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ABSTRACT: The computational study of ligand binding to a target protein provides mechanistic insight into the molecular deter-
minants of this process and can improve the success rate of in silico drug design. All-atom molecular dynamics (MD) simulations 
can be used to evaluate the binding free energy, typically by thermodynamic integration, and to probe binding mechanisms, including 
the description of protein conformational dynamics. The advantages of MD come at a high computational cost, which limits its use. 
Such cost could be reduced by using coarse-grained models, but their use is generally associated with an undesirable loss of resolution 
and accuracy. To address the trade-off between speed and accuracy of MD simulations, we describe the use of the recently introduced 
multi-eGO atomic model for the estimation of binding free energies. We illustrate this approach in the case of the binding of benzene 
to lysozyme by both thermodynamic integration and metadynamics, showing multiple binding/unbinding pathways of benzene. We 
then provide equally accurate results for the binding free energy of dasatinib and PP1 to Src kinase by thermodynamic integration. 
Finally, we show how we can describe the binding of the small molecule 10074-G5 to Aβ42 by single molecule simulations and by 
explicit titration of the ligand as a function of concentration.  These results demonstrate that multi-eGO has the potential to signifi-
cantly reduce the cost of accurate binding free energy calculations and can be used to develop and benchmark in silico ligand binding 
techniques.

INTRODUCTION 
The	study	of	ligand	binding	plays	a	pivotal	role	in	the	under-
standing	of	biochemical	pathways	and	in	drug	design.	Lig-
ands,	which	can	be	small	molecules,	peptides,	or	other	mac-
romolecules,	interact	with	specific	targets,	modulating	their	
conformations,	interactions	and	biological	activities1–3.		
Characterizing	a	ligand-receptor	interaction	is	a	three-level	
problem	(structure,	thermodynamics	and	kinetics)	that	in-
volves	the	characterization	of	the	bound	configuration	(the	
pose),	of	the	stability	of	the	interaction	(the	binding	free	en-
ergy),	and	of	the	kinetics	of	the	process	(the	on	and	off	rate	
constants)	 including	the	detailed	binding	mechanism.	Alt-
hough	 a	 wide	 range	 of	 experimental	 and	 computational	
methods	have	been	developed	 to	address	such	aspects4–6,	
they	must	be	scaled	up	to	reduce	time	and	associated	costs,	
in	particular	when	used	for	drug	design.	
A	common	computational	approach	for	drug	design	is	based	
on	 the	use	of	molecular	docking	methods7–9,	 including	re-
cent	machine	learning	approaches10,11,	to	search	and	score	

the	binding	pose	 for	 large	chemical	 libraries.	The	binding	
mechanism	of	top-scoring	ligands	can	then	be	studied	by	a	
variety	 of	 methods12–19,	 including	 endpoint	 approaches,	
such	 as	 the	 well-established	 thermodynamic	 integration	
(TI)20,21,	free	energy	perturbation	(FEP)22,	and	more	recent	
single-simulation	based23	or	non-equilibrium	approaches24;	
pathway-dependent	 calculations,	 such	 as	 long	 time-scale	
MD	simulations25,	Markov	state	models26;	and	reaction	co-
ordinate	 based	 techniques	 like	 umbrella	 sampling27	 and	
metadynamics	(MetaD)28.	The	intensive	computational	cost	
of	these	methods	can	be	reduced	by	lowering	the	resolution	
of	the	structural	representation	of	the	ligand-receptor	sys-
tem	 (i.e.	 by	 coarse	 graining),	 but	 this	 usually	 leads	 to	 re-
duced	accuracy	29,30.	There	is,	therefore,	a	need	to	develop	
methods	 that	 achieve	 a	more	 advantageous	 trade-off	 be-
tween	speed	and	accuracy.	
Recently,	we	developed	multi-eGO	to	simulate	protein	self-
assembly	processes31.	Multi-eGO	simplifies	the	description	
of	protein	interactions	by	deriving	effective	Lennard-Jones	
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(LJ)	parameters	(C6,	C12	or	ε,	𝜎	equivalently),	by	combining	
training	conventional	MD	simulations	of	a	system	with	prior	
models	representing	baseline	interactions.	We	showed	that	
multi-eGO	provides	accurate,	atomic-level	data	on	protein	
folding,	intrinsically	disordered	proteins	(IDPs)	conforma-
tional	 dynamics	 and	 peptide	 aggregation,	 with	 highly	 re-
duced	computational	costs	32,33.		
Here	we	extended	the	applicability	of	multi-eGO	to	 ligand	
binding	simulations	(Figure	1).	The	training	data	consists	of	
simulating	 a	 protein	 in	 its	 apo	 and	 holo	 states.	 The	 holo	
training	is	performed	with	additional	free	ligands	in	the	box	
that	allows	simultaneous	sampling	of	the	bound	pose	and	
estimation	of	non-specific	interactions	(both	protein-ligand	
and	ligand-ligand).	The	apo	training	intramolecular	contact	
probabilities	are	reweighted,	following	Bayes,	by	those	ob-
tained	from	a	prior	simulation,	which	represents	a	protein	
as	a	self-avoiding	polymer.	To	reweight	the	protein-ligand	
and	 ligand-ligand	 contact	 probabilities,	 we	 introduce,	 as	
prior,	a	simulation	performed	at	the	same	ligand	concentra-
tion	of	the	training	data	but	with	ligands	and	protein	inter-
acting	only	by	hard-core	repulsions	(i.e.	LJ	C12	interactions).	
This	prior	 simulation	captures	 the	 rotational	 and	 transla-
tion	entropy	associated	to	the	free	ligand	at	the	training	set	
concentration.	We	expect	this	approach	to	have	a	twofold	
advantage:	 (i)	 the	 cost	 of	 training	 simulations,	 while	 not	
negligible,	is	often	in	part	offset	before	free	energy	calcula-
tions	are	performed,	to	generate	initial	configurations	and	
to	test	the	stability	of	a	binding	pose;	(ii)	once	the	training	
cost	is	paid,	the	resulting	multi-eGO	model	can	be	used	to	
perform	multiple	 simulations,	 using	multiple	 free	 energy	
techniques	as	well	as	unbiased	simulations,	in	a	fraction	of	
the	time	with	respect	to	conventional	force-fields	(cf.	Table	
1).	

	

Figure 1. Schematic representation of the multi-eGO approach for 
ligand binding. Interatomic contact probabilities (𝑃!"#$) from train-
ing simulations for the apo and holo states, including free ligands 
in the box, are reweighted, following Bayes, for prior models that 
represent a self-avoiding polymer for the protein and random rota-
tions, translations and clashes of the ligands with the folded pro-
teins (𝑃!"%&). The resulting model can be fine-tuned (𝜀') and then 
employed to efficiently perform multiple simulation techniques, in-
cluding TI, MetaD, plain MD and concentration dependent simula-
tions. 

