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Figures S1-S3). The automated exploration of the phase diagram was carried out in 

approximately four hours, whereas conducting these experiments manually would have 

required more than one week. Additionally, the active learning approach generated a detailed 

phase diagram, a result that would have otherwise required the intuition of an experienced 

scientist to achieve manually, and potentially many more datapoints. This underlines the 

platform’s effectiveness not only in reducing time but also in directing experimental efforts 

toward relevant regions for investigation.  
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* Figure caption on the next page 
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Figure 2: Machine-learning guided condensate 2D phase diagram mapping. (A) Schematic of the 
active machine learning pipeline used for phase diagram mapping. (I) The initial sample points are 
selected using farthest point sampling to ensure broad coverage of the design space. (II) A Gaussian 
Process Classifier is trained on the data, generating a preliminary phase diagram. (III) An uncertainty 
landscape is computed, highlighting regions with the highest uncertainty. From these regions, new 
points are sampled using farthest point sampling. (IV) The selected samples are experimentally 
validated and added to the dataset, refining the phase diagram prediction. (V) Steps I–IV are repeated 
until convergence is achieved. (B) Representative confocal micrographs for the first eight experimentally 
validated samples. (C) The predicted phase diagram for poly-L-(aspartic acid)200 and poly-L-(lysine)100 
based on the validated samples in (B). Phase separation is represented by blue points and no 
separation by red points, with the surface depicting the model’s predictions. (D) The entropy landscape 
is constructed based on the prediction in (C), and new samples (white points) are selected using farthest 
point sampling in the high entropy region of the landscape. The requested points are experimentally 
classified, and a new phase diagram is predicted from the combined data (E), along with its associated 
entropy landscape (F). (G) Subsequent iterations continue until 72 data points are acquired. 
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Convergence of condensate phase mapping 

A desirable feature when automatically mapping phase diagrams is the unified convergence 

and reproducibility of the final results regardless of the starting points selection. In fact, while 

the designed space available for selecting experimental conditions is vast (in this study, a grid 

of 6,561 points), the models are trained in a low-data regime (up to 72 datapoints), which opens 

questions about how the underlying patterns and trends are captured.54 Moreover, given the 

iterative nature of the approach, initial decisions (e.g., starting points for training) and 

automation-related challenges (e.g., equipment inconsistencies) might affect decisions in later 

cycles. To shed light on this key question, we performed three independent replicates using 

the poly-L-(lysine)100 and poly-L-(aspartic acid)200 system, so that each replicate was carried 

out identically (as explained above), but starting from a unique and non-overlapping initial set 

(step 0) for model training (Figure 3A). 

Since the starting sets highly differed across replicates, they resulted in different phase and 

uncertainty landscapes in early cycles (Figure 3B, Supplementary Figures S4-S7). While each 

run followed its ‘prediction route’ across cycles, after approximately 40 samples (cycle number 

5), the phase diagrams appeared to converge across the replicates. After collecting 72 

samples (cycle number 9), the replicate phase diagrams displayed remarkable similarity and 

low uncertainty levels. 

To further assess the reproducibility of our experiments, we constructed a "ground truth" 

phase diagram (Supplementary Figure S8) using all data collected across replicates 

(Supplementary Figures S9-S14). We quantified the prediction agreement between each 

replicate's predictions (at each cycle) and the ground truth via balanced accuracy (the higher, 

the more similar the predictions, see Methods Eq. 7).55 Across replicates, the balanced 

accuracy steadily increased over successive cycles (Figure 3C), which is especially visible 

from the fifth cycle onwards, where balanced accuracy reached values consistently above 95% 

across all replicates. This indicates that, no matter the starting point, all replicates converge to 

a similar phase diagram in a data-efficient way (i.e., by using substantially less data than the 

“ground truth” diagram). These results agree with existing active learning literature39,54,56, 

showing the potential of this approach to progressively mitigate the effect of the starting data.  

The Jensen-Shannon divergence57 (see Methods, Eq. 8-9) was computed to directly 

compare phase diagrams (the lower the divergence, the more similar). A “within-replicate” 

divergence was calculated, by comparing the predicted probabilities of each replicate across 

consecutive cycles (Figure 3D). The results showed an exponential decrease in divergence 

values, with substantial changes in the predicted phase diagrams within the first 32 samples 

(cycle 4) and minimal changes after 56 samples (cycle 7), suggesting that each phase diagram 
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reached a ‘stable’ state, where additional experiments did not significantly alter predictions. 

Moreover, we calculated a “between-replicate” divergence (Figure 3E), by comparing the 

predictions of each cycle across different replicates. The divergence values decreased sharply 

during the first three cycles, after which they stabilized. These results indicate that only three 

cycles were necessary to mitigate the stochastic differences by the different starting points, 

after which the replicates progressively aligned along a common trajectory. 
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Figure 3: Consistent convergence of phase mapping across replicates. (A) Schematic 