To	test	the	applicability	of	the	multi-eGO	approach,	we	ap-
plied	it	to	four	systems	of	increasing	complexity.	The	first	
test	case	is	the	binding	of	benzene	(BNZ)	to	the	L99A	mu-
tant	of	the	bacteriophage	T4	lysozyme	(LYZ)34,35,	which	is	

widely	used	to	benchmark	computational	methods	of	pro-
tein-ligand	binding36–39.	LYZ	is	a	small	enzyme	(162	amino	
acids	in	the	case	of	T4)	that	catalyzes	the	hydrolysis	of	1,4-
β-linkages	of	 cell-wall	peptidoglycans	and	consists	of	 two	
domains	(N-terminal	and	C-terminal).	The	L99A	mutation	
produces	 a	 small	 apolar	 cavity	 in	 the	 C-terminal	 domain,	
which	allows	the	binding	of	small	nonpolar	ligands	such	as	
BNZ	with	an	unbinding	free	energy	ΔG=21.7±0.8	kJ/mol34.	
The	 second	 and	 third	 systems	 regard	 the	 binding	 of	 da-
satinib	(DAS)	and	PP1	to	the	c-Src	kinase	(SRC).	Dasatinib	
is	a	chronic	myeloid	leukemia	drug	that	has	nM	affinity	for	
several	tyrosine	kinases,	including	Src,	whereas	PP1	is	a	Src	
kinase	inhibitor	with	a	lower	IC50	value40–44.	These	two	mol-
ecules	allow	us	to	explore	the	effect	of	complex	(in	terms	of	
internal	 degrees	 of	 freedom)	 ligands	 and	 strong	 binding	
free	energies25.	The	fourth	system	follows	the	binding	of	the	
small	molecule	10074-G545	to	monomeric	Aβ42,	which	is	an	
intrinsically	disordered	protein	(IDP)	whose	aggregation	is	
associated	 with	 Alzheimer’s	 diseases,	 allowing	 a	 binding	
process,	 dominated	 by	 conformational	 dynamics,	 to	 be	
tested	46,47.	
Our	results	show	that	multi-eGO	can	quantitatively	estimate	
the	binding	free	energies	of	benzene,	dasatinib	and	PP1,	re-
produce	 their	hypothesized	binding	mechanisms	and,	 im-
portantly,	allow	a	quantitative	and	systematic	comparison	
of	different	simulation	techniques.	For	Aβ42:10074-G5,	we	
demonstrate	that	multi-eGO	can	describe	extremely	flexible	
systems,	 and	 single-molecule	 simulations	 and	 concentra-
tion-dependent	simulations	may	be	compared,	 i.e.	models	
that	closely	mimic	an	in	vitro	experimental	setup.		
Based	on	these	results,	we	propose	multi-eGO	as	an	in-silico	
platform	 for	 ligand	 binding	 studies	 for	 applications	 in	
method	development,	benchmarking,	and	 integration	 into	
drug	screening	pipelines.	
	
Table 1. Training simulations and performances  

System # repli-
cates 
(Train-
ing) 

Tot sam-
pling time 
(Train-
ing) 

Perfor-
mances 
(conven-
tional 
force-
fields, 
ns/day) * 

Perfor-
mances 
(multi-
eGO, 
ns/day) * 

LYZ  1 1 µs 15.9 2,136 

LYZ:BNZ 10 10 µs 15.0 2,128 

SRC 1 1 µs 12.4 621 

SRC:DAS 4 8 µs 11.1 580 

SRC:PP1 4 8 µs 12.3 614 

* Performances were calculated with GROMACS 2022 using 4 
OpenMP threads on an i7-9700K CPU @ 3.60GHz. 

METHODS 
Conventional	molecular	dynamics	simulations.	All-atom,	
explicit	solvent,	training	simulations	of	LYZ:BNZ,	SRC:DAS	
and	SRC:PP1,	were	performed	using	the	DES-Amber	force	
field48	in	TIP4P-D	water49,	with	ligands	parameterized	using	
GAFF2.	 To	 match	 the	 scaled	 electrostatic	 interactions	 of	
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DES-Amber	 force	 field,	we	 rescaled	 the	AM1-BCC-derived	
charges	for	the	ligands	by	a	factor	of	0.9.		
All	systems	were	prepared	at	pH	7.4	and	in	the	presence	of	
Na+	and	Cl-	ions	to	maintain	physiological	salinity	(150mM)	
and	to	neutralize	the	total	charge	of	the	system.	All	systems	
were	subjected	to	energy	minimization	using	the	steepest	
descent	algorithm	until	the	maximum	force	converges	to	a	
value	<	1000	kJ/(mol	nm),	followed	by	a	conjugate-gradi-
ent	minimization	until	 the	maximum	force	converges	to	a	
value	<	100	kJ/(mol	nm)	and	a	LBFGS	algorithm	until	the	
maximum	 force	 converges	 to	 a	 value	 <	 10	 kJ/(mol	 nm).	
Subsequently,	the	minimized	configuration	was	relaxed	for	
2	ns	at	a	constant	pressure	of	1	bar	and	constant	tempera-
ture,	 keeping	 the	 protein	 atoms	 restrained	 to	 their	mini-
mum	energy	configurations.	The	simulations	used	the	leap-
frog	algorithm	with	a	time	step	of	2	fs	and	LINCS	restraints50	
for	hydrogen	atoms.	The	cut	off	for	non-bonded	interactions	
was	1	nm,	using	PME	for	long-range	electrostatics.	Temper-
ature	and	pressure	were	controlled	by	stochastic	velocity	
rescaling51	and	cell	rescaling52	algorithms,	respectively.	The	
number	of	replicates	and	simulation	times	are	reported	in	
Table	1.	All	simulations	were	run	using	GROMACS	202253.	
LYZ	was	modelled	starting	from	the	PDB	code	1L84	struc-
ture54	and	simulated	at	300	K.	Training	the	LYZ:BNZ	com-
plex	was	 performed	 by	 inserting	 one	 BNZ	 in	 the	 binding	
pocket,	and	4	BNZ	outside,	in	order	to	explore	its	interaction	
with	the	protein	surface.		
SRC	was	modelled	using	the	PDB	code	1Y57	structure55	and	
simulated	 at	 310	 K.	 To	 train	 the	 holo	 complex	 of	
SRC:DAS/PP1,	1	molecule	(either	DAS	or	PP1)	was	inserted	
in	the	binding	pose	and	4	ligands	were	added	to	the	solvent	
to	explore	the	interaction	with	the	protein	surface.	To	train	
our	multi-eGO	model,	the	holo	training	trajectories	were	re-
moved	from	the	non-equilibrium	portions,	consisting	of	ir-
reversible	aggregation	of	three	or	more	 ligands	with	each	
other,	as	previously	observed25.		
MD	simulations	of	apo	and	holo	Aβ42:10074-G5	were	car-
ried	out	as	previously	described46,56.	Briefly,	the	apo	simu-
lation	 was	 carried	 out	 at	 278	 K	 using	 the	 CHARMM22*	
forcefield57	and	the	TIP3P	water	model58.	The	holo	simula-
tion	was	performed	under	the	same	conditions,	parameter-
izing	the	ligand	10074-G5	using	the	Force	Field	Toolkit59.	
Multi-eGO	Simulations.	Multi-eGO	is	a	multi-ensemble	hy-
brid	 transferable/non-transferable	 force	 field31.	 The	 func-
tional	form	is	shared	with	conventional	molecular	mechan-
ics	force-fields	except	for	using	only	LJ	for	non-bonded	in-
teractions.	 Bonded	 interactions	 are	 transferable,	 derived	
from	the	GROMOS	force-field,	apart	for	dihedrals	that	have	
been	 newly	 derived.	 Default	 C12	 LJ	 parameters	were	 also	
modified	starting	from	the	GROMOS	one31,32.	The	non-trans-
ferable	(structure-based)	part	of	the	force	field	is	obtained	
from	state-of-the-art	simulation(s)	of	the	system	of	interest,	
sampling	 the	 fluctuations	of	 specific	 states	(i.e.	monomer,	
apo,	fibril,	etc.),	and	is	then	weighted	with	a	prior	(or	refer-
ence)	simulation,	obtained	with	a	simplified	description	of	
the	 system.	 From	 the	 training	 and	 the	 reference	 simula-
tions,	we	extract	pair-wise	distances	and	contact	probabili-
ties	 𝑃!"#$and	 𝑃!"%& ,	 respectively.	 Then,	 by	 Bayesian	 re-
weighting,	an	estimation	of	the	atom-pairs	non-bonded	in-
teraction	energy	as:		