illustration of the experimental workflow used to produce replicated phase diagrams. The initial set of 
experimental samples is selected by farthest point sampling, resulting in different starting points for each 
replicate. Each subsequent cycle then follows a unique path to reach the same phase diagram. 
Reproducibility across replicates is expected only if the machine learning, formulation, and analysis 
steps are consistent. (B) Phase diagrams, showing phase separation in blue and no separation in red, 
with probability prediction fits (background), validated points (colored dots), and new sample selections 
(white dots) for three experimental replicates of poly-L-(lysine)100 and poly-L-(aspartic acid)200 
condensates. A total of 72 data points is experimentally validated across 9 cycles. Representative cycles 
are shown, remaining cycles and entropy maps are reported in Supplementary Figures S2-S7. (C) 
Balanced accuracy plot showing the accuracy on the prediction for each successive cycle with respect 
to a “ground truth” phase diagram. Cycle 0 represents the balanced accuracy computed with respect of 
a randomly generated phase diagram as a baseline comparison. (D) Average Jensen-Shannon 
Divergence plot illustrating within-experiment divergence by comparing consecutive cycles for each 
replicate. This reflects the progressive convergence toward the final phase diagram for each replicate. 
Cycle 0 is a random phase diagram included as a reference for low similarity. (E) Average Jensen-
Shannon Divergence plot comparing divergence across replicates at each cycle, highlighting inter-
experiment variation. Cycle 0 compares three random phase diagrams and is included as a reference 
for low similarity. 
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Mapping condensate properties via phase diagram exploration  

Traditional studies on phase separation behavior have primarily focused on determining 

whether condensates form under specific conditions.27,28,30,34,58 Our automated data production 

and characterization pipeline collects additional information beyond phase separation. In 

particular, depth-resolved imaging from confocal microscopy allows to derive several 

properties of condensates, including particle count, morphology, and volume fraction, within 

the phase diagram. Here we compounded the data from the previously described replicates, 

along with data obtained from optimization experiments, totaling 480 experimentally 

determined samples (Figure 4A, Supplementary Figure S8). The collected samples show a 

wide range in particle morphologies, ranging from densely packed condensate clusters to tiny, 

barely visible particles (Figure 4B). This diversity underscores the variability in condensate 

formation even within a single “simple” phase, underscoring the necessity of collecting a 

broader set of properties to gain a deeper understanding of phase behavior. 

Here, we focused on the following condensate properties: (a) number of detected 

condensates, (b) average particle area, and (c) total volume fraction, extrapolated by 

combining particle counts and area. These properties were mapped onto the compounded 

phase diagram, and all of them showed evident trends across the experimentally determined 

space. Low particle counts were for example observable near phase boundaries, while the 

count increased when both protein concentrations increased (Figure 4C). Particle size showed 

a similar trend, with larger condensates forming at higher concentrations (Figure 4D). Some 

regions showed fewer but larger particles, suggesting potential fusion (coalescence) of 

condensates due to surface saturation. Volume fractions were lower near the phase-separation 

boundaries and higher toward the inner part of the phase separated region (Figure 4E). This 

additional information ‘augments’ the insights on condensate systems, by allowing to map 

phenotypic variations onto the predicted phase separation space. These insights might help 

guide coacervate formulations in those regions of the experimental space where specific 

properties are desirable (in addition to the phase-separating behavior).  
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Figure 4: Condensate properties beyond phase boundaries. (A) Combined 2D phase 

diagram of poly-L-(lysine)100 and poly-L-(aspartic acid)200, based on 480 validated data points. The data 
is compiled from six independent experiments, represented by varying shades of blue (indicating phase 
separation) and red (indicating no phase separation). (B) Representative confocal micrographs that 
illustrate the wide range of observed condensate phenotypes (scale bar = 20µm). (C) Mapping of the 
number of detected condensates (represented by dots) overlaid on the phase predictions of the 
combined dataset extracted from (A). (D) Mapping of the particle area [µm²] onto the phase predictions 
of the combined dataset extracted from (A). Each dot represents the average particle size. White data 
points indicate conditions where no particles were detected above the size threshold (500 pixels). The 
average size is colored using a non-linear gradient. (E) Mapping of the condensate volume fraction onto 
the phase predictions of the combined dataset extracted from (A). Each dot represents the apparent 
volume fraction of the dense/dilute phase, extrapolated from the particle counts (C) and average particle 
size (D). The apparent volume fraction is colored using a non-linear gradient. 
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Identifying structure-separation relationships with automation 

To further extend the applicability of our workflow, we applied it to elucidating how polypeptide 

chain length affects phase separation. We constructed phase diagrams for nine combinations 

of poly-L-(lysine) and poly-L-(aspartic acid) polypeptides, each differing in chain length (poly-

L-(lysine)n: n = 20, 100, 250; poly-L-(aspartic acid)n: n = 30, 100, 200) but with constant overall 

monomer concentrations. All combinations exhibited phase separation within the tested 

experimental space (Figure 5, Supplementary Figures S15-S30). However, although these 

polypeptides share the same structural monomeric unit, their phase behavior, as well as their 

properties (Supplementary Figures S31-S33) varied considerably. The machine-learning-

guided exploration of these phase diagrams was carried out in approximately one week, 

whereas conducting these experiments manually and based on intuition would have been 

seriously challenging and labor-intensive.  

Notably, even with the more complex and curved diagrams of some of the combinations, we 

successfully identified well-defined phase boundaries within 72 samples (9 cycles) for all tested 

conditions. Generally, increasing the length of one polypeptide while keeping the length of the 

other polypeptide constant enabled phase separation at lower concentrations for the elongated 

polypeptide, but it required higher concentrations of the fixed-length polypeptide, as visible, for 

instance, in the case of poly-L-(lysine)20 (Figures 5A-C). Similarly, when the poly-L-(lysine) 

length increased from 20 to 100 or 250 repeats (Figures 5D-I), while maintaining a constant 

poly-L-(aspartic acid) length, phase separation occurred at lower lysine concentrations, but 

required higher concentrations of poly-L-(aspartic acid).  

These results highlight the delicate balance required in designing polypeptide systems for 

phase separation. Simply increasing the concentration or length of one polypeptide does not 

necessarily lead to enhanced phase separation; instead, the process is highly sensitive to the 

interplay between both polypeptides. Our findings indicate that an optimal balance exists at 

equal chain lengths of 100 repeats (Figure 5E), where phase separation occurs extensively 

across most of the investigated chemical space. In some cases, particularly with poly-L-

(lysine)250, phase boundaries showed slight bends, suggesting complex, non-linear dynamics. 

These complexities highlight the challenges in controlling and predicting condensate formation, 

as even minor adjustments at the molecular level can lead to pronounced changes in phase 

behavior. 
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Figure 5: Impact of polypeptide length on phase separation behavior. This figure displays 

nine phase diagrams illustrating the automated mapping of phase separation for combinations of poly-
L-(lysine) and poly-L-(aspartic acid) with varying chain lengths. Panels (A-C) represent phase diagrams 
for poly-L-(lysine) with a chain length of 20, combined with poly-L-(aspartic acid) of lengths 30 (A), 100 
(B), and 200 (C). Panels (D-F) show poly-L-(lysine) with a chain length of 100, paired with poly-L-
(aspartic acid) lengths of 30 (D), 100 (E), and 200 (F). Panels (G-I) depict poly-L-(lysine) with a chain 
length of 250, combined with poly-L-(aspartic acid) lengths of 30 (G), 100 (H), and 200 (I). Datapoints 
are marked as dots, with blue indicating phase separation and red indicating no phase separation. Each 
phase map includes a background color gradient derived from predictions based on 72 datapoints per 
combination, acquired over nine cycles of eight datapoints. Remaining cycles and entropy maps are 
reported in Supplementary Figures S31-S33. 
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Navigating phase behavior in complex environments 

Building upon these results, we increased experimental complexity by introducing salt (NaCl) 

as an additional dimension to our system. Salts modulate electrostatic interactions between 

charged polypeptides and thereby significantly influence condensate phase behavior and 

properties.24,59 This expansion increased the potential experimental space from 6,561 points 

(two dimensions) to 531,441 points (three dimensions). To evaluate the platform's 

performance, we performed two independent replicates using the poly-L-(lysine)100 and poly-

L-(aspartic acid)200 system for 20 active learning cycles with 32 samples each (640 measured 

points per replicate; Supplementary Figures S34-S35). These newly acquired points were 

compounded with previous data to construct a comprehensive 3D "ground truth" phase 

diagram (Figure 6A-B). As anticipated, salt greatly influenced condensate formation, promoting 

phase separation at moderate concentrations (150–700 mM), while disrupting it at higher 

concentrations (1200–1300 mM). Interestingly, some phase-separated regions at higher salt 

concentrations were identified (Figure 6D, 270° rotation), resulting from salt-induced aggregate 

phases. 

To assess the pipeline’s reproducibility and performance, we again calculated the balanced 

accuracy55 (See Methods, Eq. 7, Fig. 6C) and within- and between-replicate Jensen-Shannon 

divergence57 (see Methods, Eq. 8-9, Fig. 6D-E). As anticipated, all metrics showed consistent 

improvements across cycles and rapid convergence toward the global phase diagram, with 

stabilization occurring after approximately eight cycles (256 samples). Notably, these metrics 

effectively captured the overall progression in identifying phase behavior but may be less 

sensitive to minor changes in the large design space during the later stages of optimization. 

Nonetheless, the balanced accuracy continued to improve slightly in subsequent cycles, 

primarily enhancing the resolution around the phase boundaries (white areas in Fig. 6A, B; 

Supplementary Figures S34-S35).  

Increasing dimensionality introduces challenges, both for machine learning algorithms and 

due to the formation of distinct aggregate phases. Despite these challenges, we successfully 

mapped these 3D phase diagrams in just three days. These results not only demonstrate the 

platform's capability to rapidly explore vast and complex design spaces but also highlight the 

essential role of machine learning in effectively navigating and elucidating such high-

dimensional complex assemblies. 
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Figure 6: Automated mapping of multi-dimensional phase diagrams. (A) Two independent 
experiments (Supplementary Figure S34-S35) were conducted to explore the effect of salt (NaCl) on 
the phase behavior of poly-L-(lysine)100 and poly-L-(aspartic acid)200. The combined dataset, made from 
1760 datapoints, was used to construct the “ground truth” three-dimensional phase diagram, here 
reported. Iso-probability surfaces indicate phase separation (blue, higher opacity) and no phase 
separation (red, lower opacity). (B) Four distinct orientations of the phase diagram with non-transparent 
surfaces are shown to emphasize phase behavior from different perspectives. (C) Balanced accuracy 
plot showing the accuracy on the prediction for each successive cycle with respect to the “ground truth” 
phase diagram in panel A. Cycle 0 represents the balanced accuracy computed with respect of a 
randomly generated phase diagram as a baseline comparison. (D) Within-experiment Jensen-Shannon 
Divergence (JSD) plotted across cycles. This metric tracks convergence by comparing consecutive 
cycles, illustrating how each replicate approaches the final phase diagram. Cycle 0 reflects divergence 
from a randomly generated phase diagram. (E) Between-experiment Jensen-Shannon Divergence 
(JSD) across replicates at each cycle. Similar to panel D, Cycle 0 serves as a baseline, representing 
divergence from a randomly generated phase diagram. 
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Discussion 