𝜀!" = − (!
)* +"#$%&#'()

*+ ∙ ln
+,-
./

,-./+,-
*+,+"#$%&#'()

*+ 1
,	

is	 estimated,	 where	 i,j	 are	 atom	 indices,	 𝜀'	 is	 the	 energy	
scale	parameter,	and	𝑃234563789%& 	is	the	minimum	probability	
used	for	regularization.	A	detailed	description	of	the	model	
can	be	found	in	ref.32	and	the	associated	code	and	parame-
ters	are	available	on	GitHub.	
For	each	apo	system,	we	performed	a	prior	simulation	con-
sisting	of	a	self-avoiding	chain,	obtained	with	bonded	inter-
actions	and	C12	repulsion	from	the	multi-eGO	transferable	
potential.	 For	 multi-domain	 proteins	 like	 LYZ,	 a	 second	
prior	simulation	was	 introduced.	This	consists	of	a	multi-
eGO	 simulation	 in	 which	 the	 inter-domain	 attractions,	
namely	between	residues	1-71	and	72-162	are	turned	off,	
while	preserving	intra-domain	and	local	interactions,	in	the	
alpha-helix	connecting	the	two	domains,	to	maintain	its	in-
tegrity.	 The	 two	 sets	 of	 prior	 probabilities	 allowed	 inter-	
and	 intra-domain	 interactions	 to	 be	 correctly	 decoupled	
and	to	assign	them	specific	energy	scale	(ε0).	For	intermo-
lecular	 interactions,	 the	 reference	prior	 simulation	 corre-
sponds	to	protein:ligand	complex	at	the	same	concentration	
of	 the	 training	 simulation	 (considering	 only	 unbound	 lig-
ands)	with	only	hard-core	repulsions	between	protein	and	
ligands.	 This	 allows	 the	 concentration-dependent,	 roto-
translational	entropy	of	the	ligands	to	be	accounted	for	by	
removing	 the	effect	of	box	size	on	 the	contact	probability	
estimation.	Multi-eGO	 ligands	were	parametrized	 starting	
from	the	training	topology,	removing	hydrogens	and	opti-
mizing	the	bonded	parameters	to	reproduce	the	local	geom-
etries	of	the	training	simulations.	
All	multi-eGO	MD	 simulations	were	 performed	 using	 sto-
chastic	dynamics	integration	at	a	5	fs	timestep	and	25	ps	re-
laxation	time.	The	cutoff	 for	the	LJ	 interactions	was	set	to	
2.5σmax,	corresponding	to	1.44	nm.	A	10%	larger	radius	was	
used	 for	 the	neighbor	 lists,	which	were	updated	every	20	
steps.	 Different	 values	 of	 ε0	 were	 tested	 to	maximize	 the	
overall	agreement	between	training	and	multi-eGO	simula-
tions.	All	simulations	were	run	using	GROMACS	202253.	
Thermodynamic	Integration.	For	the	multi-eGO	unbinding	
free	energy	estimation,	we	used	TI	and	the	Bennett’s	accept-
ing	 ratio	 (BAR)	algorithm20,21.	For	each	system	a	 set	 three-	
cross	linked	restraints,	namely	CL1,	CL2,	and	CL3,	to	keep	the	
ligand	in	the	binding	pose	during	the	decoupling.	The	effect	of	
this	restraining	potential	can	be	removed	analytically	a	poste-
riori39.	The	thermodynamic	cycle	was	computed	through	a	
set	of	λ	values	scaling	the	restraint	and	non-bonded	interac-
tions	(Table	S1	to	S3).	For	LYZ:BNZ,	a	steepest	descent	en-
ergy	minimization	was	performed	at	each	λ,	followed	by	a	500	
ps	relaxation	and	a	1	ns	run	at	300K	in	the	NVT	ensemble.	For	
SRC:DAS	and	SRC:PP1,	a	steepest	descent	energy	minimization	
was	performed	at	each	λ,	followed	by	a	2	ns	relaxation	and	a	
1	ns	run	at	310K	in	the	NVT	ensemble.		All	simulations	were	
run	using	GROMACS	202253.	
Volume-based	 Metadynamics.	 VMetaD38	 simulations	
LYZ:BNZ	 were	 run	 using	 well-tempered	 metadynamics60	
considering	3	CVs,	namely	the	relative	position	in	spherical	
coordinates	(r,	q,	j)	of	the	benzene	center	of	mass,	with	re-
spect	to	the	center	of	mass	of	the	lysozyme	binding	domain	
(residues	72-162).	We	set	an	initial	height	of	the	Gaussians	
of	1.2	kJ/mol,	the	widths	at	1	Å,	π/16	rad,	and	π/8	rad	for	r,	
q,	and	j,	respectively	and	a	bias	factor	of	20,	depositing	a	
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Gaussian	every	10	ps.	4	different	1.5	µs-long	replicas	of	the	
simulations	were	run,	employing	the	same	MD	parameters	
used	in	the	unbiased	multi-eGO	simulations.	
To	avoid	an	extensive	sampling	time	of	the	unbound	state,	a	
repulsive	spherical	potential	was	set	at	a	distance	of	𝜌6:3	
(here	set	at	30	Å)	from	the	center	of	mass	of	LYZ:	

𝑈6:3(𝜌) = z
0	if	𝜌 ≤ 𝜌6:3		

1
2 𝑘(𝜌 − 𝜌6:3)

;		if	𝜌 > 𝜌6:3
	

with	k	set	to	10000	kJ/mol/Å2.	To	consider	the	loss	of	en-
tropy	caused	by	the	imposition	of	such	restraints	and	to	cal-
culate	the	binding	free	energy	difference	in	standard	condi-
tions,	we	apply	the	following	entropic	correction	

Δ𝐺' = Δ𝐺#52<$ − 𝑅𝑇	 log �
𝑉'

4
3𝜋𝜌6:3

= − 𝑉:472
� ,	

where	Δ𝐺#52<$	is	the	binding	free	energy	of	VMetaD,	𝑅	is	the	
gas	constant,	𝑇	is	the	temperature	of	the	system,		𝑉'	is	the	
standard	volume	(1660	Å3),	and	𝑉:472	is	the	volume	of	the	
protein	included	in	the	sphere	restraint.	Protein	volume	in-
side	the	sphere	was	calculated	using	the	double	cubic	lattice	
method61	available	in	GROMACS.	To	compute	the	Δ𝐺#52<$,	
we	reweighted	the	computed	free	energy	surface	using	the	
Tiwary-Parrinello	algorithm62,	removing	the	initial	200	ns	
of	trajectory	on	CVs	that	allow	the	precise	definition	of	the	
bound	and	the	unbound	states.	Following	ref.38	the	distance	
𝜌	and	the	coordination	number	𝑐,	between	the	set	of	the	lig-
and	atoms	A	and	the	set	of	 the	protein	atoms	B,	were	se-
lected	as:	

𝑐 =��
1− �

𝑟!"
𝑟'
�
>

1 − �
𝑟!"
𝑟'
�
?;

"∈A!∈B

.	