In this work, we presented a versatile, machine learning-driven automated platform that rapidly 

navigates multi-dimensional phase diagrams of condensates. By integrating (a) active machine 

learning to optimize sample selection and phase diagram navigation, (b) automated pipetting 

for precise sample formulation, and (c) advanced and automated confocal microscopy for high-

content particle characterization, we examined the phase behavior of polypeptides across 

various formulations and concentration profiles. Our platform reliably and rapidly identified 

phase boundaries with high accuracy and reproducibility, demonstrating the robustness of our 

approach. Additionally, it quantified key condensate properties, such as morphology, particle 

count, and volume fraction, providing insights beyond the traditional binary classifications of 

phase separation. Moreover, the platform's flexibility enabled rapid exploration of complex 

phase spaces, allowing to reveal the influence of polypeptide chain length and salt on phase 

behavior. 

Looking forward, numerous opportunities exist to further enhance our platform’s capabilities 

and broaden its applications. By refining the sampling strategies (e.g., by balancing exploration 

of uncertain regions with exploitation of high-certainty points) the efficiency of phase diagram 

navigation could be further improved.60 Furthermore, integrating robotics to enhance platform 

autonomy61,62 and leveraging machine learning for advanced image analysis can significantly 

improve condensate classification.63 Moreover, integrating condensate properties into active 

machine learning algorithms will allow us to incorporate desirable particle properties in the 

decision-making process, supporting the design of biomaterials for applications such as drug 

delivery and tissue engineering.64 In the future, incorporating molecular information into 

machine learning models (e.g., via deep learning65,66) will enable linking molecular structure 

with phase behavior, extending beyond the training sets.67 Finally, the platform’s modularity 

and adaptability make it generalizable to other complex micron-sized assemblies, such as 

tactoids68 and microgels.69 This versatility also opens up opportunities to explore how minor 

structural and compositional changes in natural proteins, resulting from processes like splicing, 

mutations, and post-translational modifications, influence condensate behavior, offering 

valuable insights into phase separation principles under diverse conditions.70 
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Methods 

Preparation and Dye Labeling of Polypeptides 

All polypeptides used in this study were purchased from Alamanda Polymers. They were dissolved in 
fresh Milli-Q water (MQ) at 25 mg/mL, then sterile-filtered through a 0.2μm filter, and stored in aliquots 
at -20°C. Further dilutions were prepared in MQ, with stock solutions maintained at 4°C. 

A portion of the poly-L-(lysine) polypeptides was labeled with NHS-Sulfo-Cy5 dye (Lumiprobe) for 
confocal imaging. The dye was dissolved in DMSO at a concentration of 10 mg/mL and stored at -20°C. 
Poly-L-(lysine) was labeled in a reaction buffer consisting of 100 mM HEPES (pH 8.0) and 150 mM NaCl 
in MQ. The polymer-to-dye ratios were 1:3 for poly-L-(lysine) with a chain length of 100 and 1:6 for chain 
lengths of 20 and 250. The reaction was carried out for two hours at room temperature while shaking at 
550 rpm using an Eppendorf MixMate. 

Unbound dye was removed using a PD Minitrap G-25 size exclusion column (Cytiva), which was pre-
equilibrated with a storage buffer of 25 mM HEPES (pH 7.4) and 100 mM NaCl. Labeling was, if possible, 
further confirmed by analyzing the flow-through of the dye-labeled polymer after centrifugation with a 3 
kDa spin filter (Amicon). All polypeptides were freeze-dried, weighed, and dissolved in MQ. The dye 
concentration was determined using a nanodrop spectrophotometer (Thermo Scientific NanoDrop 
1000). This measurement, combined with the dry weight of the polypeptide, allowed for the calculation 
of the Degree of Labeling (DoL). The final dye-labeled polypeptides were sterile-filtered (0.2 μm) and 
stored at -20°C, with additional dilutions prepared in MQ and maintained at 4°C. 

 

Preparation Microscopy Plates 

For confocal imaging, black 96-well glass-bottom microscopy plates (Cellvis, 1.5, P96-1.5H-N) were 
used and the glass surface was passivated to prevent wetting of the condensates. To prepare the 
surface coating, bovine serum albumin (BSA) was dissolved in MQ at 30 mg/mL and then sterile-filtered 
through a 0.2 µm filter. A volume of 100 µL of this BSA solution was added to each well. The plates were 
placed on a MixMate shaker (Eppendorf) and incubated at 500 rpm for 60 minutes at room temperature. 
After incubation, the BSA solution was discarded, and each well was rinsed three times with 100 µL of 
MQ water. The plates were then dried overnight, covered with a Kimwipe, and stored at room 
temperature under a protective cover until use. 