The	error	estimation	was	performed	using	the	standard	
deviation	of	the	mean	of	the	four	replicas.	All	simulations	
were	run	using	GROMACS	202253	and	PLUMED263,64.	
In	Silico	Titration	Experiments.	Six	5	µs	long	Aβ42:	10074-
G5	MD	multi-eGO	simulations	were	performed,	placing	10	
monomers	of	Aβ42	in	a	255	nm	cubic	box,	corresponding	to	
a	concentration	of	1	µM	Aβ42,	and	adding	10,	60,	100,	200,	
400	or	800	10074-G5	at	random,	respectively.	Simulations	
were	run	using	GROMACS	202253.	

RESULTS 
Preparation	of	a	multi-eGO	model	for	lysozyme:benzene:	
all-atom	training.	To	train	a	multi-eGO	model	for	LYZ:BNZ	
binding,	we	performed	multiple	apo	and	holo	simulations	
using	 the	 DES-Amber48	 	 and	 the	 GAFF2	 force	 field	 (see	
Methods	 and	Table	 1).	With	 respect	 to	 the	 apo	 state,	 the	
simulations	reproduced	a	breathing	motion	of	the	two	do-
mains	over	the	microsecond	time	scale	that	is	well	charac-
terized	experimentally	by	residual	dipolar	couplings	by	nu-
clear	magnetic	resonance	(NMR)	spectroscopy65	(Fig.	2A),	
as	shown	by	the	distribution	of	the	root	mean	square	devi-
ation	 of	 the	 atomic	 positions	 (RMSD)	 calculated	with	 re-
spect	to	the	backbone	of	a	reference	structure	(PDB	1L84).	
The	simulations	of	the	holo	state	were	performed	with	one	
BNZ	molecule	in	the	binding	cavity	and	four	additional	mol-
ecules	in	solution.	We	found	that	BNZ	is	more	likely	to	be	
found	in	regions	surrounding	the	binding	cavity,	suggesting	
a	role	of	surface	interactions	in	directing	BNZ	to	its	binding	
site	(Fig.	2B).

	

	

Figure 2. (A) Probability density function (PDF) of the RMSD from the reference crystal structure (PDB 1L84) for the ensemble of structures 
obtained from the LYZ DES-Amber (training) and multi-eGO simulations. These RMSD distributions illustrate that multi-eGO effectively 
reproduces the two-state distribution observed in LYZ. (B) Representation of the LYZ:BNZ interaction obtained from training simulations. 
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Increased red coloring indicates stronger attractions, highlighting the binding pocket in the C-terminal domain and various surface interac-
tions of the protein, some of which correspond to binding entry pathways. (C) Scoring function used to calibrate the energy scale e0 of the 
multi-eGO model for intermolecular interactions. The RMSE was computed by comparing LYZ:BNZ contact probabilities between training 
and multi-eGO simulations. Error bars were derived by averaging the RMSE over different segments of multi-eGO trajectories. (D) Residue-
wise intermolecular contact probabilities from training simulations versus multi-eGO simulations, optimized with an ε0

 of 0.53 kJ/mol. 

The	apo	training	simulation	described	above	was	analyzed	
to	obtain	intramolecular	interatomic	contact	probabilities,	
which	were	reweighted	using	two	priors.		
Preparation	of	a	multi-eGO	model	for	lysozyme:benzene:	
prior	 calculation.	 First,	 a	 reference	 prior	 simulation	was	
run,	representing	the	contact	probability	of	a	self-avoiding	
polymer	with	 the	 same	 sequence	 of	 LYZ.	 Then,	 an	 inter-
domain	 reference	was	used	 to	decouple	 the	 intra-domain	
and	inter-domain	multi-eGO	energy	scales	and	correctly	re-
weight	 the	 inter-domain	 training	probabilities.	 The	 inter-
domain	prior	consisted	of	a	multi-eGO	simulation	in	which	
all	 the	 inter-domain	 interactions	 between	 the	N-terminal	
domain	(residues	1-71)	and	 the	C-terminal	domain	(resi-
dues	72-162)	were	described	as	hard-core	repulsions.	This	
procedure	allowed	an	informative	prior	of	the	random	in-
terdomain	collisions	to	be	obtained	(see	Methods).		
Preparation	of	a	multi-eGO	model	for	lysozyme:benzene:	
final	model.	The	resulting	multi-eGO	model	for	LYZ,		with	
an	𝜀'!C24<97D<!C 	of	0.34	kJ/mol		and	an	𝜀'!C25497D<!C	of	3	kJ/mol,	
reproduced	the	equilibrium	between	a	closed	and	an	open	
conformation,	 (see	 Fig.	 2A	 and	 Fig.	 S1).	 Focusing	 on	 the	
LYZ:BNZ	 interactions,	 the	 intermolecular	 LYZ:BNZ	 and	
BNZ:BNZ	 contact	 probabilities	were	 reweighted	 using	 an	
intermolecular	 reference	 simulation,	 consisting	 of	 inter-
molecular	(hard-core)	clashes	between	LYZ	and	BNZ	mole-
cules	at	 the	same	BNZ	concentration,	used	 in	 the	 training	
simulation	to	account	for	the	roto-translational	entropy	of	
ligands.	The	𝜀'!C254D785EF8<4	was	obtained	by	minimizing	the	
root	mean	 square	 error	 (RMSE)	between	 inter-molecular	
residue	 contact	maps	 as	 shown	 in	 Fig	 2C,	 resulting	 in	 an	
𝜀'!C254D785EF8<4	of	0.53	kJ/mol.	The	resulting	multi-eGO	model	
reproduced	 the	 intermolecular	 contact	 probabilities	 be-
tween	LYZ	and	BNZ	(Fig.	2D),	demonstrating	that	multi-eGO	
can	effectively	learn	heterogeneous	interactions.	
As	a	first	test,	we	performed	40	unbiased	binding	simula-
tions,	 starting	 from	 random	 configurations	 of	 4	 unbound	
BNZ	molecules	 at	 the	 same	 concentration	 as	 the	 training	
simulation	(see	SI	Movie	1	for	a	representative	trajectory).	
Simulations	were	stopped	when	the	minimum	distance	be-
tween	BNZ	atoms	and	 the	C⍺	atom	of	A99	 in	 the	binding	
pocket	fell	below	0.4	nm.	The	extracted	binding	times	were	
then	fitted	to	a	Poisson	distribution,	yielding	a	mean	bind-
ing	time	𝜏	of	963±20	ns	with	a	p-value	of	0.988	obtained	
from	a	Kolmogorov-Smirnov	(KS)	test66,	corresponding	to	a	
kon	of	7.6x107	M-1	s-1	(see	Fig.	S2).	This	rate	should	be	con-
sidered	 as	 nominal	 due	 to	 the	 simplified	 nature	 of	 the	
model,	but	when	compared	with	the	experimental	value67	
of	8x105	–	106	M-1s-1	it	gives	an	indication	of	the	intrinsic	ac-
celeration	of	multi-eGO	due	to	removal	of	degrees	of	free-
dom.	
Thermodynamic	 integration	and	volume-based	metady-
namics	on	lysozyme:benzene	multi-eGO	model.	Given	the	
efficiency	 of	 multi-eGO,	 its	 accuracy	 in	 estimating	 the	
LYZ:BNZ	 binding	 free	 energy	 was	 tested,	 in	 comparison	
with	alternative	methods.	We	focused	on	Thermodynamic	
Integration	 (TI)	 and	 Volume	 Based	 Metadynamics	