 

Data Architecture and General Automation Workflow 

All devices were integrated within a local network and regulated through a central orchestrator 
workstation, which served as the control hub for the entire platform. The orchestrator contains all 
necessary protocols and information, and coordinates all device actions and data exchange. 
Communication with platform components was achieved through USB connections and a local Ethernet 
network, using TCP-based network communication protocols such as SSH and HTTP. 

A centralized data architecture was implemented to manage knowledge transfer between instruments. 
This architecture included a structured folder system on the orchestrator workstation for organizing 
Python protocols, instrument logs, raw data storage, and dedicated information transfer files. These 
information transfer files, detailed below, contained specific instructions for each device—often 
generated through machine-learning algorithms—and were sent from the orchestrator workstation to 
individual components. Each device passively listened to the orchestrator workstation, which assigned 
tasks and actions directly. Devices executed only the actions directed by the orchestrator, forming a 
streamlined, centralized data workflow across the platform. 

- Master File: Central, continuously updated database for all sample details, conditions, and 
results. It logs sample locations and barcoded plates, directing sample creation, handling, and 
analysis. A versioned copy was made before each update to maintain data integrity. 

- Barcode File: Output from machine learning, which is cross-referenced with the Master File to 
identify samples to be processed. 
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- Batch File: Contains a detailed description of polypeptide stocks, including date, version, and 
degree of labeling for dye-labeled polypeptides. It is essential for calculating component 
volumes in sample preparation. 

- Source File: Tracks materials that are stored in a 96-well plate, including their concentrations 
and volumes. This file was updated after each pipetting step and versioned once per automation 
cycle to support accurate records.  

This system operated in a closed-loop workflow, where each action depended on information from 
previous steps, all coordinated by the central orchestrator workstation. The workflow began with the 
machine learning model, which assessed the chemical space and determined the next set of samples 
to be measured. It appended these new sample conditions to the Master File and created a matching 
Barcode File. Next, the pipetting platform used information from the Master, Source, and Batch Files to 
calculate the required volumes and assign target locations for each sample. During sample preparation, 
the Source File was updated after each pipetting step to keep track of remaining volumes. Once the 
samples were prepared, their locations were added to the Master File. The microscope then cross-
referenced the Barcode File with the updated Master File to find sample locations and imaging 
coordinates. It automatically acquired and processed confocal micrographs and added the classification 
results to the Master File. Finally, the machine learning model retrieved these updated classifications, 
incorporated them into the chemical space, and initiated the next cycle of experiments. 

 

Automated Sample Preparation 

Instrument Setup and Configuration. Samples were prepared automatically using an Opentrons Flex 
pipetting robot equipped with both single- and 8-channel pipettes (5-1000 µL) and 200 µL tips. The deck 
was configured as follows: 200uL tip rack in slot B1;  195 mL NEST reservoir filled with MQ in slot C2; 
Heater-shaker module (Gen 1) with a PCR adapter plate and either a NEST 96-well PCR plate for 2D 
phase diagrams or an Opentrons Tough 96-well PCR plate for 3D phase diagrams in slot D1; 2mL 96-
well deep-well plate (NEST) containing stock solutions in slot D2;  waste chute in slot D3; and a 96-well 
microscopy plate (Cellvis) in slot C3.  

Pipette Offset Calibration. The Flex platform was calibrated for height and x/y offsets, following the 
manufacturer's guidelines. 

Source Plate Setup. Stock solutions of HEPES, NaCl, and polypeptides (labeled and unlabeled) were 
preloaded in the source plate (D2). The robot tracked and updated each well’s volume (see Data 
Architecture and Workflow), prompting refills to bring wells up to 1800 µL when volumes dropped below 
200 µL. 

Liquid handling. Reagents were dispensed sequentially to achieve a final volume of 150 µL per PCR 
well: MQ water, HEPES buffer (50 mM, pH 7.4), NaCl (150 mM for 2D or 25-2050 mM for 3D diagrams), 
dye-labeled poly-L-(lysine) (96-250 nM), unlabeled poly-L-(lysine), and poly-L-(aspartic acid) (0.1-8.1 
mM monomer concentration). Final calculations accounted for any additional monomers introduced by 
the dye-labeled poly-L-(lysine) to ensure accurate concentrations. The same tip was used for multi-
dispensing reagents, with new tips used for each aspiration step (except MQ). 

Mixing. From NaCl addition onward, samples were mixed (1500 rpm) for 10 seconds. After the final 
component (poly-L-aspartic acid), samples were mixed (1500rpm) for 5 minutes to promote phase 
separation. 

Custom Dispensing Technique. Transfers used a minimum of 10 µL, leaving 5 µL residual volume in the 
tip to improve precision. After dispensing, a custom touch-tip function directed the pipette to contact 
specific points along the well walls for droplet removal (see side view in Figure 1C). Dynamic volume 
tracking adjusted pipette height and radial position for each touch point, with unique points assigned per 
liquid to prevent contamination (see top view and trajectory in Figure 1C) 

Final Transfer for Imaging. After preparation, 100 µL of each sample was transferred to the imaging 
plate (C3), which was then sealed with an adhesive aluminum foil seal (ThermoFisher) for confocal 
imaging. A new tip was used for each well, with samples mixed three times by aspiration/dispensing 
before transfer. 
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Automated Confocal Microscopy 

Confocal Microscopy Setup and Hardware Configuration. Imaging was conducted on a custom confocal 
setup integrated by Confocal NL. The microscope consisted of an open-frame inverted microscope 
(Zaber), with a confocal NL line re-scan system (NL5+) mounted on the left-side camera port. 
Additionally, the microscope was equipped with a motorized filter wheel (Confocal NL), and a laser 
autofocus module (Zaber). The NL5+ unit was equipped with an sCMOS camera (Teledyne Photometrix 
BSI express), providing a large Field of View of 18.8 mm (diagonal). Laser excitation from an Oxxius 
L4Cc laser diode combiner (containing a 638 nm laser) was coupled to the NL5+ module via an optical 
fiber. All experiments were conducted using laser power 7%, and a 60x air objective (Nikon, NA 0.95).  