(VMetaD),	the	former	being	the	industry	standard	for	such	
calculations20,21		and	the	latter,	a	potentially	more	informa-
tive	but	also	more	computationally	expensive	alternative38.		
TI	of	LYZ:BNZ	was	performed	in	6	replicates	using	three	al-
ternative	restraints	(CL1,	CL2,	and	CL3)	to	keep	the	ligand	
in	 the	 binding	 pose	 and	 to	 speed	 up	 convergence39	 (see	
Methods	and	Fig.	S3).	The	unbinding	 free	energies,	calcu-
lated	as	the	mean	and	the	standard	deviation	of	the	mean,	
are	 shown	 in	 Fig.	 3A.	 The	 three	 estimates	 of	 21.41±0.04	
kJ/mol,	 21.45±0.05	 kJ/mol,	 and	 21.46±0.07	 kJ/mol	 from	
the	 three	 restraints,	 respectively,	 show	 a	 high	 statistical	
precision	and	a	remarkable	accuracy	when	compared	to	the	
experimental	 unbinding	 free	 energy	 of	 21.7±0.8	 kJ/mol	
(Fig.	3A).			
	

	

Figure 3. (A) Estimation of the unbinding ΔG obtained with the 
multi-eGO force field using different techniques: CL1, CL2, and 
CL3 refer to TI with three different restraints. The error was calcu-
lated as the standard error of the mean of six replicates for each 
restraint. VMetaD denotes the volume-based metadynamics ΔG es-
timate, with the error calculated as the standard error of the mean 
of four replicates. (B) Free energy surface (FES) obtained by re-
weighting of VMetaD in an appropriate collective variable (CV) 
space. On the x-axis, ρ represents the distance of the BNZ center 
of mass from the center of the sphere used to define the sampling 
volume. On the y-axis, the coordination number of BNZ with the 
residues of LYZ. 

An	additional	unbinding	free	energy	estimate	was	obtained	
using	VMetaD	(see	Methods)	by	running	four	independent	
replicates	 of	 1.5	 µs	 each,	 reaching	 convergence	 after	 ap-
proximately	200	ns	(Fig.	S4).	A	 free	energy	surface	(FES)	
representing	 the	 unbinding	 process	 was	 obtained	 by	 re-
weighting	VMetaD	simulations	as	a	function	of	the	distance	
of	the	BNZ	center	of	mass	from	the	center	of	the	sphere	cen-
tered	on	the	binding	site,	which	was	used	to	define	the	sam-
ple	volume,	and	the	coordination	number	of	BNZ	with	the	
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residues	of	LYZ	(see	Fig.	3B	and	Methods	section).	From	the	
FES,	we	estimated	a	ΔG	of	21.4±0.2	kJ/mol,	obtained	as	the	
mean	and	standard	deviation	of	the	mean	over	the	4	repli-
cates	(Fig.	3A),	which	 is	within	the	statistical	precision	of	
the	TI	 estimates,	 demonstrating	 the	 reliability	 of	 the	 two	
different	approaches.		
The	use	of	VMetaD	also	allowed	us	to	compare	our	sampled	
binding/unbinding	pathways	with	 those	already	reported	
in	the	literature	(Fig.	4	and	Fig.	S5).	Using	a	dynamic	time-
warping	 clustering	 algorithm68,	 we	 were	 able	 to	 observe	
most,	if	not	all	(depending	on	the	classification	approach),	
of	the	previously	observed	pathways38,68,	 further	support-
ing	the	ability	of	multi-eGO	to	describe	correctly	the	binding	
and	unbinding	mechanism	of	a	ligand.	
	
	

	

Figure 4. Representation of the main unbinding pathways identified 
by the dynamic time-warping analysis on the LYZ:BNZ VMetaD 
simulations. Naming the visible helices with the letters C, D, F, G, 
H, and I we can define all the six main unbinding pathways. 1) BNZ 
passes behind D and under C; 2) BNZ passes over C and behind F; 
3) BNZ passes over C and under F; 4) BNZ passes in between the 
top part of H and G; 5) BNZ passes behind H; 6) BNZ passes under 
the C-terminal domain, between helices G and D. These pathways 
qualitatively match the ones identified with explicit water and at-
omistic potentials in ref. 38.  

Multi-eGO	model	of	c-Src	kinase:dasatininb	and	c-Src	ki-
nase:PP1:	all-atom	training	simulations.	To	test	the	trans-
ferability	of	the	protocol	developed	for	LYZ:BNZ,	we	reap-
plied	it	to	the	binding	of	DAS	and	PP1	to	SRC.	First,	we	per-
formed	several	training	MD	simulations	for	the	apo	system	
as	well	 as	 for	 the	 SRC:DAS	 and	 SRC:PP1	holo	 systems,	 in	
both	cases	4	in-solution	ligands	were	added	(see	Methods	
and	Table	1).	The	training	simulations	showed	different	in-
teractions	between	ligands	and	the	protein	in	correspond-
ence	of	known	binding	sites,	as	previous	shown	in	ref.25.	Be-
sides	the	ATP	binding	site,	we	found	important	interactions	
with	the	N-lobe	(b-sheet),	the	αG	helix,	the	P-loop,	binding	
in	the	MYR	site	for	both	ligands	and	binding	in	the	PIF	site	
for	PP1	(see	Fig.	S6).		
Multi-eGO	model	of	c-Src	kinase:dasatininb	and	c-Src	ki-
nase:PP1:	prior	model	 simulations.	 To	parameterize	 the	
multi-eGO	models,	 after	 performing	 a	 prior	 simulation	 of	
SRC	as	a	self-avoiding	polymer,	we	set	the	𝜀'	parameter	for	
the	protein	to	match	the	radius	of	gyration	(Rg),	the	resi-
due-wise	root-mean	square	fluctuations	of	the	atomic	posi-
tions	(RMSF),	and	RMSD	distributions,	obtaining	an	optimal	
value	of	0.33	kJ/mol	(Fig.	S7).	To	describe	intermolecular	
interactions,	 we	 first	 performed	 an	 intermolecular	 refer-
ence	prior	simulation	at	the	same	ligand	concentration	as	
the	training	simulation	to	account	for	random	collisions	be-
tween	 ligand	 molecules.	 We	 then	 optimized	 the	 corre-
sponding	 𝜀'	 and	 obtained	 a	 value	 of	 0.43	 kJ/mol	 and	0.6	
kJ/mol	for	DAS:DAS	and	PP1:PP1,	respectively,	which	could	
reproduce	their	training	contact	probabilities.	A	second	in-
termolecular	prior	simulation	was	then	performed	in	which	
the	ligands	were	allowed	to	interact	with	each	other,	while	
the	protein	and	ligands	only	interacted	with	hard-core	re-
pulsion.	Finally,	by	minimizing	the	RMSE	between	the	train-
ing	 and	 multi-eGO	 residue-wise	 intermolecular	 contact	
probabilities,	we	obtained	an	optimal	𝜀'	of	0.32	kJ/mol	and	
0.35	 kJ/mol	 for	 SRC:DAS	 and	 SRC:PP1,	 respectively	 (Fig.	
S8).		
Binding	 simulation	of	 c-Src	kinase:dasatininb	and	 c-Src	
kinase:PP1:	 multi-eGO	 models.	 The	 resulting	 multi-eGO	
models	were	 used	 to	 perform	40	binding	 simulations	 for	
both	PP1	and	DAS,	starting	from	a	random	conformation	of	
four	unbound	ligands	(at	the	same	concentration	as	in	train-
ing).	To	establish	the	binding,	we	chose	three	reference	at-
oms	 of	 the	 protein,	 namely	 CD:GLU310,	 N:MET341,	
CA:THR338	 for	 SRC:DAS	 and	 N:ILE294,	 N:MET341,	
N:THR338	 for	 SRC:PP1,	 and	 we	 stopped	 each	 simulation	
when	the	three	minimum	distances	between	one	of	the	lig-
ands	and	the	three	reference	atoms	were	below	0.5	nm,	0.4	
nm,	0.5	nm	 for	SRC:DAS	and	0.5	nm,	0.35	nm,	0.5	nm	 for	
SRC:PP1.
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Figure 5. (A) RMSD of DAS with respect to its experimental binding pose over time. The ligand is considered bound when the RMSD is 
less than 0.26 nm. (B) RMSD of PP1 with respect to its experimental binding pose over time. The ligand is considered as bound when the 
RMSD is less than 0.26 nm.  (C) Cumulative DAS binding times and Poisson fit with mean binding times of 3.5±0.1 ns, p=0.92 from a 
Kolmogorov-Smirnov test.  (D) Cumulative PP1 binding times and Poisson fit with mean binding times of 1.64±0.02 ns, p=0.99992 from a 
Kolmogorov-Smirnov test. 

The	 calculated	 RMSD	 of	 the	 ligand	 to	 its	 bound	 confor-
mation	after	alignment	of	the	protein	is	shown	in	Fig.	5A,B	
(see	 also	 SI	Movie	 S2	 and	 S3).	 Binding	 times	 (RMSD	 less	
than	0.26	nm)	were	fitted	to	a	Poisson	distribution,	yielding	
mean	 binding	 times	 of	 3.5±0.1	 ns	 and	 1.64±0.02	 ns	 for	
SRC:DAS	and	SRC:PP1,	respectively,	with	corresponding	p-
values	 of	 0.92	 and	 0.99992	 obtained	 with	 KS-test	 (Fig.	
5C,D).	The	corresponding	kon	for	SRC:DAS	and	SRC:PP1	are	
2.51x1010	M-1s-1	and	5.39x1010	M-1s-1,	respectively.	Despite	
the	fact	that,	as	for	LYZ:BNZ,	the	time	scales	are	nominal	and	
cannot	be	compared	directly	with	experiments	(i.e.,	the	in	
vitro	kon	for	DAS	is	~5x106	M-1s-1),	their	ratio	is	consistent	
with	the	ratio	of	those	obtained	by	previously	published	MD	
simulations25	(1.9x106	M-1s-1	and	4.3x106	M-1s-1	for	DAS	and	
PP1,	 respectively),	 indicating	 for	 this	 case	 a	 speed	 up	 of	
around	four	order	of	magnitudes.		
Estimation	 of	 c-Src	 kinase:dasatininb	 and	 c-Src	 ki-
nase:PP1	unbinding	free	energy	via	Thermodynamic	In-
tegration:	multi-eGO	models.	Having	shown	that	the	model	
can	simulate	the	correct	binding	of	the	two	ligands,	we	esti-
mated	their	unbinding	free	energy	by	TI,	using	three	alter-
native	 restraints	 as	 before	 (see	Methods	 and	 Fig.	 S9	 and	
S10).	For	each	restraint	we	performed	4	TI	replicates.	For	
SRC:DAS	 we	 estimated	 an	 unbinding	 free	 energy	 of	
55.0±0.5	kJ/mol,	55.5±0.3	kJ/mol	,	55.6±0.4	kJ/mol	for	the	
three	 restraints,	 respectively	 (Figure	 6A),	 while	 for	
SRC:PP1	 we	 estimated	 an	 unbinding	 free	 energy	 of	
38.34±0.06	 kJ/mol,	 38.4±0.1	 kJ/mol,	 38.3±0.1	 kJ/mol	

(Figure	 6B).	 As	 for	 LYZ:BNZ	 all	 estimates	 are	 compatible	
and	show	high	statistical	precision.		

	

Figure 6. (A) TI estimates of the unbinding ΔG of c-Src kinase and 
dasatinib using multi-eGO. The three estimates (CL1, CL2, CL3) 
correspond to different restraints used to keep the ligand in the 
binding pose during decoupling. Errors were calculated as the 
standard error of the mean of four replicates for each restraint. The 
blue band represents the interval of in vitro measurements  value40–

44
. (B) TI estimates of the unbinding ΔG of c-Src kinase and PP1 

using multi-eGO. CL1, CL2, CL3 corresponds to different 
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restraints. Errors were calculated as the standard error of the mean 
of four replicas for each constraint. 

Importantly,	 the	 ΔG	 obtained	 for	 SRC:DAS	 is	 compatible	
with	values	reported	in	the	literature	for	in	vitro	measure-
ments	 	 value40–44,	 ranging	 from	 55.17	 kJ/mol	 to	 60.23	
kJ/mol	(Figure	5A).	For	SRC:PP1,	we	compared	the	experi-
mental	ratio	of	the	IC50	of	SRC:DAS	(0.5	nM)69	and	SRC:PP1	
(170	nM)44	with	the	ratio	of	the	𝐾$ = exp �− GH

I0J
�	estimates	

obtained	with	multi-eGO.	The	ratio	of	the	multi-eGO	KD	val-
ues	was	found	to	be	in	qualitative	agreement	with	the	IC50	
ratio,	namely	K/

112

K/
/34 = 740 ± 114	and	L&5!

112

L&5!
/34 = 340.	