Software and connections. All components were controlled via Python. Specifically, pycromanager 
interacted with Micro-Manager (version 2.0.3) to control laser powers, Z-stacks, and XY positioning. 
Additionally, the zaber_motion library was connected to the Zaber Launcher (version 2024.11.14) to 
control the autofocus device.  

Automated autofocus adjustments. The autofocus loop involved several steps. To start, the objective 
was initially directed to a preset Z-position, aligning the autofocus laser within range for the first 
autofocus attempt. The autofocus was then triggered, aligning the objective with the bottom of the 
imaging plate. This in-focus focal height was recorded and serves as a reference for the next autofocus 
loop. After acquisition (see below), the autofocus routine subsequently started each new loop 10 µm 
below the previously recorded focal plane, searching upward to locate the plate bottom. 

XY Positioning and Image Acquisition. The 96-well microscopy plate was mapped into 2x2 grids (550 
µm spacing), creating technical replicates within each well. A well-specific event list was created, 
associating each well with the correct sample barcodes, coordinates, grid locations, and channel 
information. The scanning algorithm employed a snake pattern, optimizing acquisition time by 
minimizing travel distance and positional drift across the microscopy plate. Following autofocus, Z-
stacks were captured as height additions on top of the recorded autofocus height, using dynamic 
spacing: a fine 0.5 µm step for the first 5 µm, increasing to 1.0 µm for the next 5 µm, then 2.5 µm for the 
following 5 µm, and finally 5.0 µm for deeper layers, spanning a total of 50 µm of Z-depth per position. 
Acquisitions were performed at 5 frames per second.  

Verification of Imaging Completion. To monitor imaging progress, a continuous background process 
compared the number of saved image slices to the expected slice count based on the number of imaging 
events (i.e., focal planes across wells). Once the saved slice count matched the target, the acquisition 
was deemed complete, and MM and associated processes were automatically closed. 

Automated Image Analysis and Classification. Each acquired micrograph underwent automated analysis 
to extract sample classifications and particle features. Particles were detected using the scikit-image 
Python module. Yen thresholding was applied to create a binary mask, which was used to detect 
particles above 500 pixels (5.87um2). The extracted particle properties (e.g., X/Y position, area, mean 
intensity) were saved for each micrograph. Results were then grouped by grid position and sorted by Z-
index. For each particle, the slice with the largest detected area was selected as the representative view, 
which was used for the property mappings performed in this study. Wells were classified based on 
particle count and distribution, with 12 or more particles across at least three grid positions indicating 
“Phase Separation” and fewer particles marking “No Phase Separation”. 

 

Machine Learning and Computation 

Design of the parameters space. The initial dataset (i.e., cycle 0) for any given system formulation was 

created by computing a regular D-dimensional grid of points (with D being the number of variables to be 

considered), where each independent component of the formulation accounts for a dimension. Two of 

the dimensions were always assigned to the concentration of the two oppositely charged polymers, poly-

L-(lysine) and poly-L-(aspartic acid) respectively. Additional dimensions could be added to account for 

other behaviors. The response variable was represented by an integer that mapped the recorded phase 

to either coacervate or not. In all our experiments we restrained our formulations to study the 

coacervation phenomena of two oppositely charged polymers as a function of the two polymer 

concentrations and the salt concentration. Additionally in the current work, we only focused on 2-D and 

3-Dimensional datasets. This means that in the former case (2-D) the salt concentration is fixed and 
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kept constant, while in the latter case (3-D) it is allowed to change. The range for the polymer 

concentrations was constrained to be the same for all the experiments, regardless the polymer identity, 

and it was chosen to be a regularly spaced interval starting from concentration of 0.1 mM to 8.1 mM, 

with steps of 0.1 mM, giving a total of 81 concentrations values (end points included). Similarly, the 

range for the variation of the salt concentration was chosen to vary from 50 mM to 2075 mM with steps 

of 25 mM, giving a total of 81 values. All the ranges were chosen accordingly to the accuracy of the 

machines used to formulate the solutions. Finally, the dataset was created by filling a 2-D or 3-D regular 

grid with the values of the variable under investigation, creating a total of 6561 (81x81) points for the 2-

D case, and 531441 (81x81x81) for the 3-D case. In all the experiments the response variable was set 

to -1, the undefined default value, for all the points of the grid. 