Preparation	of	the	Aβ42:10074-G5	multi-eGO	model.	The	
above	binding	processes	represent	the	most	common	sce-
nario	where	a	pose	 is	known,	or	hypothesized,	under	 the	
lock-and-key	mechanism,	where	the	ligand	minimally	per-
turbs	the	structure	of	the	receptor.	At	the	other	end	of	the	
spectrum	is	the	case	of	ligand	binding	to	IDPs,	which	do	not	
entail	a	well-defined	binding	site	due	to	the	absence	of	a	sta-
ble	tertiary	structure.	To	test	multi-eGO	in	this	scenario,	we	
used	the	large	publicly	available	dataset	for	Aβ42	simulated	
in	its	apo	and	10074-G5	holo	states46,56.	After	parametrizing	
the	Aβ42	monomer,	as	previously	published,	with	an	intra-
molecular	𝜀'	of	0.33	kJ/mol,	we	parametrized	the	multi-eGO	
10074-G5	starting	from	its	GROMOS	ATB-derived	model70	
and	optimized	its	bonded	parameters	to	match	those	of	the	
training	 simulation	 (see	Methods).	We	 then	 performed	 a	
reference	prior	simulation	in	which	mutual	interactions	be-
tween	Aβ42	and	10074-G5	are	represented	only	by	steric	
clashes	in	the	same	training	condition.	After	this	simulation,	
we	 set	 the	 intermolecular	 interaction	 between	 Aβ42	 and	
10074-G5	 by	minimizing	 the	 RMSE	 of	 the	 intermolecular	
residue-wise	contact	maps	(see	Fig.	S11),	obtaining	a	value	
of	 𝜀'	 of	 0.385	 kJ/mol.	 	 The	 multi-eGO	 holo-simulation	
showed	the	same	Rg	behavior	observed	in	the	training	sim-
ulation	(Fig.	S12),	qualitatively	reproducing	the	same	peak	
shift	and	narrowing	of	the	distribution.	Note	that	this	effect	
is	only	due	to	ligand	binding,	since	the	intramolecular	inter-
actions	are	only	learned	from	the	apo	simulation.		
Single-molecule	simulation	of	the	Aβ42:10074-G5	multi-
eGO	model.	With	the	parameters	found	above,	we	ran	a	2	
µs	multi-eGO	MD	simulation	and	calculated	the	probability	

of	binding	vs.	unbinding	to	estimate	the	KD.	 	In	the	case	of	
single	molecule	simulations,	direct	estimation	of	KD	as	

[N][+]
[N+]

	
is	affected	by	the	finite	size	of	the	simulation	box71.	To	cor-
rectly	 calculate	 the	 dissociation	 constant,	 considering	 the	
box	size,	we	followed	Lopez	et	al.	and	calculated	KD	as	

𝐾! =
"

#	%!	&"(#)
")&#(#)
")#$

	, 

where	V	is	the	box	volume,	NA	is	Avogadro’s	number,	pB(V)	
is	 the	bound	probability,	 v	 is	 the	 interacting	 volume	 (the	
volume	where	protein	and	ligand	interact	but	the	ligand	is	
not	in	the	bound	pose),	and	pv	is	the	probability	of	finding	
the	ligand	within	the	volume	V.	In	the	case	of	ligand	binding	
with	 an	 IDP,	 the	 difference	 between	 the	 interacting	 and	
bound	volumes	is	subtle	(with	no	precise	binding	pose).		
By	defining	the	bound	state	considering	the	configurations	
where	the	minimum	distance	between	Aβ42	and	10074-G5	
is	less	than	0.33	nm	and	as	interacting	the	state	where	the	
minimum	distance	is	 less	than	0.4	nm,	a	dissociation	con-
stant	of	683±7	µM	was	calculated	for	multi-eGO	(with	the	
error	calculated	as	standard	deviation	of	the	mean	of	4	rep-
licates	of	2	µs	 each)	 (see	Figure	7A),	 in	 comparison	with	
381±5	 µM	 obtained	 by	 analyzing	 the	 training	 simulation	
(where	 the	 error	 is	 calculated	 using	 a	 bootstrapping	
method	with	95th	percentile).	To	note,	 the	difference	be-
tween	 the	 training	 and	 multi-eGO	 dissociation	 constants	
corresponds	to	1.5	kJ/mol	in	free	energy,	less	than	the	ther-
mal	 fluctuation	energy	 (~2.5	kJ/mol	 at	300	K).	However,	
these	values	are	not	in	quantitative	agreement	with	the	ex-
perimental	value	of	7-40	µM,	most	likely	because	of	limita-
tions	in	force-field	accuracy.	In	this	case,	a	substantial	ad-
vantage	of	using	multi-eGO	is	represented	by	the	possibility	
of	updating	the	model	to	reproduce	the	experimental	affin-
ity	by	changing	a	single	parameter,	𝜀',	which	represents	the	
energy	 scale	 for	 the	 Aβ42:10074-G5	 interaction,	 without	
the	 requirement	 to	 repeat	 the	 computationally	 intensive	
all-atom	 training	 simulation.	 A	 𝜀'	 of	 0.46	 kJ/mol	 corre-
sponded	to	a	dissociation	constant	of	18±1	µM	(Figure	7A),	
before	and	after	volume	correction,	where	the	data	repre-
sent	the	mean,	and	the	standard	deviation	of	the	mean	ob-
tained	from	5	replicates	of	2	µs	each.	
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Figure 7. (A) Comparison of dissociation constants obtained from single molecule and titration multi-eGO simulations. The arrows indicate 
the correction for the finite size effects. (B) Aβ42:10074-G5 bound state population as a function of 10074-G5 concentration as obtained 
from multi-eGO 10074-G5 titration simulations, the line is the fit using the Hill equation. (C) Display of a simulation box for 10 Aβ42 
molecules at 1 µM concentration mixed with 200 10074-G5 molecules. The inset shows an Aβ42 configuration bound to two 10074-G5 
molecules. (D) Probability of observing 0 to 3 10074-G5 molecules simultaneously bound to an Aβ42 molecule as a function of 10074-G5 
concentration.

	
In	silico	titration	simulation	of	the	Aβ42:10074-G5	multi-
eGO	model.	 The	 updated	 model	 was	 then	 used	 to	 study	
Aβ42:10074-G5	 binding	 in	 the	 presence	 of	 an	 increasing	
number	of	10074-G5	molecules.	Following	in	vitro	experi-
ments,	we	performed	an	in-silico	titration	experiment	mix-
ing	1	µM	Aβ42	(consisting	of	10	monomers	in	a	255	nm	cu-
bic	 box,	 cf.	 Fig.	 7C)	 with	 increasing	 concentrations	 of	
10074-G5,	 namely	 1:1,	 1:6,	 1:10,	 1:20,	 1:40	 and	 1:80	
Aβ42:10074-G5	 ratios.	At	 each	 ratio,	 5	µs	 long	multi-eGO	
simulation	were	run	(see	Fig.	S13	for	binding	probability	as	
a	function	of	time	and	block	averaging),	and	the	concentra-
tion	of	bound	Aβ42:10074-G5	 	was	 fitted	as	a	 function	of	
ligand	 concentration	 using	 the	 equation	 [𝐿𝑃] = [N][+]

[N]PK/
,	

which	resulted	in	a	KD	of	16.4±0.7	µM	(as	shown	in	Figure	
7B	with	error	estimates	resulting	from	1	µs	block	averag-
ing),	 consistent	 with	 that	 obtained	 with	 the	 volume-cor-
rected	single	molecule	approach.	This	case	further	empha-
sizes	the	usefulness	of	multi-eGO71	when	estimating	disso-
ciation	constants	from	single	molecule	equilibrium	simula-
tions.	
In	Figure	7D,	we	report	the	probability	of	having	multiple	
concurrent	bindings	at	the	different	concentrations,	show-
ing	the	presence	of	2	or	3	ligands	bound	to	one	Aβ42	mon-
omer	(see	also	the	 inset	of	Figure	7C	for	a	representative	
configuration).	This	analysis	suggests	that	the	effect	of	sim-
ultaneous	binding	is	negligible	at	the	concentrations	of	the	
experiments.	The	lack	of	cooperativity	is	consistent	with	the	

entropic	expansion	model	with	minimal	structural	pertur-
bations72.	Notably,	we	anticipate	that	our	simulations	could	
be	 extended	 to	 account	 for	 additional	 Aβ42	 interactions,	
such	as	those	that	could	be	derived	from	a	fibril	structure,	
paving	 the	way	to	study	protein	aggregation	 itself	and	 its	
inhibition	mechanisms.		