Selection of new points. Starting from cycle 0, and for each cycle, a subset of points 𝑛 (i.e., new 

formulations) was sampled from the available pool of points 𝑁. The chosen sampling techniques 

followed the rules of Farthest Point Sampling (FPS).47 FPS is a sampling technique used to select a 

subset of points that are maximally spread out from each other within a given dataset. The goal is to 

retain points that represent the diversity of the data distribution by maximizing the minimum distance 

between selected points. Given a starting dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} of 𝑁 points, a first random point 

𝑟1 ∈ 𝑋 was selected and added to the set of sampled points 𝑆 = {𝑟1}. For each remaining point 𝑥 ∈ 𝑋\𝑆 

the minimum distance to any point in 𝑆 was computed: 

 

 𝑑(𝑥) = min
𝑟∈𝑆

‖𝑥 − 𝑟‖. (1) 
 

Then, the point 𝑥𝑖 with the largest 𝑑(𝑥𝑖) was selected and added to the set of sampled points (i.e., the 

point farthest from the currently sampled points). This selection was repeated until the desired number 

𝑛 of points was reached. The result is a subset 𝑆 ⊂ 𝑋 of 𝑛 points that were distributed in such a way that 

they maintain maximal separation, thereby capturing the structure of the original dataset more effectively 

than random sampling in cases where spread was important. 

Phase diagram (PD) prediction. At each cycle 𝑁, a phase diagram was predicted using the data that 

has been experimentally tested in cycle 𝑁 − 1. In the case of 𝑁 = 0, no previous tested data was 

available, the prediction was skipped, and the FPS selected points were fed to the experimental 

validation pipeline, where their phase is recorded. For all 𝑁 ≥ 1, all the points assigned to the sampled 

set 𝑆, after experimental validation, would be used as the ground truth for a Gaussian Process Classifier 

(GPC)46 model, that is going to predict the phase distributions over the entire input space. The GPC 

models the probability distribution over classes (e.g., the phases) by defining a latent function 𝑓: ℝ𝑑 →

ℝ𝐾 that associates each input 𝑥 ∈ ℝ𝑑, contained in the input space, with a set of probabilities 

𝑝(𝑦 = 𝑐|𝑥, 𝑆), where 𝑐 ∈ {1, … , 𝐾} represents the class labels. The training step involved using the subset 

𝑆 to learn the posterior distribution of 𝑓, which, in turn, yielded a probabilistic model capable of assigning 

any points 𝑥𝑖 ∈ 𝑋 to the probability of belonging to a specific class.  

In our case, for each point in the input space the GPC would output a probability vector defined as 

follows: 

 

 𝒑𝑖 = [𝑝(𝑦 = 1|𝑥𝑖 , 𝑆), 𝑝(𝑦 = 2|𝑥𝑖 , 𝑆)], (2) 
 

where each component represents the probability of 𝑥𝑖 belonging to either the “non-aggregate” (𝑦 = 1) 

or “coacervate” (𝑦 = 2) class. Obviously, given that 𝒑𝑖 is a probability vector, it holds that the value for 

the sum of the individual contribution in Eq. 2 needed to sum up to 1. Thus, the GPC trained on the set 

of all the sampled and tested points could be used to provide a probabilistic prediction over the entire 

dataset, simply defined concatenating the individual vectors (Eq. 2) for all the points contained in 𝑋,  
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 𝑷 = [𝒑1, … , 𝒑𝑖 , … , 𝒑𝑁]. (3) 
 

Equation 3 enabled inference about phase membership across all points, essentially representing the 

phase diagram. 

The GPC algorithm used in our work was defined using a Radial Basis Function (RBF) kernel with length 

scale 1.0, multiplied by a constant kernel with default value of 1.0. In each application of the prediction 

algorithm, we allowed for an automatic internal optimization step by setting the parameters 

n_restarts_optimizer to 5, and the max_iter_predict to 150 (more information can be found 

on the original GPC Scikit-Learn documentation page71). 

Uncertainty estimation. At each cycle, to estimate the uncertainty in the phase diagram predictions, we 

computed the information entropy for each point’s probability vector 𝒑𝑖 (Eq. 2). The uncertainty was 

computed as the (information) Entropy 𝐻(𝑥𝑖), and for 𝑥𝑖 could be computed as follow: 

 

 𝐻(𝑥𝑖) = − ∑ 𝑝(𝑦 = 𝑐|𝑥𝑖 , 𝑆) log 𝑝(𝑦 = 𝑐|𝑥𝑖 , 𝑆)

𝐾

𝑐=1

. (4) 

 

Higher entropy values indicate greater uncertainty, providing an uncertainty measure for each point in 

the phase diagram that is representative of the prediction's confidence level. The entropy range of values 

is bounded, and it depends on the number of independent classes 𝐾. In all our cases, 𝐾 = 2, leading to 

a range of values that goes from 𝐻 = 0, if either of the two classes was known for certain, i.e. 𝒑𝑖 =
[1.0,0.0], to 𝐻 = 0.69, if both of the two classes were most uncertain, i.e. 𝒑𝑖 = [0.5,0.5]. 

Highest uncertainty landscape and exploration. The values of 𝐻(𝑥𝑖) gave direct access to the so-called 

uncertainty (phase) landscape which represented, per cycle, which areas of the design space were most 

(un)certain. This information was then exploited to select a subset of points 𝑋′ ⊂ 𝑋 that exhibited 

maximal entropy, within a set range of entropy values: 

 

 𝑋′ = {𝑥𝑖 ∈ 𝑋|ℎ ≤ 𝐻(𝑥𝑖) ≤ 𝐻𝑚𝑎𝑥}. (5) 
 

In Eq. 4 the upper-bound limit, 𝐻𝑚𝑎𝑥, represented the maximum value of entropy, defined as: 

 

 𝐻𝑚𝑎𝑥 = − ∑
1

𝐾
log

1

𝐾

𝐾

𝑐=1

= log 𝐾, (6) 

 

which for 𝐾 = 2 it takes the value of 𝐻𝑚𝑎𝑥 = log 2 ≈ 0.69. The lower-bound limit can be freely chosen, 

and in our cases was set it to ℎ = 0.60, effectively selecting only the highest uncertainty regions. 

The points contained in 𝑋′ would then be used as the new search space for the FPS algorithm, sampling 

new suitable points for refining the prediction of the phase diagram. In the context of active learning, this 

was often referred to as the exploration phase of the cycle, where new points were selected trying to 

maximize the exploration, lowering the overall uncertainty of the predictive algorithm. 

Accuracy measurement. To assess the accuracy of our classification model in a way that accounts for 

class imbalance, we used a balanced accuracy metric.55 At each cycle a set of labels 𝑌(𝑡) = {𝑦𝑖
(𝑡)

} was 

computed for each point in our dataset from the global vector of probabilities (Eq. 3). Balanced accuracy 

was defined as the average of the sensitivity for each class. Given the fact that we are dealing with a 
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binary classification problem we can consider the ‘coacervate’ class as the ‘positive’ outcome and the 

‘non-aggregate’ class as the ‘negative’ outcome. 

Then, the balanced accuracy was defined as: 

 

 Balanced Accuracy =
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
). (7) 

 

In Equation 7, 𝑇𝑃 and 𝑇𝑁 refer to the true-positive and true-negative predicted labels, while 𝐹𝑃 and 𝐹𝑁 

refer to the false-positive and false-negative predicted labels. 

Convergence measurements. To monitor the convergence of the model across cycles and/or experiment 

replicas, we tracked changes in the phase diagram, represented by the concatenated probability vector 

𝑷(𝑡) that is outputted from the GPC prediction (Eq. 3). The superscript (𝑡) indicates a cycle specific 

output of the probability vector. The convergence, in terms of Jensen-Shannon divergence (JSD)57, 

could be computed in two main directions: across cycles and across replicas of experiments. The former 

required two different probability vectors, which belonged to two consecutive cycles of the same 

experiment, 𝑷(𝑡) and 𝑸(𝑡+1), and it was defined as: 

 

 JSD(𝑷(𝑡)||𝑸(𝑡+1)) =
1

2
KL(𝑷(𝑡)||𝑴(𝑡,𝑡+1)) +

1

2
KL(𝑸(𝑡+1)||𝑴(𝑡,𝑡+1)), (8) 

 

where 𝑴(𝑡,𝑡+1) =
1

2
(𝑷(𝑡) + 𝑸(𝑡+1)) represents the midpoint distribution. Each term on the right-hand side 

of Eq. 8 represents the Kullback-Leibler divergence between one of the distributions and the midpoint. 

By computing the JSD between 𝑷(𝑡) and 𝑸(𝑡+1) over successive iterations of the AL algorithm, we 

obtained a measure of convergence, with decreasing JSD values indicating stabilization of the model 

prediction across cycles. To compute the JSD across experiment replicas we could average the 

individual JSD measurements (Eq. 8) as follow, 

 

 JSDreplica 𝑒
(𝑡,𝑡+1)

= JSD (𝑷replica 𝑒
(𝑡)

||𝑸replica 𝑒
(𝑡+1)

), (9a) 
 

 JSD̂
(𝑡,𝑡+1)

=
1

𝐸
∑ JSDreplica 𝑒

(𝑡,𝑡+1)

𝐸

𝑒=1

. (9b) 

 

The average JSD value represented the convergence trend across multiple experimental replicas, which 

allowed to qualitatively account for the experimental variability. 

Software and implementation. All code regarding active machine learning was written in Python 3.12. 

The Python packages scikit-learn (v.1.5.0) was used for the implementation of the Gaussian Process 

Classifier and the calculation of the balanced accuracy. SciPy (v.1.13.1) was used for the computation 

of the information entropy. Pandas (v.2.2.1) was used to handle the datasets. All the other operations 

(e.g., design space creation, farthest point sampling, and convergence calculation) were carried out 

with custom scripts using NumPy (v.<2.0.0). For data visualization, matplotlib (v.3.8.4) and plotly 

(v.5.9.0) were used in combination with Adobe Illustrator. 
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Data availability 

The raw data generated during the active machine learning cycles, as well as the processed 

data used to create the manuscript’s figures, are available on GitHub at 

https://github.com/molML/activeML-navigation-of-condensate-phases. The data at the time of 

publishing will be available at: XXX/zenodo.org/XXX. The condensate images acquired using 

confocal microscopy comprise a substantial dataset and can be shared upon reasonable 

request to the corresponding authors. 

 

Code availability 

The Python code to replicate and extend our active machine learning framework is openly 

accessible on GitHub at https://github.com/molML/activeML-navigation-of-condensate-

phases. The code at the time of publishing is available at: XXX/zenodo.XXX. 
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