DISCUSSION 
Structure-based	models	have	been	introduced	to	study	pro-
tein	folding,	based	on	the	hypothesis	that	the	native	protein	
structure	 should	 capture	 the	 most	 relevant	 interactions	
across	the	whole	free	energy	landscape	of	a	protein.	They	
have	proven	useful	to	study	otherwise,	inaccessible	folding	
mechanisms	at	high	resolution73.	Recently,	we	have	intro-
duced	 multi-eGO,	 an	 ensemble-based	 model	 rooted	 in	
Bayesian	statistics,	where	one	or	more	conformational	en-
sembles	of	a	protein,	representing	the	fluctuations	of	rele-
vant	 free	 energy	 minima,	 are	 weighted	 with	 prior	 infor-
mation31,32.	 This	 approach	 enables	 the	 generation	 of	 a	
model	 that	can	simultaneously	describe	 folded	and	disor-
dered	proteins,	in	addition	to	self-assembly	processes	such	
as	peptide	amyloidogenic	aggregation.		
Here,	we	have	extended	the	multi-eGO	approach	to	include	
small	molecules.	Our	initial	results	on	four	case	studies	al-
low	us	on	the	one	hand	to	propose	multi-eGO	as	a	model	for	
benchmarking	and	developing	 in	silico	 techniques	 for	 lig-
and	binding	studies,	and	on	the	other	hand	to	suggest	that	
multi-eGO	can	be	used	for	quantitative	estimation	of	ligand	
affinities.	This	is	because	multi-eGO	describes	the	system	at	
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atomic	 resolution,	 with	 binding	 free	 energies	 compatible	
with	those	measured	in	vitro,	but	with	a	dramatic	accelera-
tion	 of	 the	 kinetics	 (that	 we	 can	 tentatively	 quantify	 be-
tween	 2	 and	 4	 orders	 of	 magnitude).	 We	 exploited	 the	
LYZ:BNZ	system	to	apply	orthogonal	free	energy	calculation	
techniques	 (TI	 with	 multiple	 restraining	 conditions	 and	
VMetaD)	showing	their	applicability	and	robustness	on	the	
model.	It	must	be	underlined	that	all	simulations	are	repli-
cated	multiple	times	to	obtain	statistically	meaningful	esti-
mates,	at	minimal	computational	costs.	While	Aβ42:10074-
G5	represented	a	case	 that	 is	 inaccessible	 to	current	con-
ventional	approaches,	namely	explicit	titration	as	a	function	
of	 ligand	 concentration,	 with	 direct	 comparisons	 with	 in	
vitro	 concentrations.	 The	 latter	 case,	 on	 the	 one	 hand,	
demonstrated	the	efficiency	of	multi-eGO	and,	on	the	other	
hand,	underlined	the	importance	of	correcting	single-mole-
cule	simulations	 for	 the	 finite-size	effect,	 following	proce-
dures	such	as	those	described	in	Lopez	et	al.		
The	use	of	multi-eGO	requires	model	training,	which	con-
sists	of	running	training	simulations	and	finding	a	set	of	free	
parameters.	Here,	we	introduced	a	possible	strategy	to	set	
our	energy	scale	parameters,	excluding	the	intervention	of	
any	possible	user	bias.	In	practice,	we	minimized	the	RMSE	
with	the	protein	fluctuation	as	well	as	the	RMSE	for	the	in-
termolecular	 residue-wise	 contact	 map,	 comparing	 the	
multi-eGO	and	training	simulations.	This	approach	was	first	
successfully	 tested	 on	 the	 LYZ:BNZ	 system	 and	 then	 suc-
cessfully	replicated	for	the	SRC:DAS	case.	Successfully,	be-
cause	in	both	cases,	knowledge	of	the	experimental	binding	
free	energy	was	not	used	in	the	input	and	instead	was	accu-
rately	obtained	by	the	simulations.	In	both	cases,	our	train-
ing	simulations	include	a	ligand	in	its	binding	pose	as	well	
as	several	ligands	free	to	sample	the	surface	of	the	protein.	
The	latter	data	are	used	to	set	the	energy	scale	of	the	sys-
tem.	For	Aβ42:10074-G5,	we	used	a	previously	generated,	
large	 dataset	 of	 simulations,	 from	which	we	 inherited	 an	
overestimated	dissociation	constant.	This	is	where	the	ad-
vantage	of	multi-eGO	becomes	apparent,	as	it	is	sufficient	to	
tune	a	single	parameter	to	make	the	model	match	the	ex-
perimental	value.	This	allows	us	to	speculate	that	multi-eGO	
may	 be	 particularly	 suitable	 for	 studying	 ligand	 binding	
processes	 such	 as	 those	 represented	 by	 the	 LYZ:BNZ,	
SRC:DAS,	and	SRC:PP1	cases,	where	the	training	data	can	be	
generated	with	very	limited	computational	cost	and	should	
represent	only	the	weak	(i.e.,	faster	to	sample)	non-specific	
interactions	 of	 a	 ligand	 with	 the	 protein	 surface,	 given	
knowledge	or	a	hypothesis	about	the	binding	pose.	We	an-
ticipate	that	further	work	will	be	needed	to	better	under-
stand	the	strengths	and	limitations	of	multi-eGO	in	 ligand	
binding	studies,	including	cases	with	more	complex	binding	
mechanisms	such	as	induce-fit	or	conformational	selection,	
as	well	as	to	streamline	and	possibly	automatize	the	simu-
lation	setup	protocol.	

CONCLUSIONS 
Ligand	binding	studies	are	among	the	most	important	ap-
plications	of	MD	simulations	since	this	computational	tech-
nique	can	capture	the	conformational	dynamics	of	both	the	
ligand	and	the	receptor.	It	is	thus	possible	to	obtain	a	rela-
tively	accurate	description	of	their	physicochemical	 inter-
actions,	and	both	kinetic	and	thermodynamic	 information	

about	the	binding	process.	These	results	can	be	obtained	if	
sufficient	computational	resources	are	available.	While	sev-
eral	methods	have	been	developed	to	reduce	the	computa-
tional	costs	of	obtaining	accurate	kinetic	or	thermodynamic	
data,	MD	simulations	remain	hindered	by	the	timescale	for	
sampling	 the	relevant	regions	of	conformational	space,	 to	
obtain	reliable	estimates	of	thermodynamic	properties.	Our	
results	highlight	the	potential	of	multi-eGO	both	as	a	model	
to	benchmark	and	develop	in	silico	free	energy	calculation	
techniques	and	as	an	accurate	and	efficient	framework	for	
ligand	binding	studies,	potentially	extending	the	current	ca-
pabilities,	in	terms	of	time	and	number	of	particles,	of	in	sil-
ico	molecular	studies.	
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